Brain-inspired neuromorphic computing has been intensively studied due to its potential to address the inherent energy and throughput limitations of conventional Von-Neumann based computing architecture. Memristors are ideal building blocks for artificial synapses, which are the fundamental components of neuromorphic computing. In recent years, the emerging ferroic (ferroelectric and ferromagnetic) tunnel junctions have been shown to be able to function as memristors, which are potential candidates to emulate artificial synapses for neuromorphic computing. Here, we provide a review on the ferroic tunnel junctions and their applications as artificial synapses in neuromorphic networks. We focus on the development history of ferroic tunnel junctions, their physical conduction mechanisms, and the intrinsic dynamics of memristors. Their current applications in neuromorphic networks will also be discussed. Finally, a conclusion and future outlooks on the development of ferroic tunnel junctions will be given. Our goal is to give a broad review of ferroic tunnel junction based artificial synapses that can be applied to neuromorphic computing and to help further ongoing research in this field.

1.
J. J.
Yang
,
D. B.
Strukov
, and
D. R.
Stewart
, “
Memristive devices for computing
,”
Nat. Nanotechnol.
8
,
13
24
(
2013
).
2.
M.
Prezioso
 et al, “
Training and operation of an integrated neuromorphic network based on metal-oxide memristors
,”
Nature
521
,
61
64
(
2015
).
3.
Z.
Wang
 et al, “
Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing
,”
Nat. Mater.
16
,
101
108
(
2017
).
4.
P.
Yao
 et al, “
Face classification using electronic synapses
,”
Nat. Commun.
8
,
15199
(
2017
).
5.
Q.
Xia
and
J. J.
Yang
, “
Memristive crossbar arrays for brain-inspired computing
,”
Nat. Mater.
18
,
309
323
(
2019
).
6.
Y.
Van De Burgt
 et al, “
A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing
,”
Nat. Mater.
16
,
414
418
(
2017
).
7.
S. H.
Jo
and
W.
Lu
, “
CMOS compatible nanoscale nonvolatile resistance switching memory
,”
Nano Lett.
8
,
392
397
(
2008
).
8.
L.
Chua
, “
Resistance switching memories are memristors
,”
Appl. Phys. A
102
,
765
783
(
2011
).
9.
M. A.
Zidan
,
J. P.
Strachan
, and
W. D.
Lu
, “
The future of electronics based on memristive systems
,”
Nat. Electron.
1
,
22
29
(
2018
).
10.
T.
Zhang
 et al, “
Memristive devices and networks for brain-inspired computing
,”
Phys. Status Solidi RRL
13
,
1900029
(
2019
).
11.
K. L.
Lin
 et al, “
Electrode dependence of filament formation in HfO2 resistive-switching memory
,”
J. Appl. Phys.
109
,
084104
(
2011
).
12.
S. W.
Ryu
 et al, “
Effects of ZrO2 doping on HfO2 resistive switching memory characteristics
,”
Appl. Phys. Lett.
105
,
072102
(
2014
).
13.
J. J.
Yang
 et al, “
Memristor−CMOS hybrid integrated circuits for reconfigurable logic
,”
Nano Lett.
9
,
2
7
(
2009
).
14.
B. J.
Choi
 et al, “
Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition
,”
J. Appl. Phys.
98
,
033715
(
2005
).
15.
X. B.
Yan
 et al, “
Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing
,”
Adv. Funct. Mater.
28
,
1870002
(
2018
).
16.
W. T.
Wu
,
J. J.
Wu
, and
J. S.
Chen
, “
Resistive switching behavior and multiple transmittance states in solution-processed tungsten oxide
,”
ACS Appl. Mater. Interfaces
3
,
2616
2621
(
2011
).
17.
K.
Seo
 et al, “
Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device
,”
Nanotechnology
22
,
254023
(
2011
).
18.
G.
Wang
 et al, “
Nanoporous silicon oxide memory
,”
Nano Lett.
14
,
4694
4699
(
2014
).
19.
X.
Yan
 et al, “
Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors
,”
Adv. Mater.
