Brain inspired electronics with organic memristors could offer a functionally promising and cost-effective platform for flexible, wearable, and personalized computing technologies. While there are different material approaches (viz. oxides, nitrides, 2D, organic) to realize memristors, organic materials are characteristically unique, as they could, in principle, offer spatially uniform switching, tunable molecular functionalities, and ultra-low switching energies approaching atto joules that are highly desirable but elusive with other material systems. However, despite a long-standing effort spanning almost 2 decades, the performance and mechanistic understanding in organic memristors are quite far from a translational stage and even a single suitable candidate is yet to emerge. Almost all the reported organic memristors lack reproducibility, endurance, stability, uniformity, scalability, and speed that are needed for an industrial application. In this review, we analyze the root cause of the prolonged failures of organic memory devices and discuss a new family of organic memristors, made of transition metal complexes of redox active organic ligands (RAL), that satisfy and go beyond the requirements specified in the 2015 ITRS roadmap for RRAM devices. These devices exhibit cyclability > 1012, retention of several months, on/off ratio > 103, switching voltage approaching 100 mV, rise time less than 30 ns, and switching energy <1 fJ, offering a quantum leap in organic memristor technology. This could give birth to a new generation of organic memristors that are industrially competitive with ample scopes for functional tunability by molecular engineering, such as variation of the metal center and ligands as well as the counterions. A combination of molecular and device engineering may enable this material system to be an ideal candidate for brain inspired electronics.

1.
S.
Salahuddin
,
K.
Ni
, and
S.
Datta
, “
The era of hyper-scaling in electronics
,”
Nat. Electron.
1
,
442
(
2018
).
2.
R. S.
Williams
, “
What's next? [the end of Moore's law]
,”
Comput. Sci. Eng.
19
,
7
13
(
2017
).
3.
Q.
Xia
and
J. J.
Yang
, “
Memristive crossbar arrays for brain-inspired computing
,”
Nat. Mater.
18
,
309
(
2019
).
4.
W.
Sun
 et al., “
Understanding memristive switching via in situ characterization and device modeling
,”
Nat. Commun.
10
,
3453
(
2019
).
5.
J.
Tang
 et al., “
Bridging biological and artificial neural networks with emerging neuromorphic devices: Fundamentals, progress, and challenges
,”
Adv. Mater.
31
,
1902761
(
2019
).
6.
S.
Goswami
 et al., “
Robust resistive memory devices using solution-processable metal-coordinated azo aromatics
,”
Nat. Mater.
16
,
1216
(
2017
).
7.
L.
Chua
, “
If it's pinched it'sa memristor
,”
Semicond. Sci. Technol.
29
,
104001
(
2014
).
8.
L.
Chua
, “
Memristor-the missing circuit element
,”
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
9.
A.
Bandyopadhyay
and
A. J.
Pal
, “
Large conductance switching and memory effects in organic molecules for data-storage applications
,”
Appl. Phys. Lett.
82
,
1215
1217
(
2003
).
10.
B.-B.
Cui
 et al., “
Tuning of resistive memory switching in electropolymerized metallopolymeric films
,”
Chem. Sci.
6
,
1308
1315
(
2015
).
11.
K.
Kang
 et al., “
High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure
,”
Adv. Mater.
31
,
1804841
(
2019
).
12.
E. Y.-H.
Hong
,
C.-T.
Poon
, and
V. W.-W.
Yam
, “
A phosphole oxide-containing organogold (III) complex for solution-processable resistive memory devices with ternary memory performances
,”
J. Am. Chem. Soc.
138
,
6368
6371
(
2016
).
13.
X.
Yan
 et al., “
Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors
,”
Adv. Mater.
31
,
1805284
(
2019
).
14.
A. K.-W.
Chan
 et al., “
Synthesis and characterization of luminescent cyclometalated platinum (II) complexes with tunable emissive colors and studies of their application in organic memories and organic light-emitting devices
,”
J. Am. Chem. Soc.
139
,
10750
10761
(
2017
).
15.
X.
Ji
 et al., “
Biodegradable and flexible resistive memory for transient electronics
,”
J. Phys. Chem. C
122
,
16909
16915
(
2018
).
16.
S.
Goswami
,
R.
Mukherjee
, and
A.
Chakravorty
, “
Chemistry of ruthenium. 12. Reactions of bidentate ligands with diaquabis [2-(arylazo)pyridine]ruthenium(II) cation. Stereoretentive synthesis of tris chelates and their characterization: Metal oxidation, ligand reduction, and spectroelectrochemical correlation
,”
Inorg. Chem.
