Attenuated tactile sensation may occur on people who have skin trauma or prolonged glove usage. Such decreased sensation may cause patients to become less responsive to minute skin deformations and consequently fail to regulate their limbs properly. To mitigate such health conditions, an integrated tactile enhancement system that exceeds the human skin's sensitivity is indispensable for patients to regain the touch sensation of minute deformations. Here, we develop a visually aided tactile enhancement system for precise motion control by combining ultrathin, highly sensitive, crack-based strain sensors and signal acquisition circuit with real-time display equipment. By optimizing the thicknesses of the substrates and sensitive films of the strain sensors, our device has a detection limit as low as 0.01% and an ultrahigh gauge factor of 44 013 at a strain of 0.88%, which exceeds the performance of previous devices with crack-based strain sensors within minute strain range. The high sensitivity of the ultrathin crack-based strain sensor makes it possible for our visually aided tactile enhancement system to detect tiny deformations such as the slight brush of a feather, the fall of water droplets on fingers, and even the touch of invisible wires. Our study demonstrates promising applications of integrated visually aided tactile enhancement systems in human-machine interactions and artificial intelligence.

1.
A.
Chortos
,
J.
Liu
, and
Z.
Bao
,
Nat. Mater.
15
,
937
(
2016
).
2.
R. R.
Bao
,
C. F.
Wang
,
L.
Dong
,
R. M.
Yu
,
K.
Zhao
,
Z. L.
Wang
, and
C. F.
Pan
,
Adv. Funct. Mater.
25
(
19
),
2884
2891
(
2015
).
3.
T. T.
Yang
,
D.
Xie
,
Z. H.
Li
, and
H. W.
Zhu
,
Mater. Sci. Eng.
115
,
1
37
(
2017
).
4.
X.
Wang
,
L.
Dong
,
H.
Zhang
,
R.
Yu
,
C.
Pan
, and
Z. L.
Wang
,
Adv. Sci.
2
(
10
),
1500169
(
2015
).
5.
C. F.
Pan
,
L.
Dong
,
G.
Zhu
,
S. M.
Niu
,
R. M.
Yu
,
Q.
Yang
,
Y.
Liu
, and
Z. L.
Wang
,
Nat. Photonics
7
(
9
),
752
758
(
2013
).
6.
Q.
Hua
,
J.
Sun
,
H.
Liu
,
R.
Bao
,
R.
Yu
,
J.
Zhai
,
C.
Pan
, and
Z. L.
Wang
,
Nat. Commun.
9
(
1
),
244
(
2018
).
7.
L.
Jin
,
J.
Tao
,
R.
Bao
,
L.
Sun
, and
C.
Pan
,
Sci. Rep.
7
(
1
),
10521
(
2017
).
8.
C.
Pan
,
M.
Chen
,
R.
Yu
,
Q.
Yang
,
Y.
Hu
,
Y.
Zhang
, and
Z. L.
Wang
,
Adv. Mater.
28
(
8
),
1535
1552
(
2016
).
9.
J. M.
Sun
,
X.
Pu
,
C. Y.
Jiang
,
C. H.
Du
,
M. M.
Liu
,
Y.
Zhang
,
Z. T.
Liu
,
J. Y.
Zhai
,
W. G.
Hu
, and
Z. L.
Wang
,
Sci. Bull.
63
(
12
),
795
801
(
2018
).
10.
M.
Tang
,
P.
Xu
,
Z.
Wen
,
X.
Chen
,
C.
Pang
,
X.
Xu
,
C.
Meng
,
X.
Liu
,
H.
Tian
,
N.
Raghavan
, and
Q.
Yang
,
Sci. Bull.
63
(
17
),
1118
1124
(
2018
).
11.
T.
Someya
,
Z.
Bao
, and
G. G.
Malliaras
,
Nature
540
,
379
(
2016
).
12.
S.
Lee
,
A.
Reuveny
,
J.
Reeder
,
S.
Lee
,
H.
Jin
,
Q.
Liu
,
T.
Yokota
,
T.
Sekitani
,
T.
Isoyama
,
Y.
Abe
,
Z.
Suo
, and
T.
Someya
,
Nat. Nanotechnol.
11
,
472
(
2016
).
13.
M.
Kaltenbrunner
,
T.
Sekitani
,
J.
Reeder
,
T.
Yokota
,
K.
Kuribara
,
T.
Tokuhara
,
M.
Drack
,
R.
Schwodiauer
,
I.
Graz
,
S.
Bauer-Gogonea
,
S.
Bauer
, and
T.