31
,
1805284
(
2019
).
20.
B.
Govoreanu
 et al, “
10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation
,” in
Technical Digest-International Electron Devices Meeting, IEDM
(
2011
), pp.
31.6.1
31.6.4
.
21.
B. J.
Choi
 et al, “
High-speed and low-energy nitride memristors
,”
Adv. Funct. Mater.
26
,
5290
5296
(
2016
).
22.
A. C.
Torrezan
,
J. P.
Strachan
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
, “
Sub-nanosecond switching of a tantalum oxide memristor
,”
Nanotechnology
22
,
485203
(
2011
).
23.
J.
Zhou
 et al, “
Very low-programming-current RRAM with self-rectifying characteristics
,”
IEEE Electron Device Lett.
37
,
404
407
(
2016
).
24.
K. H.
Kim
,
S.
Hyun Jo
,
S.
Gaba
, and
W.
Lu
, “
Nanoscale resistive memory with intrinsic diode characteristics and long endurance
,”
Appl. Phys. Lett.
96
,
053106
(
2010
).
25.
X. L.
Shao
 et al, “
Electronic resistance switching in the Al/TiOx/Al structure for forming-free and area-scalable memory
,”
Nanoscale
7
,
11063
11074
(
2015
).
26.
A.
Herpers
 et al, “
Spectroscopic proof of the correlation between redox-state and charge-carrier transport at the interface of resistively switching Ti/PCMO devices
,”
Adv. Mater.
26
,
2730
2735
(
2014
).
27.
Y. T.
Li
 et al, “
An overview of resistive random access memory devices
,”
Chin. Sci. Bull.
56
,
3072
3078
(
2011
).
28.
K.
Moon
 et al, “
RRAM-based synapse devices for neuromorphic systems
,”
Faraday Discuss.
213
,
421
451
(
2019
).
29.
X. L.
Hong
 et al, “
Oxide-based RRAM materials for neuromorphic computing
,”
J. Mater. Sci.
53
,
8720
8746
(
2018
).
30.
D.
Ielmini
, “
Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks
,”
Microelectron. Eng.
190
,
44
53
(
2018
).
31.
D. S.
Jeong
 et al, “
Emerging memories: Resistive switching mechanisms and current status
,”
Rep. Prog. Phys.
75
,
076502
(
2012
).
32.
K. M.
Kim
,
D. S.
Jeong
, and
C. S.
Hwang
, “
Nanofilamentary resistive switching in binary oxide system; A review on the present status and outlook
,”
Nanotechnology
22
,
254002
(
2011
).
33.
W.
Rainer
and
A.
Masakazu
, “
Nanoionics-based resistive switching memories
,”
Nat. Mater.
6
,
833
840
(
2007
).
34.
S.
Slesazeck
and
T.
Mikolajick
, “
Nanoscale resistive switching memory devices: a review
,”
Nanotechnology
30
,
352003
(
2019
).
35.
R.
Waser
,
R.
Dittmann
,
C.
Staikov
, and
K.
Szot
, “
Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges
,”
Adv. Mater.
21
,
2632
2663
(
2009
).
36.
I. H.
Inoue
and
A.
Sawa
, “
Resistive switchings in transition-metal oxides
,”
Funct. Met. Oxides
11
,
443
463
(
2013
).
37.
I.
Daniele
, “
Resistive switching memories based on metal oxides: mechanisms, reliability and scaling
,”
Semicond. Sci. Technol.
31
,
063002
(
2016
).
38.
Y.
Wu
,
J.
Liang
,
S.
Yu
,
X.
Guan
, and
H. S. P.
Wong
, “
Resistive switching random access memory-Materials, device, interconnects, and scaling considerations
,” in
IEEE International Workshop Integrated Reliability
(
2012
), Vol.
16–21
.
39.
S.
Raoux
 et al, “
Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials
,”
J. Appl. Phys.
102
,
094305
(
2007
).
40.
W. J.
Wang
 et al, “
Fast phase transitions induced by picosecond electrical pulses on phase change memory cells
,”
Appl. Phys. Lett.