22
,
2825
2832
(
1983
).
17.
S.
Samanta
,
P.
Ghosh
, and
S.
Goswami
, “
Recent advances on the chemistry of transition metal complexes of 2-(arylazo)pyridines and its arylamino derivatives
,”
Dalton Trans.
41
,
2213
2226
(
2012
).
18.
S.
Joy
 et al., “
Isolation and assessment of the molecular and electronic structures of azo-anion-radical complexes of chromium and molybdenum. Experimental and theoretical characterization of complete electron-transfer series
,”
Inorg. Chem.
50
,
9993
10004
(
2011
).
19.
N. D.
Paul
,
U.
Rana
,
S.
Goswami
,
T. K.
Mondal
, and
S.
Goswami
, “
Azo anion radical complex of rhodium as a molecular memory switching device: Isolation, characterization, and evaluation of current-voltage characteristics
,”
J. Am. Chem. Soc.
134
,
6520
6523
(
2012
).
20.
S.
Goswami
,
D.
Sengupta
,
N. D.
Paul
,
T. K.
Mondal
, and
S.
Goswami
, “
Redox non-innocence of coordinated 2-(arylazo) pyridines in iridium complexes. Characterization of redox series and an insight into voltage-induced current characteristics
,”
Chem. - Eur. J
20
,
6103
6111
(
2014
).
21.
S.
Prakash
 et al., “
Intrinsic hydrophilic nature of epitaxial thin-film of rare-earth oxide grown by pulsed laser deposition
,”
Nanoscale
10
,
3356
3361
(
2018
).
22.
Y.
Yuan
 et al., “
Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method
,”
Nat. Commun.
5
,
3005
(
2014
).
23.
R. C.
Chiechi
,
E. A.
Weiss
,
M. D.
Dickey
, and
G. M.
Whitesides
, “
Eutectic gallium–indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers
,”
Angew. Chem., Int. Ed.
47
,
142
144
(
2008
).
24.
C. A.
Nijhuis
,
W. F.
Reus
, and
G. M.
Whitesides
, “
Molecular rectification in metal-SAM-metal oxide-metal junctions
,”
J. Am. Chem. Soc.
131
,
17814
17827
(
2009
).
25.
A.
Bandyopadhyay
,
S.
Sahu
, and
M.
Higuchi
, “
Tuning of nonvolatile bipolar memristive switching in Co (III) polymer with an extended azo aromatic ligand
,”
J. Am. Chem. Soc.
133
,
1168
1171
(
2011
).
26.
B.
Hu
 et al., “
Inorganic–organic hybrid polymer with multiple redox for high-density data storage
,”
Chem. Sci.
5
,
3404
(
2014
).
27.
K.
Seo
,
A. V.
Konchenko
,
J.
Lee
,
G. S.
Bang
, and
H.
Lee
, “
Molecular conductance switch-on of single ruthenium complex molecules
,”
J. Am. Chem. Soc.
130
,
2553
2559
(
2008
).
28.
J.
Lee
 et al., “
Nitronyl nitroxide radicals as organic memory elements with both n‐and p-type properties
,”
Angew. Chem., Int. Ed.
50
,
4414
4418
(
2011
).
29.
B.
Pradhan
and
S.
Das
, “
Role of new bis (2, 2′-bipyridyl)(triazolopyridyl) ruthenium (II) complex in the organic bistable memory application
,”
Chem. Mater.
20
,
1209
1211
(
2008
).
30.
J.-H.
Tang
,
T.-G.
Sun
,
J.-Y.
Shao
,
Z.-L.
Gong
, and
Y.-W.
Zhong
, “
Resistive memory devices based on a triphenylamine-decorated non-precious cobalt (ii) bis-terpyridine complex
,”
Chem. Commun.
53
,
11925
11928
(
2017
).
31.
A.
Saeki
and
S.
Seki
,
Chemical Science of π-Electron Systems
(
Springer
,
2015
), pp.
605
620
.
32.
Y.
Xiao
, “
Engineering, synthesis and characterization of new-π conjugated (macro) molecular architectures for organic optoelectronics: Application toward ambipolar materials
,” , Doctoral dissertation (Université Pierre et Marie Curie-Paris VI,
2014
), Vol.
6
.
33.
H. E.
Katz
and
T. O.
Poehler
,
Innovative Thermoelectric Materials: Polymer, Nanostructure and Composite Thermoelectrics
(
World Scientific
,
2016
).
