Magnetic nanostructures have been widely studied due to their potential applicability into several research fields such as data storage, sensing and biomedical applications. Focusing on the biomedical aspect, some new approaches deserve to be mentioned: cell manipulation and separation, contrast-enhancing agents for magnetic resonance imaging, and magnetomechanically induced cell death. This work focuses on understanding three different magnetic nanostructures, disks in the vortex state, synthetic antiferromagnetic particles and nanowires, first, by explaining their interesting properties and how they behave under an applied external field, before reviewing their potential applications for each of the aforementioned techniques.

1.
R. L.
Stamps
,
S.
Breitkreutz
,
J.
Åkerman
,
A. V.
Chumak
,
Y.
Otani
,
G. E. W.
Bauer
,
J.-U.
Thiele
,
M.
Bowen
,
S. A.
Majetich
,
M.
Kläui
,
I. L.
Prejbeanu
,
B.
Dieny
,
N. M.
Dempsey
, and
B.
Hillebrands
, “
The 2014 magnetism roadmap
,”
J. Phys. D: Appl. Phys.
47
,
333001
(
2014
).
2.
D.
Sander
,
S. O.
Valenzuela
,
D.
Makarov
,
C. H.
Marrows
,
E. E.
Fullerton
,
P.
Fischer
,
J.
McCord
,
P.
Vavassori
,
S.
Mangin
,
P.
Pirro
,
B.
Hillebrands
,
A. D.
Kent
,
T.
Jungwirth
,
O.
Gutfleisch
,
C. G.
Kim
, and
A.
Berger
, “
The 2017 magnetism roadmap
,”
J. Phys. D: Appl. Phys.
50
,
363001
(
2017
).
3.
S.
Piramanayagam
and
K.
Srinivasan
, “
Recording media research for future hard disk drives
,”
J. Magn. Magn. Mater.
321
,
485
494
(
2009
).
4.
R. P.
Cowburn
, “
Room temperature magnetic quantum cellular automata
,”
Science
287
,
1466
1468
(
2000
).
5.
S. S. P.
Parkin
,
M.
Hayashi
, and
L.
Thomas
, “
Magnetic domain-wall racetrack memory
,”
Science
320
,
190
194
(
2008
).
6.
D. A.
Allwood
, “
Magnetic domain-wall logic
,”
Science
309
,
1688
1692
(
2005
).
7.
I. M.
Miron
,
K.
Garello
,
G.
Gaudin
,
P.-J.
Zermatten
,
M. V.
Costache
,
S.
Auffret
,
S.
Bandiera
,
B.
Rodmacq
,
A.
Schuhl
, and
P.
Gambardella
, “
Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
,”
Nature
476
,
189
193
(
2011
).
8.
L.
Liu
,
C.-F.
Pai
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
, “
Spin-torque switching with the giant spin hall effect of tantalum
,”
Science
336
,
555
558
(
2012
).
9.
A.
Fert
,
V.
Cros
, and
J.
Sampaio
, “
Skyrmions on the track
,”
Nat. Nanotechnol.
8
,
152
156
(
2013
).
10.
A. D.
Kent
and
D. C.
Worledge
, “
A new spin on magnetic memories
,”
Nat. Nanotechnol.
10
,
187
191
(
2015
).
11.
R.
Wiesendanger
, “
Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics
,”
Nat. Rev. Mater.
1
,
16044
(
2016
).
12.
O.
Tegus
,
E.
Brück
,
K. H. J.
Buschow
, and
F. R.
de Boer
, “
Transition-metal-based magnetic refrigerants for room-temperature applications
,”
Nature
415
,
150
152
(
2002
).
13.
O.
Gutfleisch
,
M. A.
Willard
,
E.
Brück
,
C. H.
Chen
,
S. G.
Sankar
, and
J. P.
Liu
, “
Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient
,”
Adv. Mater.
23
,
821
842
(
2010
).
14.
V.
Franco
,
J.
Blázquez
,
J.
Ipus
,
J.
Law
,
L.
Moreno-Ramírez
, and
A.
Conde
, “
Magnetocaloric effect: From materials research to refrigeration devices
,”
Prog. Mater. Sci.
93
,
112
232
(
2018
).
15.
D. L.
Graham
,
H. A.
Ferreira
, and
P. P.
Freitas
, “
Magnetoresistive-based biosensors and biochips
,”
Trends Biotechnol.
22
,
455
462
(
2004
).
16.
R. S.
Gaster
,
L.
Xu
,
S.-J.
Han
,
R. J.
Wilson
,
D. A.
Hall
,
S. J.
Osterfeld
,
H.
Yu
, and
S. X.
Wang
, “
Quantification of protein interactions and solution transport using high-density GMR sensor arrays
,”
Nat. Nanotechnol.
6
,
314
320
(
2011
).
17.
Y.-T.
Chen
,
A. G.
Kolhatkar
,
O.
Zenasni
,
S.
Xu
, and
T. R.
Lee
, “
Biosensing using magnetic particle detection techniques
,”
Sensors
17
,
2300
(
2017
).
18.
A.
Fernandez-Pacheco
,
R.
Streubel
,
O.
Fruchart
,
R.
Hertel
,
P.
Fischer
, and
R. P.
Cowburn
, “
Three-dimensional nanomagnetism
,”
Nat. Commun.
8
,
15756
(
2017
).
19.
A. G.
Roca
,
R.
Costo
,
A. F.
Rebolledo
,
S.
Veintemillas-Verdaguer
,
P.
Tartaj
,
T.
González-Carreño
,
M. P.
Morales
, and
C. J.
Serna
, “
Progress in the preparation of magnetic nanoparticles for applications in biomedicine
,”
J. Phys. D: Appl. Phys.
42
,
224002
(
2009
).
20.
M. Z.
Yousaf
,
J.
Yu
,
Y.-L.
Hou
, and
S.
Gao
, “
Magnetic nanoparticle-based cancer nanodiagnostics
,”
Chin. Phys. B
22
,
058702
(
2013
).
21.
H.
Rui
,
R.
Xing
,
Z.
Xu
,
Y.
Hou
,
S.
Goo
, and
S.
Sun
, “
Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles
,”
Adv. Mater.
22
,
2729
2742
(
2010
).
22.
M.
Uhlen
, “
Magnetic separation of DNA
,”
Nature
340
,
733
734
(
1989
).
23.
J.
Bao
,
W.
Chen
,
T.
Liu
,
Y.
Zhu
,
P.
Jin
,
L.
Wang
,
J.
Liu
,
Y.
Wei
, and
Y.
Li
, “
Bifunctional au-fe3o4 nanoparticles for protein separation
,”
ACS Nano
1
,
293
298
(
2007
).
24.
C.
Sun
,
J. S. H.
Lee
, and
M.
Zhang
, “
Magnetic nanoparticles in MR imaging and drug delivery
,”
Adv. Drug Delivery Rev.
60
,
1252
1265
(
2008
).
25.
H.
Chen
,
T.
Moore
,
B.
Qi
,
D. C.
Colvin
,
E. K.
Jelen
,
D. A.
Hitchcock
,
J.
He
,
O. T.
Mefford
,
J. C.
Gore
,
F.
Alexis
, and
J. N.
Anker
, “
Monitoring pH-triggered drug release from radioluminescent nanocapsules with x-ray excited optical luminescence
,”
ACS Nano
7
,
1178
1187
(
2013
).
26.
L.
Chang
,
M.
Howdyshell
,
W.-C.
Liao
,
C.-L.
Chiang
,
D.
Gallego-Perez
,
Z.
Yang
,
W.
