We review the recent advances on the implementation of electronic circuits that operate in the millimeter-wave (30–300 GHz) and terahertz (300–3000 GHz) frequency ranges. The focus of this article is on nonlinear phenomena in electronics. The different implementations of nonlinear circuits for the sake of millimeter-wave and terahertz signal generation are studied in this paper. The challenges of signal generation are examined and the benefits and limitations of different schemes of signal generation are discussed. It is shown that nonlinear devices such as electronic transistors exhibit major advantages enabling realization of low-cost and portable circuits for the emerging applications in these frequency ranges. We also review linear and nonlinear design methodologies employing the properties of electromagnetic waves. The electronic systems designed based on the presented ideas are shown to push the previously unbeatable limits of operation in millimeter-wave and terahertz frequency ranges. A discussion on remaining challenges and future directions concludes the paper.

1.
H.
Rubens
and
E. F.
Nichols
, “
Heat rays of great wave length
,”
Phys. Rev.
4
(
4
),
314
323
(
1897
).
2.
M.
Tonouchi
, “
Cutting-edge terahertz technology
,”
Nat. Photonics
1
(
2
),
97
105
(
2007
).
3.
B. S.
Williams
, “
Terahertz quantum-cascade lasers
,”
Nat. Photonics
1
,
517
525
(
2007
).
4.
H.
Song
and
T.
Nagatsuma
, “
Present and future of terahertz communications
,”
IEEE Trans. Terahertz Sci. Technol.
1
(
1
),
256
263
(
2011
).
5.
T. W.
Crowe
,
W. L.
Bishop
,
D. W.
Porterfield
,
J. L.
Hesler
, and
R. M.
Weikle
, “
Opening the terahertz window with integrated diode circuits
,”
IEEE J. Solid-State Circuits
40
(
10
),
2104
2109
(
2005
).
6.
P. H.
Siegel
, “
Terahertz technology
,”
IEEE Trans. Microwave Theory Tech.
50
(
3
),
910
928
(
2002
).
7.
P. H.
Siegel
, “
Terahertz technology in biology and medicine
,”
IEEE Trans. Microwave Theory Tech.
52
(
10
),
2438
2447
(
2004
).
8.
I.
Duling
and
D.
Zimdars
, “
Terahertz imaging: Revealing hidden defects
,”
Nat. Photonics
3
(
11
),
630
632
(
2009
).
9.
O.
Momeni
and
E.
Afshari
, “
A broadband millimeter-wave and terahertz traveling-wave frequency multiplier on CMOS
,”
IEEE J. Solid-State Circuits
46
(
12
),
2966
2976
(
2011
).
10.
O.
Momeni
and
E.
Afshari
, “
High power terahertz and sub-millimeter wave oscillator design: A systematic approach
,”
IEEE J. Solid-State Circuits
46
(
3
),
583
597
(
2011
).
11.
R.
Han
and
E.
Afshari
, “
A high-power broadband passive terahertz frequency doubler in CMOS
,”
IEEE Trans. Microwave Theory Tech.
61
(
3
),
1150
1160
(
2013
).
12.
H.
Aghasi
and
E.
Afshari
, “
A 0.92-THz SiGe power radiator based on a nonlinear theory for harmonic generation
,”
IEEE J. Solid-State Circuits
52
(
2
),
406
(
2017
).
13.
M.
Adnan
and
E.
Afshari
, “
A 247-to-263.5 GHz VCO with 2.6 mW peak output power and 1.14% DC-to-RF efficiency in 65 nm bulk CMOS
,” in
International Solid-State Circuits Conference (ISSCC)
, San Francisco, CA (
2014
).
14.
K. B.
Cooper
,
R. J.
Dengler
,
G.
Chattopadhyay
,
E.
Schlecht
,
J.
Gill
,
A.
Skalare
,
I.
Mehdi
, and
P. H.
Siegel
, “
A high-resolution imaging radar at 580 GHz
,”
IEEE Microwave Wireless Compon. Lett.
18
(
1
),
64
66
(
2008
).
15.
H. B.
Liu
,
H.
Zhong
,
N.
Karpowicz
,
Y.
Chen
, and
X. C.
Zhang
, “
Terahertz spectroscopy and imaging for defense and security applications
,”
Proc. IEEE
95
(
8
),
1514
1527
(
2007
).
16.
B.
Ferguson
and
X. C.
Zhang
, “
Materials for terahertz science and technology
,”
Nat. Mater.
1
(
1
),
26
33
(
2002
).
17.
H.
Tanoto
,
J. H.
Teng
,
Q. Y.
Wu
,
M.
Sun
,
Z. N.
Chen
,
S. A.
Maier
,
B.
Wang
,
C. C.
Chum
,
G. Y.
Si
,
A. J.
Danner
, and
S. J.
Chua
, “
Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer
,”
Nat. Photonics
6
(
2
),
121
126
(
2012
).
18.
L.
Xie
,
W.
Gao
,
J.
Shu
,
Y.
Ying
, and
J.
Kono
, “
Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics
,”
Sci. Rep.
5
,
1
4
(
2015
).
19.
R.
Han
and
E.
Afshari
, “
A CMOS high-power broadband 260-GHz radiator array for spectroscopy
,”
IEEE J. Solid-State Circuits
48
(
12
),
3090
3104
(
2013
).
20.
B.
Fischer
,
M.
Hoffmann
,
H.
Helm
,
G.
Modjesch
, and
P.
Uhd Jepsen
, “
Chemical recognition in terahertz time-domain spectroscopy and imaging
,”
Semicond. Sci. Technol.
20
(
7
),
S246
(
2005
).
21.
D. M.
Mittleman
,
R. H.
Jacobsen
,
R.
Neelamani
,
R. G.
Baraniuk
, and
M. C.
Nuss
, “
Gas sensing using terahertz time-domain spectroscopy
,”
Appl. Phys. B
67
(
3
),
379
390
(
1998
).
22.
A.
Sampaolo
,
P.
Patimisco
,
M.
Giglio
,
M. S.
Vitiello
,
H. E.
Beere
,
D. A.
Ritchie
,
G.
Scamarcio
,
F. K.
Tittel
, and
V.
Spagnolo
, “
Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy
,”
Sensors
16
(
4
),
1
8
(
2016
).
23.
M. M.
Assefzadeh
,
B.
Jamali
,
A. K.
Gluszek
,
A. J.
Hudzikowski
,
J.
Wojtas
,
F. K.
Tittel
, and
A.
Babakhani
, “
Terahertz trace gas spectroscopy based on a fully-electronic frequency-comb radiating array in silicon
,” in
2016 Conference on Lasers and Electro-Optics (CLEO)
(
IEEE
,
2016
), pp.
1
2
.
24.
C.
Wang
,
B.
Perkins
,
Z.
Wang
, and
R.
Han
, “
Molecular detection for unconcentrated gas with ppm sensitivity using 220-to-320-GHz dual-frequency-comb spectrometer in CMOS
,”
IEEE Trans. Biomed. Circuits Syst.
12
(
3
),
709
721
(
2018
).
25.
D. M.
Mittleman
, “
Twenty years of terahertz imaging [invited]
,”
Opt. Express
26
(
8
),
9417
9431
(
2018
).
26.
