This paper presents a computational nanophotonic design library for gradient-based optimization called the Stanford Photonic INverse design Software (SPINS). Borrowing the concept of computational graphs, SPINS is a design framework that emphasizes flexibility and reproducible results. By factoring the inverse design process into components that can be swapped out for one another, SPINS enables inverse design practitioners to easily explore different design methodologies. Here, we present the mathematical and architectural details on how to achieve these goals, using the inverse design of a wavelength demultiplexer as a primary example. Using inverse design effectively requires understanding the “control knobs” available to the designer, and, to that end, we also discuss practical considerations and heuristics for effective use of inverse design. In particular, by running inverse design on hundreds of designs of 3D wavelength demultiplexers, this paper explores the landscape of local minima, which leads to insights on the choice of initial conditions.

1.
C.
Sun
,
M. T.
Wade
,
Y.
Lee
,
J. S.
Orcutt
,
L.
Alloatti
,
M. S.
Georgas
,
A. S.
Waterman
,
J. M.
Shainline
,
R. R.
Avizienis
,
S.
Lin
,
B. R.
Moss
,
R.
Kumar
,
F.
Pavanello
,
A. H.
Atabaki
,
H. M.
Cook
,
A. J.
Ou
,
J. C.
Leu
,
Y. H.
Chen
,
K.
Asanović
,
R. J.
Ram
,
M. A.
Popović
, and
V. M.
Stojanović
, “
Single-chip microprocessor that communicates directly using light
,”
Nature
528
,
534
(
2015
).
2.
B.
Kress
and
T.
Starner
, “
A review of head-mounted displays (hmd) technologies and applications for consumer electronics
,” in
Photonic Applications for Aerospace, Commercial, and Harsh Environments IV
, Vol.
8720
(
International Society for Optics and Photonics
,
2013
) p.
87200A
.
3.
Y.
Shen
,
N. C.
Harris
,
S.
Skirlo
,
M.
Prabhu
,
T.
Baehr-Jones
,
M.
Hochberg
,
X.
Sun
,
S.
Zhao
,
H.
Larochelle
,
D.
Englund
, and
M.
Soljačić
, “
Deep learning with coherent nanophotonic circuits
,”
Nat. Photonics
11
,
441
(
2017
).
4.
S.
Molesky
,
Z.
Lin
,
A. Y.
Piggott
,
W.
Jin
,
J.
Vucković
, and
A. W.
Rodriguez
, “
Inverse design in nanophotonics
,”
Nat. Photonics
12
,
659
(
2018
).
6.
Inverse design software for nanophotonic structures - spins
,” (
2018
), disclosure S18-012.
7.
C.
Dory
,
D.
Vercruysse
,
K. Y.
Yang
,
N. V.
Sapra
,
A. E.
Rugar
,
S.
Sun
,
D. M.
Lukin
,
A. Y.
Piggott
,
J. L.
Zhang
,
M.
Radulaski
,
K. G.
Lagoudakis
,
L.
Su
, and
J.
Vuckovic
, “
Inverse-designed diamond photonics
,”
Nat. Commun.
10
,
3309
(
2019
).
8.
D.
Vercruysse
,
N. V.
Sapra
,
L.
Su
,
R.
Trivedi
, and
J.
Vučković
, “
Analytical level set fabrication constraints for inverse design
,”
Sci. Rep.-UK
9
,
8999
(
2019
).
9.
K. Y.
Yang
,
J.
Skarda
,
M.
Cotrufo
,
A.
Dutt
,
G. H.
Ahn
,
D.
Vercruysse
,
S.
Fan
,
A.
Alù
, and
J.
Vučković
, “
Inverse-designed photonic circuits for fully passive, bias-free kerr-based nonreciprocal transmission and routing
,” preprint arXiv:1905.04818 (
2019
).
10.
N. V.
Sapra
,
K. Y.
Yang
,
D.
Vercruysse
,
K. J.
Leedle
,
D. S.
Black
,
R. J.
England
,
L.
Su
,
R.
Trivedi
,
Y.
Miao
,
O.
Solgaard
,
R. L.
Byer
, and
J.
Vučković
, “
On-chip integrated laser-driven particle accelerator
,”
Science
367
(
6473
),
79
83
(
2020
).
11.
N. V.
Sapra
,
D.
Vercruysse
,
L.
Su
,
K. Y.
Yang
,
J.
Skarda
,
A. Y.
Piggott
, and
J.
Vučković
, “
Inverse design and demonstration of broadband grating couplers
,”
IEEE J. Sel. Top. Quantum Electron.
25
,
1
7
(
2019
).
12.
L.
Su
,
R.
Trivedi
,
N. V.
Sapra
,
A. Y.
Piggott
,
D.
Vercruysse
, and
J.
Vučković
, “
Fully-automated optimization of grating couplers
,”
Opt. Express
26
,
4023
4034
(
2018
).
13.
T. W.
Hughes
,
M.
Minkov
,
I. A.
Williamson
, and
S.
Fan
, “
Adjoint method and inverse design for nonlinear nanophotonic devices
,”
ACS Photonics
5
,
4781
4787
(
2018
).
14.
F.
Wang
,
J. S.
Jensen
, and
O.
Sigmund
, “
Robust topology optimization of photonic crystal waveguides with tailored dispersion properties
,”
JOSA B
28
,
387
397
(
2011
).
15.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous systems
,” (
2015
), software available from tensorflow.org.
16.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
, “
Learning representations by back-propagating errors
,”
Nature
323
,
533
536
(
1986
).