34.
A. J.
Campbell
 et al., “
Charge-carrier density independent mobility in amorphous fluorene-triarylamine copolymers
,”
Adv. Funct. Mater.
26
,
3720
3729
(
2016
).
35.
P.-Y.
Gu
 et al., “
Synthesis, characterization, and nonvolatile ternary memory behavior of a larger heteroacene with nine linearly fused rings and two different heteroatoms
,”
J. Am. Chem. Soc.
135
,
14086
14089
(
2013
).
36.
C.
Ye
 et al., “
Multilevel conductance switching of memory device through photoelectric effect
,”
J. Am. Chem. Soc.
134
,
20053
20059
(
2012
).
37.
A. S.
Tayi
,
A.
Kaeser
,
M.
Matsumoto
,
T.
Aida
, and
S. I.
Stupp
, “
Supramolecular ferroelectrics
,”
Nat. Chem.
7
,
281
(
2015
).
38.
H.
Chan
,
H.-L.
Wong
,
M.
Ng
,
C.-T.
Poon
, and
V. W.-W.
Yam
, “
Switching of resistive memory behavior from binary to ternary logic via alteration of substituent positioning on the subphthalocyanine core
,”
J. Am. Chem. Soc.
139
,
7256
7263
(
2017
).
39.
S.
van Reenen
,
M.
Kemerink
, and
H. J.
Snaith
, “
Modeling anomalous hysteresis in perovskite solar cells
,”
J. Phys. Chem. Lett.
6
,
3808
3814
(
2015
).
40.
S.
Kumar
 et al., “
Direct observation of localized radial oxygen migration in functioning tantalum oxide memristors
,”
Adv. Mater.
28
,
2772
2776
(
2016
).
41.
S.
Kumar
 et al., “
Conduction channel formation and dissolution due to oxygen thermophoresis/diffusion in hafnium oxide memristors
,”
ACS Nano
10
,
11205
11210
(
2016
).
42.
N.
Nerngchamnong
 et al., “
The role of van der Waals forces in the performance of molecular diodes
,”
Nat. Nanotechnol.
8
,
113
(
2013
).
43.
N.
Kumar
,
B. M.
Weckhuysen
,
A. J.
Wain
, and
A. J.
Pollard
, “
Nanoscale chemical imaging using tip-enhanced Raman spectroscopy
,”
Nat. Protoc.
14
,
1169
(
2019
).
44.
D. N.
Voylov
 et al., “
Noncontact tip-enhanced Raman spectroscopy for nanomaterials and biomedical applications
,”
Nanoscale Adv.
1
,
3392
3399
(
2019
).
45.
S.
Kumar
 et al., “
Physical origins of current and temperature controlled negative differential resistances in NbO2
,”
Nat. Commun.
8
,
658
(
2017
).
46.
A.
Bandyopadhyay
and
A. J.
Pal
, “
Multilevel conductivity and conductance switching in supramolecular structures of an organic molecule
,”
Appl. Phys. Lett.
84
,
999
1001
(
2004
).
47.
L.
Ma
,
J.
Liu
, and
Y.
Yang
, “
Organic electrical bistable devices and rewritable memory cells
,”
Appl. Phys. Lett.
80
,
2997
2999
(
2002
).
48.
S. H.
Kim
,
K. S.
Yook
,
J.
Jang
, and
J. Y.
Lee
, “
Correlation of memory characteristics of polymer bistable memory devices with metal deposition process
,”
Synth. Met.
158
,
861
864
(
2008
).
49.
B.
Lei
,
W. L.
Kwan
,
Y.
Shao
, and
Y.
Yang
, “
Statistical characterization of the memory effect in polyfluorene based non-volatile resistive memory devices
,”
Org. Electron.
10
,
1048
1053
(
2009
).
50.
J.
Lin
and
D.
Ma
, “
The morphology control of pentacene for write-once-read-many-times memory devices
,”
J. Appl. Phys.
103
,
024507
(
2008
).
51.
Y.
Li
 et al., “
Electrical switching behavior from ultrathin potential barrier of self-assembly molecules tuned by interfacial charge trapping
,”
Appl. Phys. Lett.
96
,
133303
(
2010
).
52.
B.
Cho
,
S.
Song
,
Y.
Ji
, and
T.
Lee
, “
Electrical characterization of organic resistive memory with interfacial oxide layers formed by O2 plasma treatment
,”
Appl. Phys. Lett.