D. M.
Mittleman
, “
Perspective: Terahertz science and technology
,”
J. Appl. Phys.
122
(
23
),
230901
(
2017
).
27.
B. B.
Hu
and
M. C.
Nuss
, “
Imaging with terahertz waves
,”
Opt. Lett.
20
(
16
),
1716
(
1995
).
28.
R. M.
Woodward
 et al., “
Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue
,”
Phys. Med. Biol.
47
(
21
),
3853
3863
(
2002
).
29.
R.
Han
,
C.
Jiang
,
A.
Mostajeran
,
M.
Emadi
,
H.
Aghasi
,
H.
Sherry
,
A.
Cathelin
, and
E.
Afshari
, “
A 320 GHz phase-locked transmitter with 3.3 mW radiated power and 22.5 dBm EIRP for heterodyne THz imaging system
,” in
IEEE International Solid-State Circuits Conference, Digest of Technical Papers
(
2015
), Vol.
58
, pp.
446
447
.
30.
R.
Al Hadi
,
H.
Sherry
,
J.
Grzyb
,
Y.
Zhao
,
W.
Förster
,
H. M.
Keller
,
A.
Cathelin
,
A.
Kaiser
, and
U. R.
Pfeiffer
, “
A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS
,”
IEEE J. Solid-State Circuits
47
(
12
),
2999
3012
(
2012
).
31.
A.
Mostajeran
,
S. M. H.
Naghavi
,
M.
Emadi
,
S.
Samala
,
B. P.
Ginsburg
,
M.
Aseeri
, and
E.
Afshari
, “
A high-resolution 220-GHz ultra-wideband fully integrated ISAR imaging system
,”
IEEE Trans. Microwave Theory Tech.
67
(
1
),
429
442
(
2019
).
32.
S. M. H.
Naghavi
,
M. T.
Taba
,
R.
Han
,
M. A.
Aseeri
,
A.
Cathelin
, and
E.
Afshari
, “
Filling the gap with sand: When CMOS reaches THz
,”
IEEE Solid-State Circuits Mag.
11
(
3
),
33
42
(
2019
).
33.
C.
Jiang
,
A.
Mostajeran
,
R.
Han
,
M.
Emadi
,
H.
Sherry
,
A.
Cathelin
, and
E.
Afshari
, “
A fully integrated 320 GHz coherent imaging transceiver in 130 nm SiGe BiCMOS
,”
IEEE J. Solid-State Circuits
51
(
11
),
2596
(
2016
).
34.
F.
Caster
,
L.
Gilreath
,
S.
Pan
,
Z.
Wang
,
F.
Capolino
, and
P.
Heydari
, “
Design and analysis of a W-band 9-element imaging array receiver using spatial-overlapping super-pixels in silicon
,”
IEEE J. Solid-State Circuits
49
(
6
),
1317
1332
(
2014
).
35.
N.
Sarmah
,
J.
Grzyb
,
K.
Statnikov
,
S.
Malz
,
P. R.
Vazquez
,
W.
Föerster
,
B.
Heinemann
, and
U. R.
Pfeiffer
, “
A fully integrated 240-GHz direct-conversion quadrature transmitter and receiver chipset in SiGe technology
,”
IEEE Trans. Microwave Theory Tech.
64
(
2
),
562
574
(
2016
).
36.
H.
Wang
,
H.
Mohammadnezhad
, and
P.
Heydari
, “
Analysis and design of high-order QAM direct-modulation transmitter for high-speed point-to-point millimeter-wave wireless links
,”
IEEE J. Solid-State Circuits
54
,
3161
3179
(
2019
).
37.
H.
Mohammadnezhad
,
H.
Wang
,
A.
Cathelin
, and
P.
Heydari
, “
A 115–135-GHz 8PSK receiver using multi-phase RF-correlation-based direct-demodulation method
,”
IEEE J. Solid-State Circuits
54
(
9
),
2435
2448
(
2019
).
38.
S.
Kang
,
S. V.
Thyagarajan
, and
A. M.
Niknejad
, “
A 240 GHz fully integrated wideband QPSK transmitter in 65 nm CMOS
,”
IEEE J. Solid-State Circuits
50
(
10
),
2256
2267
(
2015
).
39.
J.
Chen
,
L.
Ye
,
D.
Titz
,
F.
Gianesello
,
R.
Pilard
,
A.
Cathelin
,
F.
Ferrero
,
C.
Luxey
, and
A. M.
Niknejad
, “
A digitally modulated millimeter-wave cartesian beamforming transmitter with quadrature spatial combining
,” in
IEEE International Solid-State Circuits Conference, Digest of Technical Papers
(
2013
), Vol.
56
, pp.
232
233
.
40.
J. D.
Park
,
S.
Kang
,
S. V.
Thyagarajan
,
E.
Alon
, and
A. M.
Niknejad
, “
A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication
,” in
IEEE Symposium on VLSI Circuits, Digest of Technical Papers
(
2012
), Vol.
2
, pp.
48
49
.
41.
M. F.
Hermelo
,
P.-T. B.
Shih
,
M.
Steeg
,
A.
Ng'oma
, and
A.
Stöhr
, “
Spectral efficient 64-QAM-OFDM terahertz communication link
,”
Opt. Express
25
(
16
),
19360
(
2017
).
42.
N. J.
Karl
,
R. W.
McKinney
,
Y.
Monnai
,
R.
Mendis
, and
D. M.
Mittleman
, “
Frequency-division multiplexing in the terahertz range using a leaky-wave antenna
,”
Nat. Photonics
9
(
11
),
717
720
(
2015
).
43.
J.
Ma
,
M.
Weidenbach
,
R.
Guo
,
M.
Koch
, and
D. M.
Mittleman
, “
Communications with THz waves: Switching data between two waveguides
,”
J. Infrared, Millimeter, Terahertz Waves
38
(
11
),
1316
1320
(
2017
).
44.
K.
Okada
,
R.
Minami
,
Y.
Tsukui
,
S.
Kawai
,
Y.
Seo
,
S.
Sato
,
S.
Kondo
,
T.
Ueno
,
Y.
Takeuchi
,
T.
Yamaguchi
 et al., “
20.3 A 64-QAM 60 GHz CMOS transceiver with 4-channel bonding
,” in
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)
(
IEEE
,
2014
), pp.
346
347
.
45.
K. R.
Jha
and
G.
Singh
, “
Terahertz planar antennas for future wireless communication: A technical review
,”
Infrared Phys. Technol.
60
,
71
80
(
2013
).
46.
Z.
Xu
,
X.
Dong
, and
J.
Bornemann
, “
Design of a reconfigurable MIMO system for THz communications based on graphene antennas
,”
IEEE Trans. Terahertz Sci. Technol.
4
(
5
),
609
617
(
2014
).
47.
A. L.
Swindlehurst
,
E.
Ayanoglu
,
P.
Heydari
, and
F.
Capolino
, “
Millimeter-wave massive MIMO: The next wireless revolution
,”
IEEE Commun. Mag.
52
(
9
),
56
62
(
2014
).
48.
C.
Doerr
,
L.
Chen
,
D.
Vermeulen
,
T.
Nielsen
,
S.
Azemati
,
S.
Stulz
,
G.
McBrien
,
X. M.
Xu
,
B.