93
,
043121
(
2008
).
41.
M. A.
Caldwell
,
S.
Raoux
,
R. Y.
Wang
,
H. S.
Philip Wong
, and
D. J.
Milliron
, “
Synthesis and size-dependent crystallization of colloidal germanium telluride nanoparticles
,”
J. Mater. Chem.
20
,
1285
1291
(
2010
).
42.
X.
Xue
,
S.
Wang
,
W.
Guo
,
Y.
Zhang
, and
Z. L.
Wang
, “
Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell
,”
Nano Lett.
12
,
5048
5054
(
2012
).
43.
D. J.
Wouters
,
R.
Waser
, and
M.
Wuttig
, “
Phase-change and redox-based resistive switching memories
,”
Proc. IEEE
103
,
1274
1288
(
2015
).
44.
O.
Bichler
 et al, “
Visual pattern extraction using energy-efficient ‘2-PCM synapse’ neuromorphic architecture
,”
IEEE Trans. Electron Devices
59
,
2206
2214
(
2012
).
45.
S.
Raoux
,
F.
Xiong
,
M.
Wuttig
, and
E.
Pop
, “
Phase change materials and phase change memory
,”
MRS Bull.
39
,
703
710
(
2014
).
46.
T. E.
Zhou
 et al, “
Choroidal involution is associated with a progressive degeneration of the outer retinal function in a model of retinopathy of prematurity: early role for IL-1β
,”
Am. J. Pathol.
186
,
3100
3116
(
2016
).
47.
S. W.
Fong
,
C. M.
Neumann
, and
H. P.
Wong
, “
Phase-change memory—towards a storage-class memory
,”
IEEE Trans. Electron Devices
64
,
4374
4385
(
2017
).
48.
R.
Jeyasingh
,
E. C.
Ahn
,
S.
Burc Eryilmaz
,
S.
Fong
, and
H. S. P.
Wong
, “
Phase change memory
,” in
Emerging Nanoelectronic Devices
, edited by
A.
Chen
,
J.
Hutchby
,
V.
Zhirnov
, and
G. G.
Bourianoff
(
John Wiley and Sons Ltd.
,
2015
), pp.
78
109
.
49.
G. W.
Burr
 et al, “
Neuromorphic computing using non-volatile memory
,”
Adv. Phys. X
2
,
89
124
(
2017
).
50.
G. W.
Burr
 et al, “
Phase change memory technology
,”
J. Vac. Sci. Technol., B
28
,
223
(
2010
).
51.
M.
Suri
 et al, “
Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction
,” in
Technical Digest-International Electron Devices Meeting, IEDM
(
2011
).
52.
Y.
Arimoto
and
H.
Ishiwara
, “
Current status of ferroelectric random-access memory
,”
MRS Bull.
29
,
823
828
(
2004
).
53.
J.
Daughton
, “
Magnetoresistive random access memories
,”
Magnetoelectronics
204
,
205
229
(
2004
).
54.
R.
Guo
 et al, “
Non-volatile memory based on the ferroelectric photovoltaic effect
,”
Nat. Commun.
4
,
1990
(
2013
).
55.
E. Y.
Tsymbal
,
A.
Gruverman
,
V.
Garcia
,
M.
Bibes
, and
A.
Barthélémy
, “
Ferroelectric and multiferroic tunnel junctions
,”
MRS Bull.
37
,
138
143
(
2012
).
56.
L.
Esaki
,
R.
Laibowitz
, and
P.
Stiles
, “
Polar switch
,”
IBM Tech. Discl. Bull.
13
,
114
(
1971
).
57.
N.
Sai
,
A. M.
Kolpak
, and
A. M.
Rappe
, “
Ferroelectricity in ultra-thin perovskite films
,”
Phys. Rev. B
74
,
059901
(
2006
).
58.
R.
Ahluwalia
and
D. J.
Srolovitz
, “
Size effects in ferroelectric thin films: the role of 180° domains and polarization relaxation
,”
Phys. Rev. B
76
,
174121
(
2006
).
59.