97
,
063305
(
2010
).
53.
X. D.
Zhuang
 et al., “
Preparation and memory performance of a nanoaggregated dispersed red 1-functionalized poly (N-vinylcarbazole) film via solution-phase self-assembly
,”
Adv. Funct. Mater.
20
,
2916
2922
(
2010
).
54.
T.
Kondo
 et al., “
A nonvolatile organic memory device using ITO surfaces modified by Ag-nanodots
,”
Adv. Funct. Mater.
18
,
1112
1118
(
2008
).
55.
B.
Mukherjee
and
A. J.
Pal
, “
Tuning of electrical bistability in organic devices through electrochemical potential of metal contacts
,”
Org. Electron.
7
,
249
255
(
2006
).
56.
F. L.
Jakobsson
 et al., “
On the switching mechanism in rose Bengal-based memory devices
,”
Org. Electron.
8
,
559
565
(
2007
).
57.
U. S.
Bhansali
 et al., “
Metal-free, single-polymer device exhibits resistive memory effect
,”
ACS Nano
7
,
10518
10524
(
2013
).
58.
R. T.
Weitz
,
A.
Walter
,
R.
Engl
,
R.
Sezi
, and
C.
Dehm
, “
New charge-transfer salts for reversible resistive memory switching
,”
Nano Lett.
6
,
2810
2813
(
2006
).
59.
V. K.-M.
Au
,
D.
Wu
, and
V. W.-W.
Yam
, “
Organic memory devices based on a bis-cyclometalated alkynylgold (III) complex
,”
J. Am. Chem. Soc.
137
,
4654
4657
(
2015
).
60.
C. T.
Poon
,
D.
Wu
, and
V. W. W.
Yam
, “
Boron (III)-containing donor–acceptor compound with goldlike reflective behavior for organic resistive memory devices
,”
Angew. Chem., Int. Ed.
55
,
3647
3651
(
2016
).
61.
S. M.
Yoon
,
S. C.
Warren
, and
B. A.
Grzybowski
, “
Storage of electrical information in metal-organic-framework memristors
,”
Angew. Chem., Int. Ed.
53
,
4437
4441
(
2014
).
62.
J. J.
Yang
 et al., “
High switching endurance in TaOx memristive devices
,”
Appl. Phys. Lett.
97
,
232102
(
2010
).
63.
M.-J.
Lee
 et al., “
A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2 O5−x/TaO2−x bilayer structures
,”
Nat. Mater.
10
,
625
(
2011
).
64.
R. K.
Canjeevaram Balasubramanyam
 et al., “
Quadrupolar (A-π-D-π-A) tetra-aryl 1, 4-dihydropyrrolo [3, 2-b] pyrroles as single molecular resistive memory devices: Substituent triggered amphoteric redox performance and electrical bistability
,”
J. Phys. Chem. C
120
,
11313
11323
(
2016
).
65.
T.-W.
Kim
 et al., “
Effect of metal ions on the switching performance of polyfluorene-based organic non-volatile memory devices
,”
Org. Electron.
11
,
109
114
(
2010
).
66.
Y.
Ma
 et al., “
Metal complex modified azo polymers for multilevel organic memories
,”
Nanoscale
7
,
7659
7664
(
2015
).
67.
F.
Fan
 et al., “
Conjugated polymer covalently modified graphene oxide quantum dots for ternary electronic memory devices
,”
Nanoscale
9
,
10610
10618
(
2017
).
68.
P.-Y.
Gu
 et al., “
Synthesis of tetranitro-oxacalix [4] arene with oligoheteroacene groups and its nonvolatile ternary memory performance
,”
Mater. Horiz.
1
,
446
451
(
2014
).
69.
S.
Kumar
,
J. P.
Strachan
, and
R. S.
Williams
, “
Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing
,”
Nature
548
,
318
(
2017
).
70.
Y.
Zhang
 et al., “
Thermally stable ternary data-storage device based on twisted anthraquinone molecular design
,”
J. Phys. Chem. C
116
,
22832
22839
(
2012
).
71.
H.
Li
 et al., “
A small-molecule-based ternary data-storage device
,”
J. Am. Chem. Soc.
132
,
5542
5543
(
2010
).
72.
C. T.
Poon
,
D.
Wu
,
W. H.
Lam
, and
V. W. W.
Yam
, “
A solution-processable donor-acceptor compound containing boron (III) centers for small-molecule-based high-performance ternary electronic memory devices
,”
Angew. Chem., Int. Ed.