Mikkelsen
,
M.
Givehchi
,
C.
Rasmussen
, and
S. Y.
Park
, “
Single-chip silicon photonics 100-Gb/s coherent transceiver
,” in
Conference on Optical Fiber Communication, Technical Digest Series
(
2014
), pp.
7
9
.
49.
L. A.
Samoska
, “
An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime
,”
IEEE Trans. Terahertz Sci. Technol.
1
(
1
),
9
24
(
2011
).
50.
Z.
Lao
,
J.
Jensen
,
K.
Guinn
, and
M.
Sokolich
, “
80-GHz differential VCO in InP SHBTs
,”
IEEE Microwave Wireless Compon. Lett.
14
(
9
),
407
409
(
2004
).
51.
H.
Eisele
and
G. I.
Haddad
, “
High-performance InP Gunn devices for fundamental-mode operation in D-band (110–170 GHz)
,”
IEEE Microwave Guided Wave Lett.
5
(
11
),
385
387
(
1995
).
52.
M.
Urteaga
,
R.
Pierson
,
P.
Rowell
,
V.
Jain
,
E.
Lobisser
, and
M. J. W.
Rodwell
, “
130 nm InP DHBTs with ft >0.52 THz and fmax >1.1 THz
,” in
Device Research Conference (DRC)-Conference Digest
(
2011
), Vol.
46
, pp.
281
282
.
53.
A.
Tessmann
, “
220-GHz metamorphic HEMT amplifier MMICs for high-resolution imaging applications
,”
IEEE J. Solid-State Circuits
40
(
10
),
2070
2076
(
2005
).
54.
D. W.
Porterfield
, “
High-efficiency terahertz frequency tripler
,” in
IEEE MTT-S International Microwave Symposium Digest
(
2007
), pp.
337
340
.
55.
A.
Maestrini
,
I.
Mehdi
,
J. V.
Siles
,
R.
Lin
,
C.
Lee
,
G.
Chattopadhyay
,
J.
Pearson
, and
P.
Siegel
, “
Frequency tunable electronic sources working at room temperature in the 1 to 3 THz band
,” in
Terahertz Emitters, Receivers, and Applications III
(
2012
), Vol.
8496
, p.
84960F
.
56.
I.
Mehdi
,
J. V.
Siles
,
C.
Lee
, and
E.
Schlecht
, “
THz diode technology: Status, prospects, and applications
,”
Proc. IEEE
105
(
6
),
990
1007
(
2017
).
57.
D.
Pardo
,
J.
Grajal
,
C. G.
Pérez-Moreno
, and
S.
Pérez
, “
An assessment of available models for the design of Schottky-based multipliers up to THz frequencies
,”
IEEE Trans. Terahertz Sci. Technol.
4
(
2
),
277
287
(
2014
).
58.
E. R.
Brown
,
J. R.
Söderström
,
C. D.
Parker
,
L. J.
Mahoney
,
K. M.
Molvar
, and
T. C.
McGill
, “
Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes
,”
Appl. Phys. Lett.
58
(
20
),
2291
2293
(
1991
).
59.
V.
Radisic
,
D.
Sawdai
,
D.
Scott
,
W. R.
Deal
,
L.
Dang
,
D.
Li
,
J.
Chen
,
A.
Fung
,
L.
Samoska
,
T.
Gaier
, and
R.
Lai
, “
Demonstration of a 311-GHz fundamental oscillator using InP HBT technology
,”
IEEE Trans. Microwave Theory Tech.
55
(
11
),
2329
2334
(
2007
).
60.
A.
Maestrini
,
J. S.
Ward
,
J. J.
Gill
,
C.
Lee
,
B.
Thomas
,
R. H.
Lin
,
G.
Chattopadhyay
, and
I.
Mehdi
, “
A frequency-multiplied source with more than 1 mW of power across the 840–900-GHz band
,”
IEEE Trans. Microwave Theory Tech.
58
(
7 Part 2
),
1925
1932
(
2010
).
61.
Q.
Lu
,
D.
Wu
,
S.
Sengupta
,
S.
Slivken
, and
M.
Razeghi
, “
Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers
,”
Sci. Rep.
6
(
1
),
1
7
(
2016
).
62.
K.
Vijayraghavan
,
Y.
Jiang
,
M.
Jang
,
A.
Jiang
,
K.
Choutagunta
,
A.
Vizbaras
,
F.
Demmerle
,
G.
Boehm
,
M. C.
Amann
, and
M. A.
Belkin
, “
Broadly tunable terahertz generation in mid-infrared quantum cascade lasers
,”
Nat. Commun.
4
(
1
),
1
7
(
2013
).
63.
C.
Sirtori
,
S.
Barbieri
, and
R.
Colombelli
, “
Wave engineering with THz quantum cascade lasers
,”
Nat. Photonics
7
(
9
),
691
701
(
2013
).
64.
T. S.
Rappaport
,
S.
Sun
,
R.
Mayzus
,
H.
Zhao
,
Y.
Azar
,
K.
Wang
,
G. N.
Wong
,
J. K.
Schulz
,
M.
Samimi
, and
F.
Gutierrez
, “
Millimeter wave mobile communications for 5G cellular: It will work
!”
IEEE Access
1
,
335
349
(
2013
).
65.
F.
Boccardi
,
R. W.
Heath
,
A.
Lozano
,
T. L.
Marzetta
, and
P.
Popovski
, “
Five disruptive technology directions for 5G
,”
IEEE Commun. Mag.
52
(
2
),
74
80
(
2014
).
66.
E. G.
Larsson
,
O.
Edfors
,
F.
Tufvesson
, and
T. L.
Marzetta
, “
Massive MIMO for next generation wireless systems
,”
IEEE Commun. Mag.
52
(
2
),
186
195
(
2014
).
67.
J.
Hasch
,
E.
Topak
,
R.
Schnabel
,
T.
Zwick
,
R.
Weigel
, and
C.
Waldschmidt
, “
Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band
,”
IEEE Trans. Microwave Theory Tech.
60
(
3
),
845
860
(
2012
).
68.
A.
Mostajeran
,
H.
Aghasi
,
S. M. H.
Naghavi
, and
E.
Afshari
, “
Fully integrated solutions for high resolution terahertz imaging (invited)
,” in
2019 IEEE Custom Integrated Circuits Conference (CICC)
(
2019
), pp.
1
8
.
69.
S. A.
Huettel
,
A. W.
Song
,
G.
McCarthy
 et al.,
Functional Magnetic Resonance Imaging
(
Sinauer Associates
,
Sunderland, MA
,
2004
), Vol.
1
.
70.
R.
Han
,
C.
Jiang
,
A.
Mostajeran
,
M.
Emadi
,
H.
Aghasi
,
H.
Sherry
,
A.
Cathelin
, and
E.
Afshari
, “A SiGe terahertz heterodyne imaging transmitter with 3.3 mW radiated power and fully-integrated phase-locked loop
,”
IEEE J. Solid-State Circuits
50
(
12
),
2935
2947
(
2015
).
71.
P. Y.
Chiang
,
Z.
Wang
,
O.
Momeni
, and
P.
Heydari
, “
A silicon-based 0.3 THz frequency synthesizer with wide locking range
,”
IEEE J. Solid-State Circuits
49
(
12
),
2951
2963
(
2014
).