E. Y.
Tsymbal
, “
Applied physics: tunneling across a ferroelectric
,”
Science
313
,
181
183
(
2006
).
60.
E. Y.
Tsymbal
and
A.
Gruverman
, “
Ferroelectric tunnel junctions: Beyond the barrier
,”
Nat. Mater.
12
,
602
604
(
2013
).
61.
V.
Garcia
 et al, “
Giant tunnel electroresistance for non-destructive readout of ferroelectric states
,”
Nature
460
,
81
84
(
2009
).
62.
C.-B.
Eom
 et al, “
Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale
,”
Nano Lett.
9
,
3539
3543
(
2009
).
63.
V.
Garcia
and
M.
Bibes
, “
Ferroelectric tunnel junctions for information storage and processing
,”
Nat. Commun.
5
,
4289
(
2014
).
64.
A.
Chanthbouala
 et al, “
Solid-state memories based on ferroelectric tunnel junctions
,”
Nat. Nanotechnol.
7
,
101
104
(
2012
).
65.
J. F.
Scott
, “
Applications of modern ferroelectrics
,”
Science
315
,
954
959
(
2007
).
66.
A.
Quindeau
,
D.
Hesse
, and
M.
Alexe
, “
Programmable ferroelectric tunnel memristor
,”
Front. Phys.
2
,
1
5
(
2014
).
67.
D. J.
Kim
 et al, “
Ferroelectric tunnel memristor
,”
Nano Lett.
12
,
5697
5702
(
2012
).
68.
A.
Chanthbouala
 et al, “
A ferroelectric memristor
,”
Nat. Mater.
11
,
860
864
(
2012
).
69.
W. J.
Hu
,
Z.
Wang
,
W.
Yu
, and
T.
Wu
, “
Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions
,”
Nat. Commun.
7
,
10808
(
2016
).
70.
R.
Guo
 et al, “
Control of synaptic plasticity learning of ferroelectric tunnel memristor by nanoscale interface engineering
,”
ACS Appl. Mater. Interfaces
10
,
12862
12869
(
2018
).
71.
S.
Xavier
 et al, “
High-performance ferroelectric memory based on fully patterned tunnel junctions
,”
Appl. Phys. Lett.
104
,
052909
(
2014
).
72.
H.
Yamada
 et al, “
Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions
,”
ACS Nano
7
(
6
),
5385
5390
(
2013
).
73.
N.
Locatelli
,
V.
Cros
, and
J.
Grollier
, “
Spin-torque building blocks
,”
Nat. Mater.
13
,
11
(
2014
).
74.
L.
Wang
 et al, “
Overcoming the fundamental barrier thickness limits of ferroelectric tunnel junctions through BaTiO3/SrTiO3 composite barriers
,”
Nano Lett.
16
,
3911
3918
(
2016
).
75.
P.
Maksymovych
 et al, “
Polarization control of electron tunneling into ferroelectric surfaces
,”
Science
324
,
1421
1425
(
2009
).
76.
R.
Guo
 et al, “
Effect of extrinsically introduced passive interface layer on the performance of ferroelectric tunnel junctions
,”
ACS Appl. Mater. Interfaces
9
,
5050
5055
(
2017
).
77.
J. P.
Velev
,
C. G.
Duan
,
K. D.
Belashchenko
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
, “
Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions
,”
Phys. Rev. Lett.
98
,
137201
(
2007
).
78.
M. Y.
Zhuravlev
,
R. F.
Sabirianov
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
, “
Erratum: Giant electroresistance in ferroelectric tunnel junctions [Physical Review Letters (2005) 94 (246802)]
,”
Phys. Rev. Lett.
102
,
169901
(
2009
).
79.
Z.
Wen
,
C.
Li
,
D.
Wu
,
A.
Li
, and
N.
Ming
, “
Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions
,”
Nat. Mater.
12
,
617
621
(
2013
).
80.
D.
Pantel
 et al, “
Tunnel electroresistance in junctions with ultrathin ferroelectric Pb(Zr 0.2Ti 0.8)O3 barriers
,”
Appl. Phys. Lett.