Lu
,
J. C.
Byrd
,
N.
Muthusamy
,
L. J.
Lee
, and
R.
Sooryakumar
, “
Magnetic tweezers-based 3D microchannel electroporation for high-throughput gene transfection in living cells
,”
Small
11
,
1818
1828
(
2014
).
27.
J.
Devkota
,
G.
Kokkinis
,
T.
Berris
,
M.
Jamalieh
,
S.
Cardoso
,
F.
Cardoso
,
H.
Srikanth
,
M. H.
Phan
, and
I.
Giouroudi
, “
A novel approach for detection and quantification of magnetic nanomarkers using a spin valve GMR-integrated microfluidic sensor
,”
RSC Adv.
5
,
51169
51175
(
2015
).
28.
N.
Yang
and
T.
Li
, “
An early cancer diagnosis platform based on micro-magnetic sensor array demonstrates ultra-high sensitivity
,”
J. Nanomed. Nanotechnol.
7
,
1000344
(
2016
).
29.
Y.
Wook Jun
,
Y.-M.
Huh
,
J.
sil Choi
,
J.-H.
Lee
,
H.-T.
Song
,
Kim
,
S.
Yoon
,
K.-S.
Kim
,
J.-S.
Shin
,
J.-S.
Suh
, and
J.
Cheon
, “
Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging
,”
J. Am. Chem. Soc.
127
,
5732
5733
(
2005
).
30.
R. V.
Roosbroeck
,
W. V.
Roy
,
T.
Stakenborg
,
J.
Trekker
,
A.
D'Hollander
,
T.
Dresselaers
,
U.
Himmelreich
,
J.
Lammertyn
, and
L.
Lagae
, “
Synthetic antiferromagnetic nanoparticles as potential contrast agents in MRI
,”
ACS Nano
8
,
2269
2278
(
2014
).
31.
R.
Hergt
,
S.
Dutz
,
R.
Müller
, and
M.
Zeisberger
, “
Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy
,”
J. Phys.: Condens. Matter
18
,
S2919
S2934
(
2006
).
32.
J.-H.
Lee
,
J.
tak Jang
,
J.
sil Choi
,
S. H.
Moon
,
S.
hyun Noh
,
J.
wook Kim
,
J.-G.
Kim
,
I.-S.
Kim
,
K. I.
Park
, and
J.
Cheon
, “
Exchange-coupled magnetic nanoparticles for efficient heat induction
,”
Nat. Nanotechnol.
6
,
418
422
(
2011
).
33.
S.
Dutz
,
R.
Müller
,
D.
Eberbeck
,
I.
Hilger
, and
M.
Zeisberger
, “
Magnetic nanoparticles adapted for specific biomedical applications
,”
Biomed. Tech.
60
,
405
416
(
2015
).
34.
D. H.
Kim
,
E. A.
Rozhkova
,
I. V.
Ulasov
,
S. D.
Bader
,
T.
Rajh
,
M. S.
Lesniak
, and
V.
Novosad
, “
Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction
,”
Nat. Mater.
9
,
165
171
(
2010
).
35.
R.
Mansell
,
T.
Vemulkar
,
D. C. M. C.
Petit
,
Y.
Cheng
,
J.
Murphy
,
M. S.
Lesniak
, and
R. P.
Cowburn
, “
Magnetic particles with perpendicular anisotropy for mechanical cancer cell destruction
,”
Sci. Rep.
7
,
4257
(
2017
).
36.
E. A.
Vitol
,
V.
Novosad
, and
E. A.
Rozhkova
, “
Microfabricated magnetic structures for future medicine: From sensors to cell actuators
,”
Nanomedicine
7
,
1611
1624
(
2012
).
37.
Y.
Cheng
,
M. E.
Muroski
,
D. C.
Petit
,
R.
Mansell
,
T.
Vemulkar
,
R. A.
Morshed
,
Y.
Han
,
I. V.
Balyasnikova
,
C. M.
Horbinski
,
X.
Huang
,
L.
Zhang
,
R. P.
Cowburn
, and
M. S.
Lesniak
, “
Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma
,”
J. Controlled Release
223
,
75
84
(
2016
).
38.
B.
Mora
,
A.
Perez-Valle
,
C.
Redondo
,
M. D.
Boyano
, and
R.
Morales
, “
Cost-effective design of high-magnetic moment nanostructures for biotechnological applications
,”
ACS Appl. Mater. Interfaces
10
,
8165
8172
(
2018
).
39.
A.
Hultgren
,
M.
Tanase
,
C.
Chen
, and
D.
Reich
, “
High-yield cell separations using magnetic nanowires
,”
IEEE Trans. Magn.
40
,
2988
2990
(
2004
).
40.
P. C.
Pinheiro
,
C. T.
Sousa
,
J. P.
Araújo
,
A. J.
Guiomar
, and
T.
Trindade
, “
Functionalization of nickel nanowires with a fluorophore aiming at new probes for multimodal bioanalysis
,”
J. Colloid Interface Sci.
410
,
21
26
(
2013
).
41.
M.
Zhang
,
C. M.
Earhart
,
C.
Ooi
,
R. J.
Wilson
,
M.
Tang
, and
S. X.
Wang
, “
Functionalization of high-moment magnetic nanodisks for cell manipulation and separation
,”
Nano Res.
6
,
745
751
(
2013
).
42.
D.
Shore
,
S. L.
Pailloux
,
J.
Zhang
,
T.
Gage
,
D. J.
Flannigan
,
M.
Garwood
,
V. C.
Pierre
, and
B. J. H.
Stadler
, “
Electrodeposited fe and fe–au nanowires as MRI contrast agents
,”
Chem. Commun.
52
,
12634
12637
(
2016
).
43.
M.
Bañobre-López
,
C.
Bran
,
C.
Rodríguez-Abreu
,
J.
Gallo
,
M.
Vázquez
, and
J.
Rivas
, “
A colloidally stable water dispersion of ni nanowires as an efficient t2-MRI contrast agent
,”
J. Mater. Chem. B
5
,
3338
3347
(
2017
).
44.
M. G.
Goikoetxea
, “
Magnetic vortex nanodiscs for cancer cell destruction
,” Ph.D. thesis (
Universidad Del País Vasco-Euskal Herriko Unibertsitatea
,
2017
).
45.
T.
Shinjo
,
T.
Okuno
,
R.
Hassdorf
,
K.
Shigeto
, and
T.
Ono
, “
Magnetic vortex core observation in circular dots of permalloy
,”
Science
289
,
930
932
(
2000
).
46.
K. Y.
Guslienko
,
V.
Novosad
,
Y.
Otani
,
H.
Shima
, and
K.
Fukamichi
, “
Field evolution of magnetic vortex state in ferromagnetic disks
,”
Appl. Phys. Lett.
78
,
3848
3850
(
2001
).
47.
R. P.
Cowburn
,
D. K.
Koltsov
,
A. O.
Adeyeye
,
M. E.
Welland
, and
D. M.
Tricker
, “
Single-domain circular nanomagnets
,”
Phys. Rev. Lett.
83
,
1042
1045
(
1999
).
48.
M.
Schneider
,
H.
Hoffmann
,
S.
Otto
,
T.
Haug
, and
J.
Zweck
, “
Stability of magnetic vortices in flat submicron permalloy cylinders
,”
J. Appl. Phys.
92
,
1466
1472
(
2002
).
49.
J. M.
Garcia-Martin
,
A.
Thiaville
,
J.
Miltat
,
T.
Okuno
,
L.
Vila
, and
L.