72.
H.
Hamada
,
T.
Fujimura
,
I.
Abdo
,
K.
Okada
,
H. J.
Song
,
H.
Sugiyama
,
H.
Matsuzaki
, and
H.
Nosaka
, “
300-GHz. 100-Gb/s InP-HEMT wireless transceiver using a 300-GHz fundamental mixer
,” in
IEEE MTT-S International Microwave Symposium Digest
(
2018
), pp.
1480
1483
.
73.
C.
Jiang
,
A.
Cathelin
, and
E.
Afshari
, “
A high-speed efficient 220-GHz spatial-orthogonal ASK transmitter in 130-nm SiGe BiCMOS
,”
IEEE J. Solid-State Circuits
52
(
9
),
2321
2334
(
2017
).
74.
S.
Shahramian
,
M.
Holyoak
,
A.
Singh
,
B. J.
Farahani
, and
Y.
Baeyens
, “
A fully integrated scalable W-band phased-array module with integrated antennas, self-alignment and self-test
,” in
IEEE International Solid-State Circuits Conference, Digest of Technical Papers
(
2018
), Vol.
61
, pp.
74
76
.
75.
B.
Sadhu
,
Y.
Tousi
,
J.
Hallin
,
S.
Sahl
,
S.
Reynolds
,
Ö.
Renström
,
K.
Sjögren
,
O.
Haapalahti
,
N.
Mazor
,
B.
Bokinge
,
G.
Weibull
,
H.
Bengtsson
,
A.
Carlinger
,
E.
Westesson
,
J.
Thillberg
,
L.
Rexberg
,
M.
Yeck
,
X.
Gu
,
D.
Friedman
, and
A.
Valdes-Garcia
, “
7.2 A 28 GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication
,” in
2017 IEEE International Solid-State Circuits Conference (ISSCC)
(
2017
), pp.
128
129
.
76.
K.-J.
Koh
,
J. W.
May
, and
G. M.
Rebeiz
, “
A millimeter-wave (40–45 GHz) 16-element phased-array transmitter in 0.18 um SIGE BICMOS technology
,”
IEEE J. Solid-State Circuits
44
(
5
),
1498
1509
(
2009
).
77.
F.
Akbar
and
A.
Mortazawi
, “
A frequency tunable 360° analog CMOS phase shifter with an adjustable amplitude
,”
IEEE Trans. Circuits Syst. II
64
(
12
),
1427
1431
(
2017
).
78.
F.
Akbar
and
A.
Mortazawi
, “
Scalable phased array architectures with a reduced number of tunable phase shifters
,”
IEEE Trans. Microwave Theory Tech.
65
(
9
),
3428
3434
(
2017
).
79.
W.
Liu
,
Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs
(
Wiley
,
1999
).
80.
R. R.
Schaller
, “
Moore's law: Past, present, future
,”
IEEE Spectrum
34
(
6
),
52
59
(
1997
).
81.
R.
Kananizadeh
and
O.
Momeni
, “
Second-harmonic power generation limits in harmonic oscillators
,”
IEEE J. Solid-State Circuits
53
(
11
),
3217
3231
(
2018
).
82.
A. C.
Reyesl
,
S. M.
El-Ghazaly
,
S.
Dornl
,
M.
Dydyk
,
D. K.
Schroder
, and
H.
Patterson
, “
Si as a microwave substrate
,” in
IEEE MTT-S International Microwave Symposium Digest
(
1996
), pp.
382
391
.
83.
R. P.
Rafuse
and
P.
Penfield
,
Varactor Applications
(
MIT Press
,
1962
).
84.
B.
Razavi
,
RF Microelectronics
(
Prentice Hall
,
2012
).
85.
D. J.
Roulston
and
J.
David
,
Bipolar Semiconductor Devices
(
McGraw-Hill
,
New York
,
1990
), Vol.
11
.
86.
Y.
Tsividis
and
C.
McAndrew
,
Operation and Modeling of the MOS Transistor
(
Oxford University Press
,
Oxford
,
1999
), Vol.
2
.
87.
R. F.
Pierret
,
Semiconductor Device Fundamentals
(
Pearson Education India
,
1996
).
88.
H.
Khatibi
and
E.
Afshari
, “
Towards efficient high power millimeter-wave and terahertz sources in silicon: One decade of progress
,” in
2017 IEEE 17th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)
(
IEEE
,
2017
), pp.
4
8
.
89.
E.
Afshari
and
R.
Han
, “
Progress towards mW-power generation in CMOS THz signal sources
,” in
2013 European Microwave Integrated Circuit Conference, Nuremberg, Germany
(
IEEE
,
2013
), pp.
117
120
.
90.
A.
Mostajeran
and
E.
Afshari
, “
An ultra-wideband harmonic radiator with a tuning range of 62 GHz (28.3%) at 220 GHz
,” in
IEEE Radio Frequency Integrated Circuits Symposium, Digest of Papers
(
2017
), pp.
164
167
.
91.
F.
Giannini
and
G.
Leuzzi
,
Nonlinear Microwave Circuit Design
(
John Wiley & Sons
,
2004
).
92.
S. A.
Maas
,
Nonlinear Microwave and RF Circuits
(
Artech House
,
2003
).
93.
C. H.
Page
, “
Frequency conversion with positive nonlinear resistors,” Technical Report No. 4
(
1956
).
94.
R.
Han
,
Y.
Zhang
,
Y.
Kim
,
D. Y.
Kim
,
H.
Shichijo
,
E.
Afshari
, and
K. O.
Kenneth
,“
Active terahertz imaging using Schottky diodes in CMOS: Array and 860-GHz pixel
,”
IEEE J. Solid-State Circuits
48
(
10
),
2296
2308
(
2013
).
95.
M. S.
Gupta
,
R. W.
Laton
, and
T. T.
Lee
, “
Performance and design of microwave FET harmonic generators
,”
IEEE Trans. Microwave Theory Tech.
29
(
3
),
261
262
(
1981
).
96.
H.
Aghasi
and
E.
Afshari
, “
Design of broadband millimeter-wave and THz frequency doublers
,” in
ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference
(
IEEE
,
2016
), pp.
367
372
.
97.
A.
Gopinath
and
J. B.
Rankin
, “
Single-gate MESFET frequency doublers
,”
IEEE Trans. Microwave Theory Tech.
30
(
6
),
869
875
(
1982
).
98.
C.
Jiang
,
M.
Aseeri
,
A.
Cathelin
, and
E.
Afshari
, “
A fully on-chip frequency-stabilization mechanism for terahertz sources eliminating frequency reference and dividers
,”
IEEE Trans. Microwave Theory Tech.
67
(
7
),
2523
2536
(
2019
).
99.
A.
Van Der Ziel
, “
On the mixing properties of non-linear condensers
,”
J. Appl. Phys.
19
(
11
),
999
1006
(
1948
).
100.
K.-H.
Löcherer
and
C.-D.
Brandt
,
Parametric Electronics an Introduction
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1982
).
101.
G. D.
Vendelin
,
A. M.
Pavio
, and
U. L.
Rohde
,
Microwave Circuit Design Using Linear and Nonlinear Techniques
(
John Wiley & Sons, Inc
.,
Hoboken, NJ, USA
,
2005
).