54
,
10569
10573
(
2015
).
73.
Q. F.
Gu
 et al., “
Multilevel conductance switching of a memory device induced by enhanced intermolecular charge transfer
,”
Adv. Mater.
27
,
5968
5973
(
2015
).
74.
S.
Miao
 et al., “
Tailoring of molecular planarity to reduce charge injection barrier for high-performance small-molecule‐based ternary memory device with low threshold voltage
,”
Adv. Mater.
24
,
6210
6215
(
2012
).
75.
Z.
Li
 et al., “
Rewritable ternary data storage devices based on polymethacrylate containing pendent azobenzene–naphthalene with the combined effects of conformation change and charge traps
,”
J. Mater. Chem. C
5
,
8593
8598
(
2017
).
76.
Y.
Sun
,
D.
Wen
,
X.
Bai
,
J.
Lu
, and
C.
Ai
, “
Ternary resistance switching memory behavior based on graphene oxide embedded in a polystyrene polymer layer
,”
Sci. Rep.
7
,
3938
(
2017
).
77.
S.
Choi
 et al., “
High-performance programmable memory devices based on hyperbranched copper phthalocyanine polymer thin films
,”
Adv. Mater.
20
,
1766
1771
(
2008
).
78.
S.
Miao
 et al., “
Molecular length adjustment for organic azo-based nonvolatile ternary memory devices
,”
J. Mater. Chem.
22
,
16582
(
2012
).
79.
Y.-C.
Chen
 et al., “
Nonvolatile bio-memristor fabricated with egg albumen film
,”
Sci. Rep.
5
,
10022
(
2015
).
80.
V. C.
Nguyen
and
P. S.
Lee
, “
Coexistence of write once read many memory and memristor in blend of poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate and polyvinyl alcohol
,”
Sci. Rep.
6
,
38816
(
2016
).
81.
L.
Yuan
,
L.
Jiang
, and
C. A.
Nijhuis
, “
The drive force of electrical breakdown of large-area molecular tunnel junctions
,”
Adv. Funct. Mater.
28
,
1801710
(
2018
).
82.
W.
Guan
,
S.
Long
,
Q.
Liu
,
M.
Liu
, and
W.
Wang
, “
Nonpolar nonvolatile resistive switching in Cu doped ZrO2
,”
IEEE Electron Device Lett.
29
,
434
437
(
2008
).
83.
S.
Zhang
 et al., “
Resistive switching characteristics of MnOx-based ReRAM
,”
J. Phys. D: Appl. Phys.
42
,
055112
(
2009
).
84.
D.-H.
Kwon
 et al., “
Atomic structure of conducting nanofilaments in TiO2 resistive switching memory
,”
Nat. Nanotechnol.
5
,
148
(
2010
).
85.
H. Y.
Jeong
 et al., “
Graphene oxide thin films for flexible nonvolatile memory applications
,”
Nano Lett.
10
,
4381
4386
(
2010
).
86.
C.
Cagli
 et al., “
Resistive-switching crossbar memory based on Ni–NiO core–shell nanowires
,”
Small
7
,
2899
2905
(
2011
).
87.
W.-T.
Wu
,
J.-J.
Wu
, and
J.-S.
Chen
, “
Resistive switching behavior and multiple transmittance states in solution-processed tungsten oxide
,”
ACS Appl. Mater. Interfaces
3
,
2616
2621
(
2011
).
88.
A.
Chanthbouala
 et al., “
Solid-state memories based on ferroelectric tunnel junctions
,”
Nat. Nanotechnol.
7
,
101
(
2012
).
89.
J. H.
Yoon
 et al., “
Highly improved uniformity in the resistive switching parameters of TiO2 thin films by inserting Ru nanodots
,”
Adv. Mater.
25
,
1987
1992
(
2013
).
90.
G. H.
Kim
 et al., “
32× 32 crossbar array resistive memory composed of a stacked Schottky diode and unipolar resistive memory
,”
Adv. Funct. Mater.
23
,
1440
1449
(
2013
).
91.
J.-Y.
Chen
 et al., “
Dynamic evolution of conducting nanofilament in resistive switching memories
,”
Nano Lett.
13
,
3671
3677
(
2013
).
92.
Z.
Wen
,
C.
Li
,
D.
Wu
,
A.
Li
, and
N.
Ming
, “
Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions
,”
Nat. Mater.