Someya
,
Nature
499
(
7459
),
458
463
(
2013
).
14.
J.
Li
,
R. R.
Bao
,
J.
Tao
,
Y. Y.
Peng
, and
C. F.
Pan
,
J. Mater. Chem. C
6
(
44
),
11878
11892
(
2018
).
15.
H.
Zhang
,
Y.
Liu
,
C.
Yang
,
L.
Xiang
,
Y.
Hu
, and
L.-M.
Peng
,
Adv. Mater.
30
(
50
),
e1805408
(
2018
).
16.
S.
Gong
,
W.
Schwalb
,
Y.
Wang
,
Y.
Chen
,
Y.
Tang
,
J.
Si
,
B.
Shirinzadeh
, and
W.
Cheng
,
Nat. Commun.
5
,
3132
(
2014
).
17.
R. A.
Nawrocki
,
H.
Jin
,
S.
Lee
,
T.
Yokota
,
M.
Sekino
, and
T.
Someya
,
Adv. Funct. Mater.
28
(
36
),
1803279
(
2018
).
18.
S.
Wang
,
J.
Xu
,
W.
Wang
,
G.-J. N.
Wang
,
R.
Rastak
,
F.
Molina-Lopez
,
J. W.
Chung
,
S.
Niu
,
V. R.
Feig
,
J.
Lopez
,
T.
Lei
,
S.-K.
Kwon
,
Y.
Kim
,
A. M.
Foudeh
,
A.
Ehrlich
,
A.
Gasperini
,
Y.
Yun
,
B.
Murmann
,
J. B. H.
Tok
, and
Z.
Bao
,
Nature
555
,
83
(
2018
).
19.
D.
Kang
,
P. V.
Pikhitsa
,
Y. W.
Choi
,
C.
Lee
,
S. S.
Shin
,
L.
Piao
,
B.
Park
,
K.-Y.
Suh
,
T—i.
Kim
, and
M.
Choi
,
Nature
516
,
222
(
2014
).
20.
C.
Wang
,
R.
Bao
,
K.
Zhao
,
T.
Zhang
,
L.
Dong
, and
C.
Pan
,
Nano Energy
14
,
364
371
(
2015
).
21.
G.
Hu
,
W.
Guo
,
R.
Yu
,
X.
Yang
,
R.
Zhou
,
C.
Pan
, and
Z. L.
Wang
,
Nano Energy
23
,
27
33
(
2016
).
22.
X.
Wang
,
D.
Peng
,
B.
Huang
,
C.
Pan
, and
Z. L.
Wang
,
Nano Energy
55
,
389
400
(
2019
).
23.
S.
Qiao
,
J.
Liu
,
G.
Fu
,
K.
Ren
,
Z.
Li
,
S.
Wang
, and
C.
Pan
,
Nano Energy
49
,
508
514
(
2018
).
24.
C.-J.
Lee
,
K. H.
Park
,
C. J.
Han
,
M. S.
Oh
,
B.
You
,
Y.-S.
Kim
, and
J.-W.
Kim
,
Sci. Rep.
7
(
1
),
7959
(
2017
).
25.
T.
Lee
,
Y. W.
Choi
,
G.
Lee
,
S. M.
Kim
,
D.
Kang
, and
M.
Choi
,
RSC Adv.
7
(
55
),
34810
34815
(
2017
).
26.
C.
Wang
,
J.
Zhao
,
C.
Ma
,
J.
Sun
,
L.
Tian
,
X.
Li
,
F.
Li
,
X.
Han
,
C.
Liu
,
C.
Shen
,
L.
Dong
,
J.
Yang
, and
C.
Pan
,
Nano Energy
34
,
578
585
(
2017
).
27.
Z.
Han
,
L.
Liu
,
J.
Zhang
,
Q.
Han
,
K.
Wang
,
H.
Song
,
Z.
Wang
,
Z.
Jiao
,
S.
Niu
, and
L.
Ren
,
Nanoscale
10
(
32
),
15178
15186
(
2018
).
28.
B.
Park
,
S.
Lee
,
H.
Choi
,
J. U.
Kim
,
H.
Hong
,
C.
Jeong
,
D.
Kang
, and
T-i
Kim
,
Nanoscale
10
(
9
),
4354
4360
(
2018
).
29.
T.
Lee
,
Y. W.
Choi
,
G.
Lee
,
P. V.
Pikhitsa
,
D.
Kang
,
S. M.
Kim
, and
M.
Choi
,
J. Mater. Chem. C
4
(
42
),
9947
9953
(
2016
).
30.
H.
Song
,
J.
Zhang
,
D.