102.
A. E.
Siegman
,
Lasers
(
University Science Books
,
1986
).
103.
B.
Razavi
, “
A study of injection locking and pulling in oscillators
,”
IEEE J. Solid-State Circuits
39
(
9
),
1415
1424
(
2004
).
104.
R.
Adler
, “
A study of locking phenomena in oscillators
,”
Proc. IEEE
61
(
10
),
1380
1385
(
1973
).
105.
K.
Kurokawa
, “
Injection locking of microwave solid-state oscillators
,”
Proc. IEEE
61
(
10
),
1386
1410
(
1973
).
106.
T. H.
Lee
,
The Design of CMOS Radio-Frequency Integrated Circuits
(
Cambridge University Press
,
2004
).
107.
B. S.
Virdee
,
A. S.
Virdee
, and
B. Y.
Banyamin
,
Broadband Microwave Amplifiers
(
Artech House
,
2004
).
108.
M.
Dyakonov
and
M.
Shur
, “
Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by DC current
,”
Phys. Rev. Lett.
71
(
15
),
2465
(
1993
).
109.
M.
Dyakonov
and
M.
Shur
, “
Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid
,”
IEEE Trans. Electron Devices
43
(
3
),
380
387
(
1996
).
110.
M.
Buscema
,
D. J.
Groenendijk
,
G. A.
Steele
,
H. S.
Van Der Zant
, and
A.
Castellanos-Gomez
, “
Photovoltaic effect in few-layer black phosphorus pn junctions defined by local electrostatic gating
,”
Nat. Commun.
5
,
4651
(
2014
).
111.
W.
Knap
,
M.
Dyakonov
,
D.
Coquillat
,
F.
Teppe
,
N.
Dyakonova
,
J.
Łusakowski
,
K.
Karpierz
,
M.
Sakowicz
,
G.
Valusis
,
D.
Seliuta
,
I.
Kasalynas
,
A.
El Fatimy
,
Y. M.
Meziani
, and
T.
Otsuji
, “
Field effect transistors for terahertz detection: Physics and first imaging applications
,”
J. Infrared, Millimeter, Terahertz Waves
30
(
12
),
1319
1337
(
2009
).
112.
W.
Knap
,
J.
Lusakowski
,
T.
Parenty
,
S.
Bollaert
,
A.
Cappy
,
V. V.
Popov
, and
M. S.
Shur
, “
Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors
,”
Appl. Phys. Lett.
84
(
13
),
2331
2333
(
2004
).
113.
H.
Zirath
and
N.
Rorsman
, “
A resistive HEMT-mixer with very low LO-power requirements and low intermodulation
,” in
1991 21st European Microwave Conference
(
IEEE
,
1991
), Vol.
2
, pp.
1469
1474
.
114.
S. A.
Maas
, “
A GAAS MESFET mixer with very low intermodulation
,”
IEEE Trans. Microwave Theory Tech.
35
(
4
),
425
429
(
1987
).
115.
E.
Öjefors
,
U. R.
Pfeiffer
,
A.
Lisauskas
, and
H. G.
Roskos
, “
A 0.65 THz focal-plane array in a quarter-micron CMOS process technology
,”
IEEE J. Solid-State Circuits
44
(
7
),
1968
1976
(
2009
).
116.
K.
Sengupta
,
D.
Seo
,
L.
Yang
, and
A.
Hajimiri
, “
Silicon integrated 280 GHz imaging chipset with 4 × 4 SiGe receiver array and CMOS source
,”
IEEE Trans. Terahertz Sci. Technol.
5
(
3
),
427
(
2015
).
117.
R.
Han
,
Y.
Zhang
,
Y.
Kim
,
D. Y.
Kim
,
H.
Shichijo
,
E.
Afshari
, and
O.
Kenneth
, “
280 GHz and 860 GHz image sensors using Schottky-barrier diodes in 0.13 μm digital CMOS
,” in
2012 IEEE International Solid-State Circuits Conference
(
IEEE
,
2012
), pp.
254
256
.
118.
Z.
Ahmad
,
A.
Lisauskas
,
H. G.
Roskos
, and
K. O.
Kenneth
, “
9.74-THz electronic far-infrared detection using Schottky barrier diodes in CMOS
,” in
International Electron Devices Meeting (IEDM), Technical Digest
(
2015
), pp.
4.4.1
4.4.4
.
119.
M.
del Mar Hershenson
,
A.
Hajimiri
,
S. S.
Mohan
,
S. P.
Boyd
, and
T. H.
Lee
, “
Design and optimization of LC oscillators
,” in
Proceedings of the 1999 IEEE/ACM International Conference on Computer-Aided Design, ICCAD '99, Piscataway, NJ, USA
(
IEEE Press
,
1999
), pp.
65
69
.
120.
G.
Li
and
E.
Afshari
, “
A low-phase-noise wide-tuning-range quadrature oscillator in 65 nm CMOS
,” in
Proceedings of the Custom Integrated Circuits Conference
(
2012
), pp.
1
4
.
121.
A.
Tarkeshdouz
,
A.
Mostajeran
,
S.
Mirabbasi
, and
E.
Afshari
, “
A 91-GHz fundamental VCO with 6.1% DC-to-RF efficiency and 4.5 dBm output power in 0.13-um CMOS
,”
IEEE Solid-State Circuits Lett.
1
(
4
),
102
105
(
2018
).
122.
P. Y.
Chiang
,
O.
Momeni
, and
P.
Heydari
, “
A 200-GHz inductively tuned VCO with −7-dBm output power in 130-nm SiGe BiCMOS
,”
IEEE Trans. Microwave Theory Tech.
61
(
10
),
3666
3673
(
2013
).
123.
H.
Khatibi
,
S.
Khiyabani
,
A.
Cathelin
, and, and
E.
Afshari
, “
A 195 GHz single-transistor fundamental VCO with 15.3% DC-to-RF efficiency, 4.5 mW output power, phase noise FoM of −197 dBc/Hz and 1.1% tuning range in a 55 nm SiGe process
,” in
IEEE Radio Frequency Integrated Circuits Symposium, Digest of Papers
(
2017
), pp.
152
155
.
124.
H.
Aghasi
and
E.
Afshari
, “
An 88-GHz compact fundamental oscillator with 19.4% DC-to-RF efficiency and 7.5-dBm output power in 130-nm SiGe BiCMOS
,”
IEEE Solid-State Circuits Lett.
1
(
5
),
106
109
(
2018
).
125.
A.
Mostajeran
,
A.
Cathelin
, and
E.
Afshari
, “
A 170-GHz fully integrated single-chip FMCW imaging radar with 3D imaging capability
,”
IEEE J. Solid-State Circuits
52
(
10
),
2721
2734
(
2017
).
126.
R.
Kananizadeh
and
O.
Momeni
, “
A 190-GHz VCO With 20.7% tuning range employing an active mode switching block in a 130 nm SiGe BiCMOS
,”
IEEE J. Solid-State Circuits
52
(
8
),
2094
2104
(
2017
).
127.
Y. M.
Tousi
,
O.
Momeni
, and
E.
Afshari
, “
A novel CMOS high-power terahertz VCO based on coupled oscillators: Theory and implementation
,”
IEEE J. Solid-State Circuits
47
(
12
),
3032
3042
(
2012
).