Piraux
, “
Imaging magnetic vortices by magnetic force microscopy: Experiments and modelling
,”
J. Phys. D: Appl. Phys.
37
,
965
972
(
2004
).
50.
V.
Novosad
,
K. Y.
Guslienko
,
H.
Shima
,
Y.
Otani
,
S. G.
Kim
,
K.
Fukamichi
,
N.
Kikuchi
,
O.
Kitakami
, and
Y.
Shimada
, “
Effect of interdot magnetostatic interaction on magnetization reversal in circular dot arrays
,”
Phys. Rev. B
65
,
060402
(
2002
).
51.
X.
Zhu
,
V.
Metlushko
,
B.
Ilic
, and
P.
Grutter
, “
Direct observation of magnetostatic coupling of chain arrays of magnetic disks
,”
IEEE Trans. Magn.
39
,
2744
2746
(
2003
).
52.
M.
Schneider
,
H.
Hoffmann
, and
J.
Zweck
, “
Lorentz microscopy of circular ferromagnetic permalloy nanodisks
,”
Appl. Phys. Lett.
77
,
2909
(
2000
).
53.
K. L.
Metlov
and
K. Y.
Guslienko
, “
Stability of magnetic vortex in soft magnetic nano-sized circular cylinder
,”
J. Magn. Magn. Mater.
242–245
,
1015
1017
(
2002
).
54.
M.
Goiriena-Goikoetxea
,
K. Y.
Guslienko
,
M.
Rouco
,
I.
Orue
,
E.
Berganza
,
M.
Jaafar
,
A.
Asenjo
,
M. L.
Fernández-Gubieda
,
L.
Fernández Barquín
, and
A.
García-Arribasa
, “Magnetization reversal in circular vortex dots of small radius,”
Nanoscale
9
,
11269
11278
(
2017
).
55.
K. Y.
Guslienko
and
V.
Novosad
, “
Vortex state stability in soft magnetic cylindrical nanodots
,”
J. Appl. Phys.
96
,
4451
4455
(
2004
).
56.
K. Y.
Guslienko
, “
Magnetic vortex state stability, reversal and dynamics in restricted geometries
,”
J. Nanosci. Nanotechnol.
8
,
2745
2760
(
2008
).
57.
E. A.
Rozhkova
,
V.
Novosad
,
D. H.
Kim
,
J.
Pearson
,
R.
Divan
,
T.
Rajh
, and
S. D.
Bader
, “
Ferromagnetic microdisks as carriers for biomedical applications
,”
J. Appl. Phys.
105
,
5
8
(
2009
).
58.
A.
Wachowiak
,
J.
Wiebe
,
M.
Bode
,
O.
Pietzsch
,
M.
Morgenstern
, and
R.
Wiesendanger
, “
Direct observation of internal spin structure of magnetic vortex cores
,”
Science
298
,
577
580
(
2002
).
59.
P.
Szary
, “
Indication of vortex stabilization and buckling in circular shaped magnetic nanostructures
,”
J. Appl. Phys.
107
,
1
6
(
2010
).
60.
A.
Fernandez
and
C. J.
Cerjan
, “
Nucleation and annihilation of magnetic vortices in submicron-scale Co dots
,”
J. Appl. Phys.
87
,
1395
1401
(
2000
).
61.
T.
Pokhil
,
D.
Song
, and
J.
Nowak
, “
Spin vortex states and hysteretic properties of submicron size NiFe elements
,”
J. Appl. Phys.
87
,
6319
6321
(
2000
).
62.
A.
Fernandez
,
M.
Gibbons
,
M.
Wall
, and
C.
Cerjan
, “
Magnetic domain structure and magnetization reversal in submicron-scale Co dots
,”
J. Magn. Magn. Mater.
190
,
71
80
(
1998
).
63.
J. S.
Neal
,
H. G.
Roberts
,
M. R.
Connolly
,
S.
Crampin
,
S. J.
Bending
,
G.
Wastlbauer
, and
J. A.
Bland
, “
Magnetisation reversal in epitaxial Fe(1 0 0) disks studied by high resolution scanning Hall probe microscopy
,”
Ultramicroscopy
106
,
614
619
(
2006
).
64.
L. J.
Heyderman
,
H. H.
Solak
,
C.
David
,
D.
Atkinson
,
R. P.
Cowburn
, and
F.
Nolting
, “
Arrays of nanoscale magnetic dots: Fabrication by x-ray interference lithography and characterization
,”
Appl. Phys. Lett.
85
,
4989
4991
(
2004
).
65.
X.
Zhu
,
P.
Grütter
,
V.
Metlushko
, and
B.
Ilic
, “
Magnetization reversal and configurational anisotropy of dense permalloy dot arrays
,”
Appl. Phys. Lett.
80
,
4789
4791
(
2002
).
66.
B. V.
Waeyenberge
,
A.
Puzic
,
H.
Stoll
,
K. W.
Chou
,
T.
Tyliszczak
,
R.
Hertel
,
M.
Fähnle
,
H.
Brückl
,
K.
Rott
,
G.
Reiss
,
I.
Neudecker
,
D.
Weiss
,
C. H.
Back
, and
G.
Schütz
, “
Magnetic vortex core reversal by excitation with short bursts of an alternating field
,”
Nature
444
,
461
464
(
2006
).
67.
J.
Mejía-López
,
D.
Altbir
,
A. H.
Romero
,
X.
Batlle
,
I. V.
Roshchin
,
C.-P.
Li
, and
I. K.
Schuller
, “
Vortex state and effect of anisotropy in sub-100-nm magnetic nanodots
,”
J. Appl. Phys.
100
,
104319
(
2006
).
68.
K. Y.
Guslienko
,
V.
Novosad
,
Y.
Otani
,
H.
Shima
, and
K.
Fukamichi
, “
Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays
,”
Phys. Rev. B
65
,
244141
2441410
(
2002
).
69.
A.
Koh
,
W.
Hu
,
R.
Wilson
,
S.
Wang
, and
R.
Sinclair
, “
Preparation, structural and magnetic characterization of synthetic anti-ferromagnetic (SAF) nanoparticles
,”
Philos. Mag.
88
,
4225
4241
(
2008
).
70.
S.
Leulmi
,
H.
Joisten
,
T.
Dietsch
,
C.
Iss
,
M.
Morcrette
,
S.
Auffret
,
P.
Sabon
, and
B.
Dieny
, “
Comparison of dispersion and actuation properties of vortex and synthetic antiferromagnetic particles for biotechnological applications
,”
Appl. Phys. Lett.
103
,
132412
(
2013
).
71.
T.
Vemulkar
,
R.
Mansell
,
D. C. M. C.
Petit
,
R. P.
Cowburn
, and
M. S.
Lesniak
, “
Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications
,”
Appl. Phys. Lett.
107
,
012403
(
2015
).
72.
W.
Hu
,
R. J.
Wilson
,
A.
Koh
,
A.
Fu
,
A. Z.
Faranesh
,
C. M.
Earhart
,
S. J.
Osterfeld
,
S.-J.
Han
,
L.
Xu
,
S.
Guccione
,
R.
Sinclair
, and
S. X.
Wang
, “
High-moment antiferromagnetic nanoparticles with tunable magnetic properties
,”
Adv. Mater.
20
,
1479
1483
(
2008
).
73.
W.
Hu
,
R. J.
Wilson
,
C. M.
Earhart
,
A. L.
Koh
,
R.
Sinclair
, and
S. X.
Wang
, “
Synthetic antiferromagnetic nanoparticles with tunable susceptibilities
,”
J. Appl. Phys.
105
,
07B508
(
2009
).