17.
U.
Von Luxburg
, “
A tutorial on spectral clustering
,”
Stat. Comput.
17
,
395
416
(
2007
).
18.
G.
Angeris
,
J.
Vuckovic
, and
S. P.
Boyd
, “
Computational bounds for photonic inverse design
,”
ACS Photonics
6
(
5
),
1232
1239
(
2019
).
19.
H.
Shim
,
L.
Fan
,
S. G.
Johnson
, and
O. D.
Miller
, “
Fundamental limits to near-field optical response over any bandwidth
,”
Phys. Rev. X
9
,
011043
(
2019
).
20.
A.
Michaels
and
E.
Yablonovitch
, “
Leveraging continuous material averaging for inverse electromagnetic design
,”
Opt. Express
26
,
31717
31737
(
2018
).
21.
J.
Petykiewicz
, “
Active nanophotonics: Inverse design and strained germanium light emitters
,” Ph.D. thesis,
Stanford University
(
2016
).
22.
P.-I.
Schneider
,
X. G.
Santiago
,
V.
Soltwisch
,
M.
Hammerschmidt
,
S.
Burger
, and
C.
Rockstuhl
, “
Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction
,”
ACS Photonics
6
(
11
),
2726
2733
(
2019
).
23.
W.
Shin
and
S.
Fan
, “
Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell's equations solvers
,”
J. Comput. Phys.
231
,
3406
3431
(
2012
).
24.
W.
Shin
and
S.
Fan
, “
Simulation of phenomena characterized by partial differential equations
,” U.S. patent US20140207426A1 (24 July
2014
).
25.
H. A.
van der Vorst
and
J. B.
Melissen
, “
A petrov-galerkin type method for solving axk= b, where a is symmetric complex
,”
IEEE Trans. Magn.
26
,
706
708
(
1990
).
26.
Y. A.
Erlangga
, “
Advances in iterative methods and preconditioners for the Helmholtz equation
,”
Archives Comput. Methods Eng.
15
,
37
66
(
2008
).
27.
H.-B.
Lee
and
T.
Itoh
, “
A systematic optimum design of waveguide-to-microstrip transition
,”
IEEE Trans. Microwave Theory Tech.
45
,
803
809
(
1997
).
28.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Köpf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Rang
,
J.
Bai
, and
S.
Chintala
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Advances in Neural Information Processing Systems 32
(
Curran Associates
,
2019
), pp.
8024
8035
.
29.
A.
Farjadpour
,
D.
Roundy
,
A.
Rodriguez
,
M.
Ibanescu
,
P.
Bermel
,
J.
Joannopoulos
,
S. G.
Johnson
, and, and
G.
Burr
, “
Improving accuracy by sub-pixel smoothing in fdtd
,” in
Tuning the Optic Response of Photonic Bandgap Structures III
, Vol.
6322
(
International Society for Optics and Photonics
,
2006
) p.
63220G
.
30.
T. A.
Davis
, “
Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern multifrontal method
,”
ACM Trans. Math. Software (TOMS
)
30
,
196
199
(
2004
).
31.
X. S.
Li
, “
An overview of superlu: Algorithms, implementation, and user interface
,”
ACM Trans. Math. Software (TOMS
)
31
,
302
325
(
2005
).
32.
L.
Su
,
A. Y.
Piggott
,
N. V.
Sapra
,
J.
Petykiewicz
, and
J.
Vuckovic
, “
Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer
,”
ACS Photonics
5
,
301
305
(
2018
).
33.
M.
Zhou
,
B. S.
Lazarov
,
F.
Wang
, and
O.
Sigmund
, “
Minimum length scale in topology optimization by geometric constraints
,”
Comput. Methods Appl. Mech. Eng.
293
,
266
282
(
2015
).
34.
O.
Sigmund
, “
Manufacturing tolerant topology optimization
,”
Acta Mechanica Sin.
25
,
227
239
(
2009
).
35.
F.
Wang
,
B. S.
Lazarov
, and
O.
Sigmund
, “
On projection methods, convergence and robust formulations in topology optimization
,”
Struct. Multidisciplinary Optim.
43
,
767
784
(
2011
).
36.
X.
Liang
and
S. G.
Johnson
, “
Formulation for scalable optimization of microcavities via the frequency-averaged local density of states
,”
Opt. Express
21
,
30812
30841
(
2013
).
37.
J.
Lu
and
J.
Vučković
, “
Nanophotonic computational design
,”
Opt. Express
21
,
13351
13367
(
2013
).
38.
Z.
Lin
,
X.
Liang
,
M.
Lončar
,
S. G.
Johnson
, and
A. W.
Rodriguez
, “
Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization
,”
Optica
3
,
233
238
(
2016
).
39.
D.
Sell
,
J.
Yang
,
S.
Doshay
,
R.
Yang
, and
J. A.
Fan
, “
Large-angle, multifunctional metagratings based on freeform multimode geometries
,”
Nano Letters
17
,
3752
3757
(
2017
).
40.
S.
Boyd
and
L.
Vandenberghe
,
Convex Optimization
(
Cambridge University Press
,
2004
).
41.
J.
Nocedal
and
S.
Wright
,
Numerical Optimization
(
Springer Science & Business Media
,
2006
).
42.
N. K.
Nikolova
,
H. W.
Tam
, and
M. H.
Bakr
, “
Sensitivity analysis with the FDTD method on structured grids
,”
IEEE Trans. Microwave Theory Tech.
52
,
1207
1216
(
2004
).
43.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
You do not currently have access to this content.