100
,
232902
(
2012
).
81.
H. Y.
Yoong
 et al, “
Tunneling electroresistance effect in ultrathin BiFeO3-based ferroelectric tunneling junctions
,”
Appl. Phys. Lett.
109
,
242901
(
2016
).
82.
C.
Li
 et al, “
Ultrathin BaTiO3-based ferroelectric tunnel junctions through Interface engineering
,”
Nano Lett.
15
,
2568
2573
(
2015
).
83.
R.
Guo
 et al, “
Functional ferroelectric tunnel junctions on silicon
,”
Sci. Rep.
5
,
12576
(
2015
).
84.
W.
 et al, “
Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration
,”
Adv. Mater.
29
,
1606165
(
2017
).
85.
H.
Wang
 et al, “
Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit
,”
Nat. Commun.
9
,
3319
(
2018
).
86.
H. Y.
Yoong
 et al, “
Epitaxial ferroelectric Hf0.5Zr0.5O2 thin films and their implementations in memristors for brain-inspired computing
,”
Adv. Funct. Mater.
28
,
1806037
(
2018
).
87.
Z.
Li
 et al, “
An epitaxial ferroelectric tunnel junction on silicon
,”
Adv. Mater.
26
,
7185
7189
(
2014
).
88.
S.
Boyn
 et al, “
Learning through ferroelectric domain dynamics in solid-state synapses
,”
Nat. Commun.
8
,
14736
(
2017
).
89.
A.
Thomas
 et al, “
Tunnel junction based memristors as artificial synapses
,”
Front. Neurosci.
9
,
241
(
2015
).
90.
L.
Shen
 et al, “
Epitaxial lift-off of centimeter-scaled spinel ferrite oxide thin films for flexible electronics
,”
Adv. Mater.
29
,
1702411
(
2017
).
91.
Y.
Kim
 et al, “
A bioinspired flexible organic artificial afferent nerve
,”
Science
360
,
998
1003
(
2018
).
92.
H. E.
Lee
 et al, “
Novel electronics for flexible and neuromorphic computing
,”
Adv. Funct. Mater.
28
,
1801690
(
2018
).
93.
S.
Kim
 et al, “
Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off
,”
Adv. Mater.
26
,
7480
7487
(
2014
).
94.
R. H.
Kim
 et al, “
Non-volatile organic memory with sub-millimetre bending radius
,”
Nat. Commun.
5
,
3583
(
2014
).
95.
Y.
Fu
 et al, “
Flexible neuromorphic architectures based on self-supported multiterminal organic transistors
,”
ACS Appl. Mater. Interfaces
10
,
26443
26450
(
2018
).
96.
S. R.
Bakaul
 et al, “
Single crystal functional oxides on silicon
,”
Nat. Commun.
7
,
10547
(
2016
).
97.
D.
Lu
 et al, “
Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers
,”
Nat. Mater.
15
,
1255
1260
(
2016
).
98.
J.
Jiang
 et al, “
Flexible ferroelectric element based on van der Waals heteroepitaxy
,”
Sci. Adv.
3
,
e1700121
(
2017
).
99.
M. Y.
Zhuravlev
,
R. F.
Sabirianov
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
, “
Giant electroresistance in ferroelectric tunnel junctions
,”
Phys. Rev. Lett.
94
,
246802
(
2005
).
100.
H.
Kohlstedt
,
N. A.
Pertsev
,
J.
Rodríguez Contreras
, and
R.
Waser
, “
Theoretical current-voltage characteristics of ferroelectric tunnel junctions
,”
Phys. Rev. B
72
,
125341
(
2005
).
101.
E.
Andre
,
É.
De
, and
M. E.
André
, “
Étude de l ' influence de modifications structurales sur la neuroglobine humaine
,” HAL Id: tel-01721321 L ' U NIVERSITE P ARIS -S ACLAY PREPAREE A L ' U NIVERSITE P ARIS-S UD. (
2018
).
102.
X.