128.
A.
Rasekh
and
M. S.
Bakhtiar
, “
Wide-band RF front end for SAW-less receivers employing active feedback and far out-of-band blocker rejection circuit
,”
IEEE J. Solid-State Circuits
54
(
6
),
1528
1540
(
2019
).
129.
M.
Moezzi
and
M. S.
Bakhtiar
, “
Wideband LNA using active inductor with multiple feed-forward noise reduction paths
,”
IEEE Trans. Microwave Theory Tech.
60
(
4
),
1069
1078
(
2012
).
130.
S.
Eunyoung
,
S.
Dongha
,
M.
Chuying
,
H.
Ruonan
,
S.
Sankaran
,
C.
Changhua
,
W.
Knap
, and
K. O.
Kenneth
, “
Progress and challenges towards terahertz CMOS integrated circuits
,”
IEEE J. Solid-State Circuits
45
(
8
),
1554
1564
(
2010
).
131.
S. T.
Nicolson
,
A.
Tomkins
,
K. W.
Tang
,
A.
Cathelin
,
D.
Belot
, and
S. P.
Voinigescu
, “
A 1.2 V, 140 GHz receiver with on-die antenna in 65 nm CMOS
,” in
IEEE Radio Frequency Integrated Circuits Symposium, Digest of Papers
(
2008
), pp.
229
232
.
132.
Z.
Xu
,
Q. J.
Gu
, and
M. C. F.
Chang
, “
A three stage, fully differential 128–157 GHz CMOS amplifier with wide band matching
,”
IEEE Microwave Wireless Components Lett.
21
(
10
),
550
552
(
2011
).
133.
C. C.
Cheng
, “
Neutralization and unilateralization
,”
IRE Trans. Circuit Theory
2
(
2
),
138
145
(
1955
).
134.
S.
Malz
,
B.
Heinemann
, and
U. R.
Pfeiffer
, “
A 233-GHz low noise amplifier with 22.5 dB gain in 0.13μm SiGe
,” in
2014 9th European Microwave Integrated Circuits Conference (EuMIC)
(
2014
), pp.
190
193
.
135.
O.
Momeni
, “
A 260 GHz amplifier with 9.2 dB gain and −3.9 dBm saturated power in 65 nm CMOS
,” in
IEEE International Solid-State Circuits Conference, Digest of Technical Papers
(
2013
), Vol.
56
, pp.
140
141
.
136.
O.
Momeni
and
E.
Afshari
, “
A high gain 107 GHz amplifier in 130 nm CMOS
,” in
Proceedings of the Custom Integrated Circuits Conference
(
2011
), Vol. 2, pp.
1
4
.
137.
E. L.
Ginzton
,
W. R.
Hewlett
,
J. H.
Jasberg
, and
J. D.
Noe
, “
Distributed amplification
,”
Proc. IRE
36
(
8
),
956
969
(
1948
).
138.
J.
Hoffman
,
S.
Shopov
,
P.
Chevalier
,
A.
Cathelin
,
P.
Schvan
, and
S. P.
Voinigescu
, “
55-nm SiGe BiCMOS distributed amplifier topologies for time-interleaved 120-Gb/s fiber-optic receivers and transmitters
,”
IEEE J. Solid-State Circuits
51
(
9
),
2040
2053
(
2016
).
139.
H.
Rashtian
and
O.
Momeni
, “
Gain boosting in distributed amplifiers for close-to-fmax operation in silicon
,”
IEEE Trans. Microwave Theory Tech.
67
(
3
),
1039
1049
(
2019
).
140.
M.
Parlak
and
J. F.
Buckwalter
, “
A passive I/Q millimeter-wave mixer and switch in 45-nm CMOS SOI
,”
IEEE Trans. Microwave Theory Tech.
61
(
3
),
1131
1139
(
2013
).
141.
M. H.
Kashani
,
A.
Tarkeshdouz
,
E.
Afshari
, and
S.
Mirabbasi
, “
A 60-GHz CMOS down-conversion mixer with high conversion gain and low noise figure
,” in
16th IEEE International New Circuits and Systems Conference, NEWCAS
(
2018
), pp.
74
77
.
142.
S.
Huang
,
T.
Xi
,
D.
Huang
,
P.
Gui
, and
R.
Taori
, “
Low-power and high-linearity CMOS parametric passive mixers for millimeter wave applications
,” in
2015 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS)
(
2015
), pp.
1
5
.
143.
P.
Heydari
,
D.
Lin
,
A.
Shameli
, and
A.
Yazdi
, “
Design of CMOS distributed circuits for multiband UWB wireless receivers
,” in
Digest of Papers - IEEE Radio Frequency Integrated Circuits Symposium
(
IEEE
,
2005
), pp.
695
698
.
144.
J.
Sharma
,
T.
Dinc
, and
H.
Krishnaswamy
, “
A 200 GHz power mixer in 130 nm-CMOS employing nonlinearity engineering
,” in
IEEE Radio Frequency Integrated Circuits Symposium, Digest of Papers
(
2014
), pp.
347
350
.
145.
K.
Dasgupta
,
K.
Sengupta
,
A.
Pai
, and
A.
Hajimiri
, “
A 19.1 dBm segmented power-mixer based multi-Gbps millimeter-wave transmitter in 32 nm SOI CMOS
,” in
IEEE Radio Frequency Integrated Circuits Symposium
, Digest of Papers (
2014
), pp.
343
346
.
146.
K.
Dasgupta
,
K.
Sengupta
,
A.
Pai
, and
A.
Hajimiri
, “
A millimeter-wave segmented power mixer
,”
IEEE Trans. Microwave Theory Tech.
63
(
4
),
1118
1129
(
2015
).
147.
R.
Han
and
E.
Afshari
, “
A broadband 480-GHz passive frequency doubler in 65-nm bulk CMOS with 0.23 mW output power
,” in
IEEE Radio Frequency Integrated Circuits Symposium
(
IEEE
,
2012
), pp.
203
206
.
148.
J.
Verspecht
and
D. E.
Root
, “
Polyharmonic distortion modeling
,”
IEEE Microwave Mag.
7
(
3
),
44
57
(
2006
).
149.
M.
Schetzen
,
The Volterra and Wiener Theories of Nonlinear Systems
(
Wiley
,
New York
,
1980
).
150.
D. M.
Hawkins
, “
The problem of overfitting
,”
J. Chem. Inf. Comput. Sci.
44
(
1
),
1
12
(
2004
).
151.
D. M.
Pozar
,
Microwave Engineering
, 3rd ed. (
John Wiley & Sons
,
2005
).
152.
F.
Martin
,
Artificial Transmission Lines for RF and Microwave Applications
(
John Wiley & Sons
,
2015
).
153.
O.
Momeni
and
E.
Afshari
, “
Electrical prism: A high quality factor filter for millimeter-wave and terahertz frequencies
,”
IEEE Trans. Microwave Theory Tech.
57
(
11
),
2790
2799
(
2009
).
154.
E.
Afshari
,
H. S.
Bhat
,
A.
Hajimiri
, and
J. E.
Marsden
, “
Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines
,”
J. Appl. Phys.
99
(
5
),
054901
(
2006
).