12
,
617
(
2013
).
93.
Y.
Yang
,
S.
Choi
, and
W.
Lu
, “
Oxide heterostructure resistive memory
,”
Nano Lett.
13
,
2908
2915
(
2013
).
94.
B. J.
Choi
 et al., “
Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch
,”
Nano Lett.
13
,
3213
3217
(
2013
).
95.
Y.-S.
Chen
 et al., “
Enhanced endurance reliability and low current operation for AlOx/HfOx based unipolar RRAM with Ni electrode
,”
Solid-State Electron.
94
,
1
5
(
2014
).
96.
M. K.
Hota
 et al., “
Nanoscale cross-point resistive switching memory comprising p-type SnO bilayers
,”
Adv. Electron. Mater.
1
,
1400035
(
2015
).
97.
A.
Wedig
 et al., “
Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems
,”
Nat. Nanotechnol.
11
,
67
(
2016
).
98.
K.
Qian
,
G.
Cai
,
V. C.
Nguyen
,
T.
Chen
, and
P. S.
Lee
, “
Direct observation of conducting filaments in tungsten oxide based transparent resistive switching memory
,”
ACS Appl. Mater. Interfaces
8
,
27885
27891
(
2016
).
99.
Q. H.
Qin
 et al., “
Resistive switching in all-oxide ferroelectric tunnel junctions with ionic interfaces
,”
Adv. Mater.
28
,
6852
6859
(
2016
).
100.
S. K.
Pradhan
,
B.
Xiao
,
S.
Mishra
,
A.
Killam
, and
A. K.
Pradhan
, “
Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application
,”
Sci. Rep.
6
,
26763
(
2016
).
101.
S.
Cho
 et al., “
Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching
,”
Nat. Commun.
7
,
12373
(
2016
).
102.
B.
Chu
,
W.
Burnett
,
J. W.
Chung
, and
Z.
Bao
, “
Bring on the bodyNET
,”
Nat. News
549
,
328
(
2017
).
103.
Y.
Liu
,
M.
Pharr
, and
G. A.
Salvatore
, “
Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring
,”
ACS Nano
11
,
9614
9635
(
2017
).
104.
X.
Xu
 et al., “
Thermally stable, highly efficient, ultraflexible organic photovoltaics
,”
Proc. Natl. Acad. Sci. U. S. A
115
,
4589
4594
(
2018
).
105.
L.
Chua
,
V.
Sbitnev
, and
H.
Kim
, “
Hodgkin–Huxley axon is made of memristors
,”
Int. J. Bifurcation Chaos
22
,
1230011
(
2012
).
106.
L.
Chua
, “
Memristor, Hodgkin–Huxley, and edge of chaos
,”
Nanotechnology
24
,
383001
(
2013
).
107.
M. D.
Pickett
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
, “
A scalable neuristor built with Mott memristors
,”
Nat. Mater.
12
,
114
(
2013
).
108.
Z.
Wang
 et al., “
Capacitive neural network with neuro-transistors
,”
Nat. Commun.
9
,
3208
(
2018
).
109.
S.
Sardi
,
R.
Vardi
,
A.
Sheinin
,
A.
Goldental
, and
I.
Kanter
, “
New types of experiments reveal that a neuron functions as multiple independent threshold units
,”
Sci. Rep.
7
,
18036
(
2017
).
110.
R.
Vardi
,
A.
Goldental
,
S.
Sardi
,
A.
Sheinin
, and
I.
Kanter
, “
Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity
,”
Sci. Rep.
6
,
36228
(
2016
).
111.
A. H.
Williams
 et al., “
Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis
,”
Neuron
98
,
1099
1115
(
2018
).
112.
Z.
Wang
 et al., “
Fully memristive neural networks for pattern classification with unsupervised learning
,”
Nat. Electron.
1
,
137
(
2018
).
113.
S.
Goswami
 et al., “
Charge disproportionate molecular redox for discrete memristive and memcapacitive switching
,”
Nat. Nanotechnol.
(published online 2020).
114.
H.
Zhuang
,
X.
Xu
,
Y.
Liu
,
Q.
Zhou
,
X.
Xu
,
H.
Li
,
Q.
Xu
,
N.
Li
,
J.
Lu
, and
L.
Wang
, “
Dual-mechanism-controlled ternary memory devices fabricated by random copolymers with pendent carbazole and nitro-azobenzene
,”
J. Phys. Chem. C
116
,
25546
25551
(
2012
).
You do not currently have access to this content.