Ou
 et al, “
Forming-free resistive switching in multiferroic BiFeO3 thin films with enhanced nanoscale shunts
,”
ACS Appl. Mater. Interfaces
5
,
12764
12771
(
2013
).
103.
J. D.
Burton
and
E. Y.
Tsymbal
, “
Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface
,”
Phys. Rev. Lett.
106
,
157203
(
2011
).
104.
Y. W.
Yin
 et al, “
Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface
,”
Nat. Mater.
12
,
397
402
(
2013
).
105.
R.
Soni
 et al, “
Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions
,”
Nat. Commun.
5
,
5414
(
2014
).
106.
H.
Yamada
 et al, “
Strong surface-termination effect on electroresistance in ferroelectric tunnel junctions
,”
Adv. Funct. Mater.
25
,
2708
2714
(
2015
).
107.
M. Y.
Zhuravlev
,
Y.
Wang
,
S.
Maekawa
, and
E. Y.
Tsymbal
, “
Tunneling electroresistance in ferroelectric tunnel junctions with a composite barrier
,”
Appl. Phys. Lett.
95
,
052902
(
2009
).
108.
S.
Boyn
 et al, “
Engineering ferroelectric tunnel junctions through potential profile shaping
,”
APL Mater.
3
,
061101
(
2015
).
109.
D.
Pantel
and
M.
Alexe
, “
Electroresistance effects in ferroelectric tunnel barriers
,”
Phys. Rev. B
82
,
134105
(
2010
).
110.
J.
Velev
,
C.
Duan
,
J.
Burton
, and
A.
Smogunov
, “
Magnetic tunnel junctions with ferroelectric barriers: Prediction of four resistance states from first principles
,”
Nano Lett
9
,
427
432
(
2009
).
111.
M. Y.
Zhuravlev
,
S.
Maekawa
, and
E. Y.
Tsymbal
, “
Effect of spin-dependent screening on tunneling electroresistance and tunneling magnetoresistance in multiferroic tunnel junctions
,”
Phys. Rev. B
81
,
104419
(
2010
).
112.
M.
Gajek
 et al, “
Tunnel junctions with multiferroic barriers
,”
Nat. Mater.
6
,
296
302
(
2007
).
113.
V.
Garcia
 et al, “
Ferroelectric control of spin polarization
,”
Science
327
,
1106
1110
(
2010
).
114.
H. M.
Yau
 et al, “
Low-field switching four-state nonvolatile memory based on multiferroic tunnel junctions
,”
Sci. Rep.
5
,
12826
(
2015
).
115.
J.
Ruan
 et al, “
Four-state non-volatile memory in a multiferroic spin filter tunnel junction
,”
Appl. Phys. Lett.
109
,
252903
(
2016
).
116.
Y. W.
Yin
 et al, “
Coexistence of tunneling magnetoresistance and electroresistance at room temperature in La0.7Sr0.3MnO3/(Ba, Sr)TiO3/La0.7Sr0.3MnO3 multiferroic tunnel junctions
,”
J. Appl. Phys.
109
,
07D915
(
2011
).
117.
Y. K.
Liu
 et al, “
Coexistence of four resistance states and exchange bias in La0.6Sr0.4MnO3/BiFeO3/La0.6Sr0.4MnO3 multiferroic tunnel junction
,”
Appl. Phys. Lett.
104
,
043507
(
2014
).
118.
D.
Pantel
,
S.
Goetze
,
D.
Hesse
, and
M.
Alexe
, “
Reversible electrical switching of spin polarization in multiferroic tunnel junctions
,”
Nat. Mater.
11
,
289
293
(
2012
).
119.
Y. W.
Yin
 et al, “
Octonary resistance states in La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 multiferroic tunnel junctions
,”
Adv. Electron. Mater.
1
,
1500183
(
2015
).
120.
A.
Quindeau
 et al, “
Four-state ferroelectric spin-valve
,”
Sci. Rep.
5
,
9749
(
2015
).
121.
M.
Hambe
 et al, “
Crossing an interface: Ferroelectric control of tunnel currents in magnetic complex oxide heterostructures
,”
Adv. Funct. Mater.