74.
P.
Grünberg
,
R.
Schreiber
,
Y.
Pang
,
M. B.
Brodsky
, and
H.
Sowers
, “
Layered magnetic structures: Evidence for antiferromagnetic coupling of fe layers across cr interlayers
,”
Phys. Rev. Lett.
57
,
2442
2445
(
1986
).
75.
S. S. P.
Parkin
,
N.
More
, and
K. P.
Roche
, “
Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr
,”
Phys. Rev. Lett.
64
,
2304
2307
(
1990
).
76.
S. S. P.
Parkin
, “
Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals
,”
Phys. Rev. Lett.
67
,
3598
3601
(
1991
).
77.
P.
Bruno
and
C.
Chappert
, “
Ruderman-kittel theory of oscillatory interlayer exchange coupling
,”
Phys. Rev. B
46
,
261
270
(
1992
).
78.
R. A.
Duine
,
K.-J.
Lee
,
S. S. P.
Parkin
, and
M. D.
Stiles
, “
Synthetic antiferromagnetic spintronics
,”
Nat. Phys.
14
,
217
219
(
2018
).
79.
M. N.
Baibich
,
J. M.
Broto
,
A.
Fert
,
F. N. V.
Dau
,
F.
Petroff
,
P.
Etienne
,
G.
Creuzet
,
A.
Friederich
, and
J.
Chazelas
, “
Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices
,”
Phys. Rev. Lett.
61
,
2472
2475
(
1988
).
80.
E. E.
Fullerton
,
D. T.
Margulies
,
M. E.
Schabes
,
M.
Carey
,
B.
Gurney
,
A.
Moser
,
M.
Best
,
G.
Zeltzer
,
K.
Rubin
,
H.
Rosen
, and
M.
Doerner
, “
Antiferromagnetically coupled magnetic media layers for thermally stable high-density recording
,”
Appl. Phys. Lett.
77
,
3806
3808
(
2000
).
81.
S.
Byeon
,
A.
Misra
, and
W.
Doyle
, “
Synthetic antiferromagnetic soft underlayers for perpendicular recording media
,”
IEEE Trans. Magn.
40
,
2386
2388
(
2004
).
82.
S.
Pietambaram
,
J.
Janesky
,
R.
Dave
,
J.
Sun
,
G.
Steiner
, and
J.
Slaughter
, “
Exchange coupling control and thermal endurance of synthetic antiferromagnet structures for MRAM
,”
IEEE Trans. Magn.
40
,
2619
2621
(
2004
).
83.
M.
Milyaev
,
L.
Naumova
,
T.
Chernyshova
,
V.
Proglyado
,
I.
Kamensky
, and
V.
Ustinov
, “
Spin-flop in synthetic antiferromagnet and anhysteretic magnetic reversal in FeMn-based spin valves
,”
IEEE Trans. Magn.
52
,
1
4
(
2016
).
84.
C. D. G. B. D.
Cullity
,
Introduction to Magnetic Materials
, 2nd ed. (
Wiley-IEEE Press
,
2008
).
85.
Q. L.
Vuong
,
J.-F.
Berret
,
J.
Fresnais
,
Y.
Gossuin
, and
O.
Sandre
, “
A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI t2-contrast agents
,”
Adv. Healthcare Mater.
1
,
502
512
(
2012
).
86.
R.
Lavrijsen
,
A.
Fernández-Pacheco
,
D.
Petit
,
R.
Mansell
,
J. H.
Lee
, and
R. P.
Cowburn
, “
Tuning the interlayer exchange coupling between single perpendicularly magnetized CoFeB layers
,”
Appl. Phys. Lett.
100
,
052411
(
2012
).
87.
R. M.
Fratila
,
S.
Rivera-Fernández
, and
J. M.
de la Fuente
, “
Shape matters: Synthesis and biomedical applications of high aspect ratio magnetic nanomaterials
,”
Nanoscale
7
,
8233
8260
(
2015
).
88.
E. C.
Stoner
and
E. P.
Wohlfarth
, “
A mechanism of magnetic hysteresis in heterogeneous alloys
,”
Philos. Trans. R. Soc., A
240
,
599
642
(
1948
).
89.
E. H.
Frei
,
S.
Shtrikman
, and
D.
Treves
, “
Critical size and nucleation field of ideal ferromagnetic particles
,”
Phys. Rev.
106
,
446
455
(
1957
).
90.
A.
Arrott
,
B.
Heinrich
, and
A.
Aharoni
, “
Point singularities and magnetization reversal in ideally soft ferromagnetic cylinders
,”
IEEE Trans. Magn.
15
,
1228
1235
(
1979
).
91.
C. T.
Sousa
,
D. C.
Leitao
,
M. P.
Proenca
,
J.
Ventura
,
A. M.
Pereira
, and
J. P.
Araújo
, “
Nanoporous alumina as templates for multifunctional applications
,”
Appl. Phys. Rev.
1
,
031102
(
2014
).
92.
S.
Ishrat
,
K.
Maaz
,
K.-J.
Lee
,
M.-H.
Jung
, and
G.-H.
Kim
, “
Fabrication and temperature-dependent magnetic properties of one-dimensional multilayer Au–Ni–Au–Ni–Au nanowires
,”
J. Solid State Chem.
210
,
116
120
(
2014
).
93.
L.
Liu
,
W.-Y.
Zhou
,
S.-S.
Xie
,
O.
Albrecht
, and
K.
Nielsch
, “
Microstructure and temperature-dependent magnetic properties of co/pt multilayered nanowires
,”
Chem. Phys. Lett.
466
,
165
169
(
2008
).
94.
T.
Böhnert
,
A. C.
Niemann
,
A.-K.
Michel
,
S.
Bäßler
,
J.
Gooth
,
B. G.
Tóth
,
K.
Neuróhr
,
L.
Péter
,
I.
Bakonyi
,
V.
Vega
,
V. M.
Prida
, and
K.
Nielsch
, “
Magnetothermopower and magnetoresistance of single Co-Ni/Cu multilayered nanowires
,”
Phys. Rev. B
90
,
165416
(
2014
).
95.
M.
Susano
,
M. P.
Proenca
,
S.
Moraes
,
C. T.
Sousa
, and
J. P.
Araújo
, “
Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths
,”
Nanotechnology
27
,
10
(
2016
).
96.
S.
Moraes
,
D.
Navas
,
F.
Béron
,
M.
Proenca
,
K.
Pirota
,
C.
Sousa
, and
J.
Araújo
, “
The role of Cu length on the magnetic behaviour of Fe/Cu multi-segmented nanowires
,”
Nanomaterials
8
,
490
(
2018
).
97.
W.
Wernsdorfer
,
B.
Doudin
,
D.
Mailly
,
K.
Hasselbach
,
A.
Benoit
,
J.
Meier
,
J. P.
Ansermet
, and
B.
Barbara
, “
Nucleation of magnetization reversal in individual nanosized nickel wires
,”
Phys. Rev. Lett.
77
,
1873
1876
(
1996
).
98.
R.
Ferré
,
K.
Ounadjela
,
J. M.
George
,
L.
Piraux
, and
S.
Dubois
, “
Magnetization processes in nickel and cobalt electrodeposited nanowires
,”
Phys. Rev. B
56
,
14066
14075
(
1997
).
99.
M. P.
Proenca
,
K. J.
Merazzo
,
L. G.
Vivas
,
D. C.
Leitao
,
C. T.
Sousa
,
J.
Ventura
,
J. P.
Araújo
, and
M.