Chen
,
K.
Wang
,
S.
Niu
,
Z.
Han
, and
L.
Ren
,
Nanoscale
9
(
3
),
1166
1173
(
2017
).
31.
M.
Amjadi
,
M.
Turan
,
C. P.
Clementson
, and
M.
Sitti
,
ACS Appl. Mater. Interfaces
8
(
8
),
5618
5626
(
2016
).
32.
S.
Chen
,
Y.
Wei
,
S.
Wei
,
Y.
Lin
, and
L.
Liu
,
ACS Appl. Mater. Interfaces
8
(
38
),
25563
25570
(
2016
).
33.
F.
Qing
,
Y.
Shu
,
L.
Qing
,
Y.
Niu
,
H.
Guo
,
S.
Zhang
,
C.
Liu
,
C.
Shen
,
W.
Zhang
,
S. S.
Mao
,
W.
Zhu
, and
X.
Li
,
Sci. Bull.
63
(
22
),
1521
1526
(
2018
).
34.
T.
Yang
,
X.
Li
,
X.
Jiang
,
S.
Lin
,
J.
Lao
,
J.
Shi
,
Z.
Zhen
,
Z.
Li
, and
H.
Zhu
,
Mater. Horiz.
3
(
3
),
248
255
(
2016
).
35.
B.
Park
,
J.
Kim
,
D.
Kang
,
C.
Jeong
,
K. S.
Kim
,
J. U.
Kim
,
P. J.
Yoo
, and
T-i.
Kim
,
Adv. Mater.
28
(
37
),
8130
8137
(
2016
).
36.
Y.
Zhou
,
P.
Zhan
,
M.
Ren
,
G.
Zheng
,
K.
Dai
,
L.
Mi
,
C.
Liu
, and
C.
Shen
,
ACS Appl. Mater. Interfaces
11
(
7
),
7405
7414
(
2019
).
37.
E.
Lee
,
T.
Kim
,
H.
Suh
,
M.
Kim
,
P. V.
Pikhitsa
,
S.
Han
,
J. S.
Koh
, and
D.
Kang
,
Sensors
18
(
9
),
2872
(
2018
).
38.
J.-M.
Han
,
J.-W.
Han
,
J.-Y.
Chun
,
C.-H.
Ok
, and
D.-S.
Seo
,
Jpn. J. Appl. Phys., Part 1
47
(
12
),
8986
8988
(
2008
).
39.
B.
Yin
,
X.
Liu
,
H.
Gao
,
T.
Fu
, and
J.
Yao
,
Nat. Commun.
9
(
1
),
5161
(
2018
).
40.
L.
Pan
,
G.
Liu
,
W.
Shi
,
J.
Shang
,
W. R.
Leow
,
Y.
Liu
,
Y.
Jiang
,
S.
Li
,
X.
Chen
, and
R.-W.
Li
,
Nat. Commun.
9
(
1
),
3813
(
2018
).
41.
X.
Wang
,
Y.
Gu
,
Z.
Xiong
,
Z.
Cui
, and
T.
Zhang
,
Adv. Mater.
26
(
9
),
1336
1342
(
2014
).
42.
C.
Pang
,
J. H.
Koo
,
A.
Nguyen
,
J. M.
Caves
,
M. G.
Kim
,
A.
Chortos
,
K.
Kim
,
P. J.
Wang
,
J. B.
Tok
, and
Z.
Bao
,
Adv. Mater.
27
(
4
),
634
640
(
2015
).
43.
X.
Wang
,
Y.
Zhang
,
X.
Zhang
,
Z.
Huo
,
X.
Li
,
M.
Que
,
Z.
Peng
,
H.
Wang
, and
C.
Pan
,
Adv. Mater.
30
(
12
),
e1706738
(
2018
).
44.
D. J.
Lipomi
,
M.
Vosgueritchian
,
B. C.
Tee
,
S. L.
Hellstrom
,
J. A.
Lee
,
C. H.
Fox
, and
Z.
Bao
,
Nat. Nanotechnol.
6
(
12
),
788
792
(
2011
).
45.
W.
Wu
,
X.
Wen
, and
Z. L.
Wang
,
Science
340
(
6135
),
952
957
(
2013
).
46.
X.
Liao
,
Q.
Liao
,
X.
Yan
,
Q.
Liang
,
H.
Si
,
M.
Li
,
H.
Wu
,
S.
Cao
, and
Y.
Zhang
,
Adv. Funct. Mater.
25
(
16
),
2395
2401
(
2015
).

Supplementary Material

You do not currently have access to this content.