155.
E.
Afshari
,
H.
Bhat
,
L.
Xiaofeng
, and
A.
Hajimiri
, “
Electrical funnel: A broadband signal combining method
,” in
2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers
(
IEEE
,
2006
), pp.
751
760
.
156.
E.
Afshari
and
A.
Hajimiri
, “
Nonlinear transmission lines for pulse shaping in silicon
,”
IEEE J. Solid-State Circuits
40
(
3
),
744
752
(
2005
).
157.
L.
Wooram
,
M.
Adnan
,
O.
Momeni
,
E.
Afshari
,
W.
Lee
,
M.
Adnan
,
O.
Momeni
, and
E.
Afshari
, “
A nonlinear lattice for high-amplitude picosecond pulse generation in CMOS
,”
IEEE Trans. Microwave Theory Tech.
60
(
2
),
370
380
(
2012
).
158.
M.
Adnan
and
E.
Afshari
, “
Efficient microwave and millimeter-wave frequency multipliers using nonlinear transmission lines in CMOS technology
,”
IEEE Trans. Microwave Theory Tech.
63
(
9
),
2889
2896
(
2015
).
159.
J. S.
Russell
, “
Report on waves
,” in
14th meeting of the British Association for the Advancement of Science
(
1844
), Vol.
311
, p.
1844
.
160.
P. G.
Drazin
and
R. S.
Johnson
,
Solitons: An Introduction
(
Cambridge University Press
,
Cambridge
,
1989
).
161.
M. J.
Ablowitz
and
H.
Segur
,
Solitons and the Inverse Scattering Transform
(
Society for Industrial and Applied Mathematics
,
1981
).
162.
M. G.
Case
, “
Nonlinear transmission lines for picosecond pulse, impulse and millimeter-wave harmonic generation
,” Ph.D. thesis (
University of California
, Santa Barbara,
1993
).
163.
M.
Remoissenet
,
Waves Called Solitons: Concepts and Experiments
(
Springer Science & Business Media
,
2013
).
164.
P. J.
Olver
and
D. H.
Sattinger
,
Solitons in Physics, Mathematics, and Nonlinear Optics
(
Springer Science & Business Media
,
2012
), Vol. 25.
165.
E.
Infeld
and
G.
Rowlands
,
Nonlinear Waves, Solitons and Chaos
(
Cambridge University Press
,
2000
).
166.
R. K.
Bullough
and
P. J.
Caudrey
, “
The soliton and its history
,”
Solitons
(
Springer
,
1980
), pp.
1
64
.
167.
M. J.
Rodwell
,
M.
Kamegawa
,
R.
Yu
,
M.
Case
,
E.
Carman
, and
K. S.
Giboney
, “
GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling
,”
IEEE Trans. Microwave Theory Tech.
39
(
7
),
1194
1204
(
1991
).
168.
D.
Jäger
and
F.-J.
Tegude
, “
Nonlinear wave propagation along periodic-loaded transmission line
,”
Appl. Phys.
15
(
4
),
393
397
(
1978
).
169.
E.
Carman
,
M.
Case
,
M.
Kamegawa
,
R.
Yu
,
K.
Giboney
, and
M.
Rodwell
, “
V-band and w-band broadband, monolithic distributed frequency multipliers
,” in
1992 IEEE MTT-S Microwave Symposium Digest
(
IEEE
,
1992
), pp.
819
822
.
170.
H.
Kim
,
A. B.
Kozyrev
,
A.
Karbassi
, and
D. W.
van Der Weide
, “
Compact left-handed transmission line as a linear phase–voltage modulator and efficient harmonic generator
,”
IEEE Trans. Microwave Theory Tech.
55
(
3
),
571
578
(
2007
).
171.
J.
Huang
,
J.
Dong
,
H.
Yang
,
H.
Zhang
,
C.
Tian
, and
T.
Guo
, “
Design and fabrication of frequency multiplier based on composite right/left-handed nonlinear transmission lines
,”
IEEE Trans. Microwave Theory Tech.
59
(
10
),
2486
2493
(
2011
).
172.
P.
Chevalier
,
T.
Lacave
,
E.
Canderle
,
A.
Pottrain
,
Y.
Carminati
,
J.
Rosa
,
F.
Pourchon
,
N.
Derrier
,
G.
Avenier
,
A.
Montagne
 et al., “
Scaling of SiGe BiCMOS technologies for applications above 100 GHz
,” in
2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)
(
IEEE
,
2012
), pp.
1
4
.
173.
O.
El-Aassar
and
G. M.
Rebeiz
, “
4.7 A compact DC-to-108 GHz stacked-SOI distributed PA/driver using multi-drive inter-stack coupling, achieving 1.525 THz GBW, 20.8 dBm peak P1dB, and over 100 Gb/s in 64-QAM and PAM-4 modulation
,” in
2019 IEEE International Solid-State Circuits Conference (ISSCC)
(
2019
), pp.
86
88
.
174.
T.
Nagatsuma
,
Y.
Fujita
,
Y.
Yasuda
,
Y.
Kanai
,
S.
Hisatake
,
M.
Fujiwara
, and
J.
Kani
, “
Real-time 100-Gbit/s QPSK transmission using photonics-based 300-GHz-band wireless link
,” in
2016 IEEE International Topical Meeting on Microwave Photonics (MWP)
(
2016
), Vol.
1
, pp.
27
30
.
175.
T.
Nagatsuma
,
G.
Ducournau
, and
C. C.
Renaud
, “
Advances in terahertz communications accelerated by photonics
,”
Nat. Photonics
10
(
6
),
371
379
(
2016
).
176.
S.
Noda
, “
Recent progress and future prospect of photonic crystals
,”
Trends Sci.
15
(
9
),
78
81
(
2010
).
177.
S.
Jia
,
X.
Pang
,
O.
Ozolins
,
X.
Yu
,
H.
Hu
,
J.
Yu
,
P.
Guan
,
F.
Da Ros
,
S.
Popov
,
G.
Jacobsen
,
M.
Galili
,
T.
Morioka
,
D.
Zibar
, and
L. K.
Oxenlowe
, “
0.4 THz photonic-wireless link with 106 Gb/s single channel bitrate
,”
J. Lightwave Technol.
36
(
2
),
610
616
(
2018
).
178.
X.
Pang
,
S.
Jia
,
O.
Ozolins
,
X.
Yu
,
H.
Hu
,
L.
Marcon
,
P.
Guan
,
F.
Da Ros
,
S.
Popov
,
G.
Jacobsen
,
M.
Galili
,
T.
Morioka
,
D.
Zibar
, and
L. K.
Oxenkwe
, “
260 Gbit/s photonic-wireless link in the THz band
,” in
2016 IEEE Photonics Conference (IPC)
(
2017
), pp.
9
10
.
179.
G.
Carpintero
,
K.
Balakier
,
Z.
Yang
,
R. C.
Guzmán
,
A.
Corradi
,
A.
Jimenez
,
G.
Kervella
,
M. J.
Fice
,
M.
Lamponi
,
M.
Chitoui
,
F.
Van Dijk
,
C. C.
Renaud
,
A.