Vazquez
, “
Co nanostructures in ordered templates: Comparative FORC analysis
,”
Nanotechnology
24
,
475703
(
2013
).
100.
R.
Hertel
, “
Micromagnetic simulations of magnetostatically coupled nickel nanowires
,”
J. Appl. Phys.
90
,
5752
5758
(
2001
).
101.
R.
Hertel
and
J.
Kirschner
, “
Magnetization reversal dynamics in nickel nanowires
,”
Physica B
343
,
206
210
(
2004
).
102.
G. J.
Strijkers
,
J. H. J.
Dalderop
,
M. A. A.
Broeksteeg
,
H. J. M.
Swagten
, and
W. J. M.
de Jonge
, “
Structure and magnetization of arrays of electrodeposited co wires in anodic alumina
,”
J. Appl. Phys.
86
,
5141
5145
(
1999
).
103.
R.
Metzger
,
V.
Konovalov
,
M.
Sun
,
T.
Xu
,
G.
Zangari
,
B.
Xu
,
M.
Benakli
, and
W.
Doyle
, “
Magnetic nanowires in hexagonally ordered pores of alumina
,”
IEEE Trans. Magn.
36
,
30
35
(
2000
).
104.
S.
Pignard
,
G.
Goglio
,
A.
Radulescu
,
L.
Piraux
,
S.
Dubois
,
A.
Declémy
, and
J. L.
Duvail
, “
Study of the magnetization reversal in individual nickel nanowires
,”
J. Appl. Phys.
87
,
824
829
(
2000
).
105.
K.
Nielsch
,
R. B.
Wehrspohn
,
J.
Barthel
,
J.
Kirschner
,
U.
Gisele
,
S. F.
Fischer
, and
H.
Kronmüller
, “
Hexagonally ordered 100 nm period nickel nanowire arrays
,”
Appl. Phys. Lett.
79
,
1360
1362
(
2001
).
106.
L.-P.
Carignan
,
M.
Massicotte
,
C.
Caloz
,
A.
Yelon
, and
D.
Menard
, “
Magnetization reversal in arrays of ni nanowires with different diameters
,”
IEEE Trans. Magn.
45
,
4070
4073
(
2009
).
107.
S.
Pal
,
S.
Saha
,
D.
Polley
, and
A.
Barman
, “
Magnetization reversal dynamics in co nanowires with competing magnetic anisotropies
,”
Solid State Commun.
151
,
1994
1998
(
2011
).
108.
L.-P.
Carignan
,
C.
Lacroix
,
A.
Ouimet
,
M.
Ciureanu
,
A.
Yelon
, and
D.
Ménard
, “
Magnetic anisotropy in arrays of ni, CoFeB, and ni/cu nanowires
,”
J. Appl. Phys.
102
,
023905
(
2007
).
109.
D. C.
Leitao
,
A. V.
Silva
,
R.
Ferreira
,
E.
Paz
,
F. L.
Deepack
,
S.
Cardoso
, and
P. P.
Freitas
, “
Linear nanometric tunnel junction sensors with exchange pinned sensing layer
,”
J. Appl. Phys.
115
,
17E526
(
2014
).
110.
D. C.
Leitao
,
J.
Ventura
,
C. T.
Sousa
,
A. M.
Pereira
,
J. B.
Sousa
,
M.
Vazquez
, and
J. P.
Araújo
, “
Insights into the role of magnetoelastic anisotropy in the magnetization reorientation of magnetic nanowires
,”
Phys. Rev. B
84
,
014410
(
2011
).
111.
H.
Xiang
,
D. M.
Jiang
,
J. C.
Yao
,
Y. P.
Zheng
,
W.
Lu
,
G. Q.
Li
,
H.
Saito
,
S.
Ishio
,
X. W.
Tan
, and
Y. Q.
Lin
, “
Micromagnetic simulations of magnetization reversal of iron nanowire
,”
J. Phys.: Conf. Ser.
266
,
012022
(
2011
).
112.
X. F.
Qin
,
C. H.
Deng
,
Y.
Liu
,
X. J.
Meng
,
J. Q.
Zhang
,
F.
Wang
, and
X. H.
Xu
, “
Magnetization reversal of high aspect ratio iron nanowires grown by electrodeposition
,”
IEEE Trans. Magn.
48
,
3136
3139
(
2012
).
113.
Y. P.
Ivanov
,
M.
Vázquez
, and
O.
Chubykalo-Fesenko
, “
Magnetic reversal modes in cylindrical nanowires
,”
J. Phys. D: Appl. Phys.
46
,
485001
(
2013
).
114.
Y.
Gao
,
Y.
Liu
, and, and
C.
Xu
, “
Magnetic nanoparticles for biomedical applications: From diagnosis to treatment to regeneration
,”
Engineering in Translational Medicine
(
Springer
London
,
2013
), pp.
567
583
.
115.
P. E.
Garcia Casillas
,
I.
Olivas-Armendariz
,
C.
Gonzalez
,
K.
Castrejon-Parga
, and
C.
Martinez Perez
, “
Microspheres technologies, applications and role in drug delivery systems
,” Magnetic Nanostructures for Biomedical Applications (NOVA,
2014
), pp.
137
180
.
116.
N.
Tran
and
T. J.
Webster
, “
Magnetic nanoparticles: Biomedical applications and challenges
,”
J. Mater. Chem.
20
,
8760
(
2010
).
117.
H.
Chiriac
,
E.
Radu
,
M.
Tibu
,
G.
Stoian
,
G.
Ababei
,
L.
Lăbuşcă
,
D.-D.
Herea
, and
N.
Lupu
, “
Fe-Cr-Nb-B ferromagnetic particles with shape anisotropy for cancer cell destruction by magneto-mechanical actuation
,”
Sci. Rep.
8
,
11538
(
2018
).
118.
K.
Wu
,
D.
Su
,
J.
Liu
, and
J.-P.
Wang
, “
Estimating saturation magnetization of superparamagnetic nanoparticles in liquid phase
,”
J. Magn. Magn. Mater.
471
,
394
399
(
2019
).
119.
Nanogels for Biomedical Applications
, edited by
A.
Vashist
,
A. K.
Kaushik
,
S.
Ahmad
, and
M.
Nair
(
Royal Society of Chemistry
,
2017
).
120.
E. D. B.
Paola Palmero
and
F.
Cambier
,
Advances in Ceramic Biomaterials
(
Elsevier Science & Technology
,
2017
).
121.
E. C.
Wang
and
A. Z.
Wang
, “
Nanoparticles and their applications in cell and molecular biology
,”
Integr. Biol.
6
,
9
26
(
2013
).
122.
N.
Gao
,
H.
Wang
, and
E.-H.
Yang
, “
An experimental study on ferromagnetic nickel nanowires functionalized with antibodies for cell separation
,”
Nanotechnology
21
,
105107
(
2010
).
123.
Plasmonics: Theory and Applications
, edited by,
T. V.
Shahbazyan
and
M. I.
Stockman
(
Springer
Netherlands
,
2013
).
124.
B. D.
Plouffe
,
S. K.
Murthy
, and
L. H.
Lewis
, “
Fundamentals and application of magnetic particles in cell isolation and enrichment: A review
,”
Rep. Prog. Phys.
78
,
016601
(
2014
).
125.
R.
Burger
and
J.
Ducrée
, “
Handling and analysis of cells and bioparticles on centrifugal microfluidic platforms
,”
Expert Rev. Mol. Diagn.
12
,
407
421
(
2012
).
126.
B. D.
Plouffe
and
S. K.
Murthy
, “
Perspective on microfluidic cell separation: A solved problem?