20
,
2436
2441
(
2010
).
122.
Y. W.
Yin
 et al, “
Multiferroic tunnel junctions
,”
Front. Phys.
7
,
380
385
(
2012
).
123.
N. M.
Caffrey
,
T.
Archer
,
I.
Rungger
, and
S.
Sanvito
, “
Coexistance of giant tunneling electroresistance and magnetoresistance in an all-oxide composite magnetic tunnel junction
,”
Phys. Rev. Lett.
109
,
226803
(
2012
).
124.
Y.
Yin
and
Q.
Li
, “
A review on all-perovskite multiferroic tunnel junctions
,”
J. Mater.
3
,
245
254
(
2017
).
125.
J. P.
Velev
,
J. D.
Burton
,
M. Y.
Zhuravlev
, and
E. Y.
Tsymbal
, “
Predictive modelling of ferroelectric tunnel junctions
,”
npj Comput. Mater.
2
,
16009
(
2016
).
126.
W.
Huang
,
S.
Yang
, and
X.
Li
, “
Multiferroic heterostructures and tunneling junctions
,”
J. Mater.
1
,
263
284
(
2015
).
127.
Z.
Hu
 et al, “
Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure
,”
Appl. Phys. Lett.
102
,
102901
(
2013
).
128.
P.
Hou
,
J.
Wang
,
X.
Zhong
, and
Y.
Wu
, “
A ferroelectric memristor based on the migration of oxygen vacancies
,”
RSC Adv.
6
,
54113
54118
(
2016
).
129.
L.
Chen
 et al, “
Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications
,”
Nanoscale
10
,
15826
15833
(
2018
).
130.
W.
Huang
 et al, “
A high-speed and low-power multistate memory based on multiferroic tunnel junctions
,”
Adv. Electron. Mater.
4
,
1700560
(
2018
).
131.
S.
Majumdar
,
H.
Tan
,
Q. H.
Qin
, and
S.
van Dijken
, “
Energy-efficient organic ferroelectric tunnel junction memristors for neuromorphic computing
,”
Adv. Electron. Mater.
5
,
1800795
(
2019
).
132.
Z.
Wang
 et al, “
Compact modelling of ferroelectric tunnel memristor and its use for neuromorphic simulation
,”
Appl. Phys. Lett.
104
,
053505
(
2014
).
133.
Z.
Wen
,
D.
Wu
, and
A.
Li
, “
Memristive behaviors in Pt/BaTiO3/Nb:SrTiO3 ferroelectric tunnel junctions
,”
Appl. Phys. Lett.
105
,
052910
(
2014
).
134.
Z.
Wen
,
C.
Li
,
D.
Wu
,
A.
Li
, and
N.
Ming
, “
Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions
,”
Nat. Mater.
12
,
617
621
(
2013
).
135.
W. J.
Hu
 et al, “
Colossal X-ray-induced persistent photoconductivity in current-perpendicular-to-plane ferroelectric/semiconductor junctions
,”
Adv. Funct. Mater.
28
,
1704337
(
2018
).
136.
Z.
Fan
 et al, “
Resistive switching induced by charge trapping/detrapping: a unified mechanism for colossal electroresistance in certain Nb:SrTiO3-based heterojunctions
,”
J. Mater. Chem. C
5
,
7317
7327
(
2017
).
137.
W.-N.
Lin
 et al, “
Electrostatic modulation of LaAlO3/SrTiO3 interface transport in an electric double-layer transistor
,”
Adv. Mater. Interfaces
1
,
1300001
(
2014
).
138.
B.
Linares-Barranco
and
T.
Serrano-Gotarredona
, “
Memristance can explain spike-time-dependent-plasticity in neural synapses
,”
Nat. Prec.
(published online
2009
).
139.
Z.
Wang
 et al, “
Ferroelectric tunnel memristor-based neuromorphic network with 1T1R crossbar architecture
,”
International Joint Conference Neural Networks, IJCNN
(
2014
), pp.
29
34
.
140.
M.
Julliere
,
Phys. Lett. A
54
,
225
226
(
1975
).