Wonfor
,
E. A. J. M.
Bente
,
R. V.
Penty
,
I. H.
White
, and
A. J.
Seeds
, “
Microwave photonic integrated circuits for millimeter-wave wireless communications
,”
J. Lightwave Technol.
32
(
20
),
3495
3501
(
2014
).
180.
C.
Xiong
,
W.
Pernice
,
K. K.
Ryu
,
C.
Schuck
,
K. Y.
Fong
,
T.
Palacios
, and
H. X.
Tang
, “
Integrated GAN photonic circuits on silicon (100) for second harmonic generation
,”
Opt. Express
19
(
11
),
10462
10470
(
2011
).
181.
J.
Hulme
,
M. J.
Kennedy
,
R.-L.
Chao
,
L.
Liang
,
T.
Komljenovic
,
J.-W.
Shi
,
B.
Szafraniec
,
D.
Baney
, and
J. E.
Bowers
, “
Fully integrated microwave frequency synthesizer on heterogeneous silicon-III/V
,”
Opt. Express
25
(
3
),
2422
(
2017
).
182.
G.
Carpintero
,
S.
Hisatake
,
D.
De Felipe
,
R.
Guzman
,
T.
Nagatsuma
, and
N.
Keil
, “
Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit
,”
Sci. Rep.
8
(
1
),
3018
(
2018
).
183.
H.
Mohammadnezhad
,
R.
Abedi
, and
P.
Heydari
, “
A millimeter-wave partially overlapped beamforming-MIMO receiver: Theory, design, and implementation
,”
IEEE Trans. Microwave Theory Tech.
67
(
5
),
1924
1936
(
2019
).
184.
J. V.
Moloney
,
J. M.
Yarborough
,
M.
Fallahi
,
M.
Scheller
,
S. W.
Koch
, and
M.
Koch
, “
Compact, high-power, room-temperature, narrow-line terahertz source
,”
SPIE Newsroom
, March 2011.
185.
K.
Sengupta
,
T.
Nagatsuma
, and
D. M.
Mittleman
, “
Terahertz integrated electronic and hybrid electronic–photonic systems
,”
Nat. Electron.
1
(
12
),
622
635
(
2018
).
186.
M. C.
Wanke
,
E. W.
Young
,
C. D.
Nordquist
,
M. J.
Cich
,
A. D.
Grine
,
C. T.
Fuller
,
J. L.
Reno
, and
M.
Lee
, “
Monolithically integrated solid-state terahertz transceivers
,”
Nat. Photonics
4
(
8
),
565
569
(
2010
).
187.
M.
Mukherjee
,
N.
Mazumder
,
S. K.
Roy
, and
K.
Goswami
, “
GaN IMPATT diode: A photo-sensitive high power terahertz source
,”
Semicond. Sci. Technol.
22
(
12
),
1258
1267
(
2007
).
188.
C.
Dalle
,
P. A.
Rolland
, and
G.
Lleti
, “
Flat doping profile double-drift silicon IMPATT for reliable CW high-power high-efficiency generation in the 94-GHz window
,”
IEEE Trans. Electron Devices
37
(
1
),
227
236
(
1990
).
189.
C.
Kim
,
R.
Steele
, and
R.
Bierig
, “
High-power high-efficiency operation of read-type IMPATT-diode oscillators
,”
Electron. Lett.
9
,
173
174
(
1973
).
190.
C.
Chao
,
R. L.
Bernick
,
E. M.
Nakaji
,
R. S.
Ying
,
K. P.
Weller
, and
D. H.
Lee
, “
Y-Band (170–260 GHz) Tunable CW IMPATT Diode Oscillators
,”
IEEE Trans. Microw. Theory Tech.
25
(
12
),
985
991
(
1977
).
191.
H.
Eisele
,
A.
Rydberg
, and
G. I.
Haddad
, “
Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100–300 GHz frequency range and above
,”
IEEE Trans. Microwave Theory Tech.
48
(
4
),
626
631
(
2000
).
192.
N.
Orihashi
,
S.
Suzuki
, and
M.
Asada
, “
One THz harmonic oscillation of resonant tunneling diodes
,”
Appl. Phys. Lett.
87
(
23
),
233501
(
2005
).
193.
H.
Jalili
and
O.
Momeni
, “
A 318-to-370 GHz standing-wave 2D phased array in 0.13 μm BiCMOS
,” in
IEEE International Solid-State Circuits Conference, Digest of Technical Papers
(
2017
), Vol.
60
, pp.
310
311
.
194.
P.
Nazari
,
S.
Jafarlou
, and
P.
Heydari
, “
A fundamental-frequency 114 GHz circular-polarized radiating element with 14 dBm EIRP, −99.3 dBc/Hz phase-noise at 1 MHz offset and 3.7% peak efficiency
,” in
IEEE International Solid-State Circuits Conference
, Digest of Technical Papers (
2017
), Vol.
60
, pp.
322
323
.
195.
B.
Abiri
and
A.
Hajimiri
, “
A 69-to-79 GHz CMOS multiport PA/radiator with +35.7 dBm CW EIRP and integrated PLL
,” in
IEEE International Solid-State Circuits Conference, Digest of Technical Papers
(
2018
), Vol.
61
, pp.
404
406
.
196.
Z.
Hu
,
M.
Kaynak
, and
R.
Han
, “
High-power radiation at 1 THz in silicon: A fully scalable array using a multi-functional radiating mesh structure
,”
IEEE J. Solid-State Circuits
53
(
5
),
1313
1327
(
2018
).
197.
A. M.
Niknejad
and
H.
Hashemi
,
mm-Wave Silicon Technology: 60 GHz and Beyond
(
Springer Science & Business Media
,
2008
).
198.
K.
Ning
and
J. F.
Buckwalter
, “
An 18-dBm, 57 to 85-GHz, 4-stack FET power amplifier in 45-nm SOI CMOS
,” in
2018 IEEE/MTT-S International Microwave Symposium-IMS
(
IEEE
,
2018
), pp.
1453
1456
.
199.
K.
Datta
and
H.
Hashemi
, “
2.9 A 29 dBm 18.5% peak PAE millimeter-wave digital power amplifier with dynamic load modulation
,” in
2015 IEEE International Solid-State Circuits Conference-(ISSCC), Digest of Technical Papers
(
IEEE
,
2015
), pp.
1
3
.
200.
E.
Kaymaksut
,
D.
Zhao
, and
P.
Reynaert
, “
Transformer-based Doherty power amplifiers for millimeter-wave applications in 40-nm CMOS
,”
IEEE Trans. Microwave Theory Tech.
63
(
4
),
1186
1192
(
2015
).
201.
K.
Kibaroglu
,
M.
Sayginer
, and
G. M.
Rebeiz
, “
A scalable 64-element 280 Hz phased-array transceiver with 50 dBm EIRP and 8–12 Gbps 5G link at 300 meters without any calibration
,” in
IEEE MTT-S International Microwave Symposium Digest
(
2018
), pp.
496
498
.
202.
A.
Babakhani
,
X.
Guan
,
A.
Komijani
,
A.
Natarajan
, and
A.
Hajimiri
, “
A 77-GHz phased-array transceiver with on-chip antennas in silicon: Receiver and antennas
,”
IEEE J. Solid-State Circuits
41
(
12
),
2795
2805
(
2006
).
You do not currently have access to this content.