,”
Anal. Chem.
86
,
11481
11488
(
2014
).
127.
B.
Zhu
and
S. K.
Murthy
, “
Stem cell separation technologies
,”
Curr. Opin. Chem. Eng.
2
,
3
7
(
2013
).
128.
C.
Ruffert
, “
Magnetic bead—magic bullet
,”
Micromachines
7
,
21
(
2016
).
129.
B. J.
Kirby
,
Micro- And Nanoscale Fluid Mechanics
(
Cambridge University Press
,
2010
).
130.
Y. P.
Ivanov
,
A.
Alfadhel
,
M.
Alnassar
,
J. E.
Perez
,
M.
Vazquez
,
A.
Chuvilin
, and
J.
Kosel
, “
Tunable magnetic nanowires for biomedical and harsh environment applications
,”
Sci. Rep.
6
,
24189
(
2016
).
131.
A.
Hultgren
,
M.
Tanase
,
C. S.
Chen
,
G. J.
Meyer
, and
D. H.
Reich
, “
Cell manipulation using magnetic nanowires
,”
J. Appl. Phys.
93
,
7554
7556
(
2003
).
132.
D. H.
Reich
,
M.
Tanase
,
A.
Hultgren
,
L. A.
Bauer
,
C. S.
Chen
, and
G. J.
Meyer
, “
Biological applications of multifunctional magnetic nanowires (invited)
,”
J. Appl. Phys.
93
,
7275
7280
(
2003
).
133.
A.
Hultgren
,
M.
Tanase
,
E. J.
Felton
,
K.
Bhadriraju
,
A. K.
Salem
,
C. S.
Chen
, and
D. H.
Reich
, “
Optimization of yield in magnetic cell separations using nickel nanowires of different lengths
,”
Biotechnol. Prog.
21
,
509
515
(
2008
).
134.
R. E.
McMahon
,
J.
Ma
,
S. V.
Verkhoturov
,
D.
Munoz-Pinto
,
I.
Karaman
,
F.
Rubitschek
,
H. J.
Maier
, and
M. S.
Hahn
, “
A comparative study of the cytotoxicity and corrosion resistance of nickel–titanium and titanium–niobium shape memory alloys
,”
Acta Biomater.
8
,
2863
2870
(
2012
).
135.
F.
Byrne
,
A.
Prina-Mello
,
A.
Whelan
,
B. M.
Mohamed
,
A.
Davies
,
Y. K.
Gun'ko
,
J.
Coey
, and
Y.
Volkov
, “
High content analysis of the biocompatibility of nickel nanowires
,”
J. Magn. Magn. Mater.
321
,
1341
1345
(
2009
).
136.
L. P.
Felix
,
J. E.
Perez
,
M. F.
Contreras
,
T.
Ravasi
, and
J.
Kosel
, “
Cytotoxic effects of nickel nanowires in human fibroblasts
,”
Toxicology Rep.
3
,
373
380
(
2016
).
137.
N.
Alsharif
, “
Towards the generation of functionalized magnetic nanowires to target leukemic cells
,” Master's thesis (
King Abdullah University of Science and Technology
,
2016
).
138.
N. A.
Alsharif
,
A.
Martiinez-Banderas
,
J.
Merzaban
,
T.
Ravasi
, and
J.
Kosel
, “
Biofunctionalizing magnetic nanowires toward targeting and killing leukemia cancer cells
,”
IEEE Trans. Magn.
55
,
1
5
(
2019
).
139.
A.
Fu
,
W.
Hu
,
L.
Xu
,
R.
Wilson
,
H.
Yu
,
S.
Osterfeld
,
S.
Gambhir
, and
S.
Wang
, “
Protein-functionalized synthetic antiferromagnetic nanoparticles for biomolecule detection and magnetic manipulation
,”
Angew. Chem. Int. Ed.
48
,
1620
1624
(
2009
).
140.
M.
Hayden
and
P.-J.
Nacher
,
History and physical principles of MRI. Luca SABA. Magnetic Resonance Imaging Handbook
(
CRC Press
,
2016
), Vol. 1.
141.
G.
Placidi
,
MRI: Essentials for Innovative Technologies
(
CRC Press
,
2012
).
142.
P. W.
Stroman
,
Essentials of Functional MRI
(
CRC Press
,
2016
).
143.
S.
Aja-Fernández
and
G.
Vegas-Sánchez-Ferrero
,
Statistical Analysis of Noise in MRI
(
Springer International Publishing
,
2016
).
144.
G.
Karunamuni
,
The Cardiac Lymphatic System
(
Springer
New York
,
2013
).
145.
S. A.
Corr
,
S. J.
Byrne
,
R.
Tekoriute
,
C. J.
Meledandri
,
D. F.
Brougham
,
M.
Lynch
,
C.
Kerskens
,
L.
O'Dwyer
, and
Y. K.
Gun'ko
, “
Linear assemblies of magnetic nanoparticles as MRI contrast agents
,”
J. Am. Chem. Soc.
130
,
4214
4215
(
2008
).
146.
J. W.
Bulte
and
M. D.
Cuyper
, “
Magnetoliposomes as contrast agents
,”
Liposomes, Part C
(
Elsevier
,
2003
), pp.
175
198
.
147.
J.
Lee
,
Computed Body Tomography with MRI Correlation
(
Wolters Kluwer Health
,
2005
).
148.
D. T.
Yashwant Pathak
,
Drug Delivery Nanoparticles Formulation and Characterization (Drugs and the Pharmaceutical Sciences Book 191)
(
CRC Press
,
2016
).
149.
B. H.
Raymond
,
Y.
Kwong
, and
M.
Jerosch-Herold
,
Cardiovascular Magnetic Resonance Imaging
(
Springer-Verlag GmbH
,
2019
).
150.
Y.-D.
Xiao
,
R.
Paudel
,
J.
Liu
,
C.
Ma
,
Z.-S.
Zhang
, and
S.-K.
Zhou
, “
MRI contrast agents: Classification and application (review)
,”
Int. J. Mol. Med.
38
,
1319
1326
(
2016
).
151.
X.
Chen
and
S.
Wong
,
Cancer Theranostics
(
Elsevier Science Publishing Co Inc
,
2014
).
152.
A.
Merbach
,
L.
Helm
, and
É.
Tóth
, eds.,
The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging
(
John Wiley & Sons, Ltd
,
2013
).
153.
H.-K.
Kim
,
G. H.
Lee
, and
Y.
Chang
, “
Gadolinium as an MRI contrast agent
,”
Future Med. Chem.
10
,
639
661
(
2018
).
154.
M.
Rogosnitzky
and
S.
Branch
, “
Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms
,”
BioMetals
29
,
365
376
(
2016
).
155.
J.
Ramalho
,
R. C.
Semelka
,
M.
Ramalho
,
R. H.
Nunes
,
M.
AlObaidy
, and
M.
Castillo
, “
Gadolinium-based contrast agent accumulation and toxicity: An update
,”
Am. J. Neuroradiol.
37
,
1192
1198
(
2015
).
156.
Z.
Zhou
and
Z.-R.
Lu
, “
Gadolinium-based contrast agents for magnetic resonance cancer imaging
,”
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
5
,
1
18
(
2012
).
157.
A.-H.
Lu
,
E.
Salabas
, and
F.
Schüth
, “
Magnetic nanoparticles: Synthesis, protection, functionalization, and application
,”
Angew. Chem. Int. Ed.
46
,
1222
1244
(
2007
).
158.
D.
Andrews
,
T.
Nann
, and
R.
Lipson
,
Comprehensive Nanoscience and Nanotechnology
(
Academic Press
,
2019
).
159.
Q. L.
Vuong
,
P.
Gillis
, and
Y.
Gossuin
, “
Monte carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents
,”
J. Magn. Reson.
212
,
139
148
(
2011
).
160.
L.
Li
,
W.
Jiang
,
K.
Luo
,
H.
Song
,
F.
Lan
,
Y.
Wu
, and
Z.
Gu
, “
Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking
,”
Theranostics
3
,
595
615
(
2013
).
161.
M. J.
Bailey
,
R.
van der Weegen
,
P. J.
Klemm
,
S. L.
Baker
, and
B. A.
Helms
, “
Stealth rare earth oxide nanodiscs for magnetic resonance imaging
,”
Adv. Healthcare Mater.
1
,
437
442
(
2012
).
162.
V.
Jacques
,
S.
Dumas
,
W.-C.
Sun
,
J. S.
Troughton
,
M. T.
Greenfield
, and
P.
Caravan
, “
High-relaxivity magnetic resonance imaging contrast agents part 2
,”
Invest. Radiol.
45
,
613
624
(
2010
).
163.
G.
Singh
,
B. H.
McDonagh
,
S.
Hak
,
D.
Peddis
,
S.
Bandopadhyay
,
I.
Sandvig
,
A.
Sandvig
, and
W. R.
Glomm
, “
Synthesis of gadolinium oxide nanodisks and gadolinium doped iron oxide nanoparticles for mr contrast agents
,”
J. Mater. Chem. B
5
,
418
422
(
2017
).
164.
T.
Peci
, “
Carbon nanotubes lled with continuous ferromagnetic-Fe nanowires and surface-functionalized with paramagnetic Gd(III): A candidate magnetic hyperthermia structure and MRI contrast agent
,” Ph.D. thesis (
Queen Mary University of London
,
2017
).
165.
K.
Cham-Fai
and
Y.-X. J.
Wang
, “
Mn–Fe nanowires towards cell labeling and magnetic resonance imaging
,”
Nanowires Science and Technology
(
InTech
,
2010
).
166.
H.
Na
,
J.
Lee
,
K.
An
,
Y.
Park
,
M.
Park
,
I.
Lee
,
D.-H.
Nam
,
S.
Kim
,
S.-H.
Kim
,
S.-W.
Kim
,
K.-H.
Lim
,
K.-S.
Kim
,
S.-O.
Kim
, and
T.
Hyeon
, “
Development of aT1 contrast agent for magnetic resonance imaging using MnO nanoparticles
,”
Angew. Chem.
119
,
5493
5497
(
2007
).
167.
H. R.
Neves
,
R. A.
Bini
,
J. H. O.
Barbosa
,
C. E. G.
Salmon
, and
L. C.
Varanda
, “
Dextran-coated antiferromagnetic MnO nanoparticles for aT1-MRI contrast agent with high colloidal stability
,”
Part. Part. Syst. Charact.
33
,
167
176
(
2016
).
168.
Y.-K.
Peng
,
C.-L.
Liu
,
H.-C.
Chen
,
S.-W.
Chou
,
W.-H.
Tseng
,
Y.-J.
Tseng
,
C.-C.
Kang
,
J.-K.
Hsiao
, and
P.-T.
Chou
, “
Antiferromagnetic iron nanocolloids: A new generation in vivo t1 MRI contrast agent
,”
J. Am. Chem. Soc.
135
,
18621
18628
(
2013
).
169.
A. I.
Martínez-Banderas
,
A.
Aires
,
F. J.
Teran
,
J. E.
Perez
,
J. F.
Cadenas
,
N.
Alsharif
,
T.
Ravasi
,
A. L.
Cortajarena
, and
J.
Kosel
, “
Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death
,”
Sci. Rep.
6
,
1
11
(
2016
).
170.
D. W.
Wong
,
W. L.
Gan
,
N.
Liu
, and
W. S.
Lew
, “
Magneto-actuated cell apoptosis by biaxial pulsed magnetic field
,”
Sci. Rep.
7
,
10919
(
2017
).
171.
S.
Leulmi
,
X.
Chauchet
,
M.
Morcrette
,
G.
Ortiz
,
H.
Joisten
,
P.
Sabon
,
T.
Livache
,
Y.
Hou
,
M.
Carrière
,
S.
Lequien
, and
B.
Dieny
, “
Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane
,”
Nanoscale
7
,
15904
15914
(
2015
).
172.
N.
Wang
, “
Review of cellular mechanotransduction
,”
J. Phys. D: Appl. Phys.
50
,
233002
(
2017
).
173.
H.
Zabel
,
Radiology, Lasers, Nanoparticles and Prosthetics
(
Gruyter, Walter de GmbH
,
2017
).
174.
S. W.
Lowe
and
A. W.
Lin
, “
Apoptosis in cancer
,”
Carcinogenesis
21
,
485
495
(
2000
).
175.
E. A.
Vitol
,
V.
Novosad
, and
E. A.
Rozhkova
, “
Multifunctional ferromagnetic disks for modulating cell function
,”
IEEE Trans. Magn.
48
,
3269
3274
(
2012
).
176.
D.
Shi
,
Y.
Cheng
,
M.
Chu
, and
B.
Zhang
,
The World Scientific Encyclopedia of Nanomedicine and Bioengineering I
(
World Scientific
,
2015
).
177.
X.-L.
Liu
,
Y.
Yang
,
J.-P.
Wu
,
Y.-F.
Zhang
,
H.-M.
Fan
, and
J.
Ding
, “
Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
,”
Chin. Phys. B
24
,
127505
(
2015
).
178.
E. A.
Rozhkova
,
I. V.
Ulasov
,
D.
Kim
,
N. M.
Dimitrijevic
,
V.
Novosad
,
S. D.
Bader
,
M. S.
Lesniak
, and
T.
Rajh
, “
Multifunctional nano-bio materials within cellular machinery
,”
Int. J. Nanoscience
10
,
899
908
(
2011
).
179.
V.
Novosad
and
E. A.
Rozhkova
, “
Ferromagnets-based multifunctional nanoplatform for targeted cancer therapy
,” in
Biomedical Engineering, Trends in Materials Science
(
InTech
,
2011
).
180.
M.
Goiriena-Goikoetxea
,
I.
Orue
,
K.
Guslienko
,
E.
Berganza
,
M.
Jaafar
,
A.
Asenjo
,
D.
Munoz
,
A.
Muela
, and
A.
Garcia-Arribas
, “
Properties of permalloy nanodiscs in magnetic vortex state and magneto-mechanical treatment of cancer cells
,” in
IEEE International Magnetics Conference (INTERMAG)
(IEEE,
2018
).
181.
A. O.
Fung
,
V.
Kapadia
,
E.
Pierstorff
,
D.
Ho
, and
Y.
Chen
, “
Induction of cell death by magnetic actuation of nickel nanowires internalized by fibroblasts
,”
J. Phys. Chem. C
112
,
15085
15088
(
2008
).
182.
D. S.
Choi
,
X.
Hopkins
,
R.
Kringel
,
J.
Park
,
I. T.
Jeon
, and
Y. K.
Kim
, “
Magnetically driven spinning nanowires as effective materials for eradicating living cells
,”
J. Appl. Phys.
111
,
07B329
(
2012
).
183.
M.
Contreras
,
R.
Sougrat
,
A.
Zaher
,
T.
Ravasi
, and
J.
Kosel
, “
Non-chemotoxic induction of cancer cell death using magnetic nanowires
,”
Int. J. Nanomed.
2015
,
2141
2153
.
184.
M. F.
Contreras
, “
Magnetic nanowires as materials for cancer cell destruction
,” Ph.D. thesis (
King Abdullah University of Science and Technology
,
2015
).
185.
A.
Serrà
,
G.
Vázquez-Mariño
,
J.
García-Torres
,
M.
Bosch
, and
E.
Vallés
, “
Magnetic actuation of multifunctional nanorobotic platforms to induce cancer cell death
,”
Adv. Biosyst.
2
,
1700220
(
2018
).
186.
B. S.
Kwon
, “
Multilayered magnetic nanoparticles fabricated by nanoimprint lithography for magnetomechanical treatment of cancer
,” Ph.D. thesis (
University of Washington
,
2017
).
187.
Y.
Shen
,
C.
Wu
,
T. Q. P.
Uyeda
,
G. R.
Plaza
,
B.
Liu
,
Y.
Han
,
M. S.
Lesniak
, and
Y.
Cheng
, “
Elongated nanoparticle aggregates in cancer cells for mechanical destruction with low frequency rotating magnetic field
,”
Theranostics
7
,
1735
1748
(
2017
).
188.
M.
Salimi
,
S.
Sarkar
,
S.
Fathi
,
A.
Alizadeh
,
R.
Saber
,
F.
Moradi
, and
H.
Delavari
, “
Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice
,”
Int. J. Nanomed.
13
,
1483
1493
(
2018
).
189.
N.
Hoshyar
,
S.
Gray
,
H.
Han
, and
G.
Bao
, “
The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction
,”
Nanomedicine
11
,
673
692
(
2016
).
190.
J. P. M.
Almeida
,
A. L.
Chen
,
A.
Foster
, and
R.
Drezek
, “
In vivobiodistribution of nanoparticles
,”
Nanomedicine
6
,
815
835
(
2011
).
191.
B.
Pham
,
E.
Colvin
,
N.
Pham
,
B.
Kim
,
E.
Fuller
,
E.
Moon
,
R.
Barbey
,
S.
Yuen
,
B.
Rickman
,
N.
Bryce
,
S.
Bickley
,
M.
Tanudji
,
S.
Jones
,
V.
Howell
, and
B.
Hawkett
, “
Biodistribution and clearance of stable superparamagnetic maghemite iron oxide nanoparticles in mice following intraperitoneal administration
,”
Int. J. Mol. Sci.
19
,
205
(
2018
).
192.
Q.
Feng
,
Y.
Liu
,
J.
Huang
,
K.
Chen
,
J.
Huang
, and
K.
Xiao
, “
Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings
,”
Sci. Rep.
8
,
2082
(
2018
).
193.
C. C.
Quini
,
A. G.
Próspero
,
M. F.
Calabresi
,
G. M.
Moretto
,
N.
Zufelato
,
S.
Krishnan
,
D. R.
Pina
,
R. B.
Oliveira
,
O.
Baffa
,
A. F.
Bakuzis
, and
J. R.
Miranda
, “
Real-time liver uptake and biodistribution of magnetic nanoparticles determined by AC biosusceptometry
,”
Nanomedicine: Nanotechnol., Biol. Med.
13
,
1519
1529
(
2017
).
194.
Q.
Yu
,
X.
qin Xiong
,
L.
Zhao
,
T.
ting Xu
,
H.
Bi
,
R.
Fu
, and
Q.
hua Wang
, “
Biodistribution and toxicity assessment of superparamagnetic iron oxide nanoparticles in vitro and in vivo
,”
Curr. Med. Sci.
38
,
1096
1102
(
2018
).
195.
Z.
Liu
,
W.
Cai
,
L.
He
,
N.
Nakayama
,
K.
Chen
,
X.
Sun
,
X.
Chen
, and
H.
Dai
, “
In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice
,”
Nat. Nanotechnol.
2
,
47
52
(
2006
).
196.
A. A.
Faraj
,
F.
Fauvelle
,
N.
Luciani
,
G.
Lacroix
,
M.
Levy
,
Y.
Cremillieux
, and
E.
Canet-Soulas
, “
In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques
,”
Int. J. Nanomed.
2011
,
351
(
2011
).
197.
K.
Yang
and
Z.
Liu
, “
In vivo biodistribution, pharmacokinetics, and toxicology of carbon nanotubes
,”
Curr. Drug Metab.
13
,
1057
1067
(
2012
).
198.
N. R.
Jacobsen
,
P.
Møller
,
P. A.
Clausen
,
A. T.
Saber
,
C.
Micheletti
,
K. A.
Jensen
,
H.
Wallin
, and
U.
Vogel
, “
Biodistribution of carbon nanotubes in animal models
,”
Basic Clin. Pharmacol. Toxicol.
121
,
30
43
(
2017
).
199.
Z.
Liu
,
S.
Tabakman
,
K.
Welsher
, and
H.
Dai
, “
Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery
,”
Nano Res.
2
,
85
120
(
2009
).
200.
S.
tao Yang
,
W.
Guo
,
Y.
Lin
,
X.
yong Deng
,
H.
fang Wang
,
H.
fang Sun
,
Y.
fang Liu
,
X.
Wang
,
W.
Wang
,
M.
Chen
,
Y.
pu Huang
, and
Y.-P.
Sun
, “
Biodistribution of pristine single-walled carbon nanotubes in vivo†
,”
J. Phys. Chem. C
111
,
17761
17764
(
2007
).
201.
D. M.
Noonan
,
E.
Principi
,
R.
Girardello
,
A.
Bruno
,
I.
Manni
,
E.
Gini
,
A.
Pagani
,
A.
Grimaldi
,
F.
Ivaldi
,
T.
Congiu
,
D. D.
Stefano
,
G.
Piaggio
,
M.
de Eguileor
, and
A.
Albini
, “
Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo
,”
Int. J. Nanomed.
11
,
4299
4316
(
2016
).
202.
Z.
Lin
,
H.
Zhang
,
J.
Huang
,
Z.
Xi
,
L.
Liu
, and
B.
Lin
, “
Biodistribution of single-walled carbon nanotubes in rats
,”
Toxicol. Res.
3
,
497
502
(
2013
).
203.
P.
Huda
,
T.
Binderup
,
M. C.
Pedersen
,
S. R.
Midtgaard
,
D. R.
Elema
,
A.
Kjær
,
M.
Jensen
, and
L.
Arleth
, “
PET/CT based in vivo evaluation of 64cu labelled nanodiscs in tumor bearing mice
,”
PLOS ONE
10
,
e0129310
(
2015
).
204.
E.
Blanco
,
H.
Shen
, and
M.
Ferrari
, “
Principles of nanoparticle design for overcoming biological barriers to drug delivery
,”
Nat. Biotechnol.
33
,
941
951
(
2015
).
205.
S.
Moghimi
,
A.
Hunter
, and
T.
Andresen
, “
Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective
,”
Annu. Rev. Pharmacol. Toxicol.
52
,
481
503
(
2012
).
206.
M.
Elsabahy
and
K. L.
Wooley
, “
Design of polymeric nanoparticles for biomedical delivery applications
,”
Chem. Soc. Rev.
41
,
2545
(
2012
).
207.
P.
Decuzzi
,
B.
Godin
,
T.
Tanaka
,
S.-Y.
Lee
,
C.
Chiappini
,
X.
Liu
, and
M.
Ferrari
, “
Size and shape effects in the biodistribution of intravascularly injected particles
,”
J. Controlled Release
141
,
320
327
(
2010
).
You do not currently have access to this content.