141.
T.
Miyazaki
and
N.
Tezuka
, “
Giant magnetic tunneling effect in Fe/Al2O3/Fe junction
,”
J. Magn. Magn. Mater.
139
,
L231
L234
(
1995
).
142.
W. H.
Butler
,
X.-G.
Zhang
,
T. C.
Schulthess
, and
J. M.
MacLaren
, “
Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches
,”
Phys. Rev. B
63
,
054416
(
2001
).
143.
J.
Mathon
and
A.
Umerski
, “
Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction
,”
Phys. Rev. B
63
,
220403(R)
(
2001
).
144.
M.
Bowen
 et al, “
Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001)
,”
Appl. Phys. Lett.
79
,
1655
1657
(
2001
).
145.
S. S. P.
Parkin
 et al, “
Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers
,”
Nat. Mater.
3
,
862
867
(
2004
).
146.
S.
Ikeda
 et al, “
Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature
,”
Appl. Phys. Lett.
93
,
082508
(
2008
).
147.
E. Y.
Tsymbal
, “
Spin-dependent tunneling: Role of evanescent and resonant states
,” in
Handbook of Magnetism and Advanced Magnetic Materials
(
Wiley
,
2007
).
148.
E. Y.
Tsymbal
,
O. N.
Mryasov
, and
P. R.
LeClair
, “
Spin-dependent tunnelling in magnetic tunnel junctions
,”
J. Phys.: Condens. Matter
15
,
R109
R142
(
2003
).
149.
I. M.
Miron
 et al, “
Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
,”
Nature
476
,
189
(
2011
).
150.
J. C.
Slonczewski
, “
Current-driven excitation of magnetic multilayers
,”
J. Magn. Magn. Mater.
159
,
L1
L7
(
1996
).
151.
A.
Brataas
,
A. D.
Kent
, and
H.
Ohno
, “
Current-induced torques in magnetic materials
,”
Nat. Mater.
11
,
372
(
2012
).
152.
A.
Manchon
 et al, “
Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems
,”
Rev. Mod. Phys.
91
,
035004
(
2019
).
153.
A.
Chanthbouala
 et al, “
Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities
,”
Nat. Phys.
7
,
626
(
2011
).
154.
J.
Inoue
and
S.
Maekawa
, “
Theory of tunneling magnetoresistance in granular magnetic films
,”
Phys. Rev. B
53
,
R11927
(
1996
).
155.
S.
Yuasa
, “
Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial Co/MgO/Co magnetic tunnel junctions with bcc Co(001) electrodes
,”
Appl. Phys. Lett.
89
,
042505
(
2006
).
156.
J. S.
Moodera
,
L. R.
Kinder
,
T. M.
Wong
, and
R.
Meservey
, “
Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions
,”
Phys. Rev. Lett.
74
,
3273
3276
(
1995
).
157.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
, “
Spin Hall effects
,”
Rev. Mod. Phys.
87
,
1213
1260
(
2015
).
158.
L.
Liu
 et al, “
Spin-torque switching with the giant spin Hall effect of tantalum
,”
Science
336
,
555
558
(
2012
).
159.
N.
Nagaosa
,
J.
Sinova
,
S.
Onoda
,
A. H.
MacDonald
, and
N. P.
Ong
, “
Anomalous Hall effect
,”
Rev. Mod. Phys.
82
,
1539
1592
(
2010
).
160.
E.
Lesne
 et al, “
Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces
,”
Nat. Mater.
15
,
1261
(
2016
).
161.
A. R.
Mellnik
 et al, “
Spin-transfer torque generated by a topological insulator
,”
Nature
511
,
449
(
2014
).
162.
J.
Železný
,
P.
Wadley
,
K.
Olejník
,
A.
Hoffmann
, and
H.
Ohno
, “
Spin transport and spin torque in antiferromagnetic devices
,”
Nat. Phys.
14
,
220
228
(
2018
).
163.
P.
Wadley
 et al, “
Electrical switching of an antiferromagnet
,”
Science
351
,
587
590
(
2016
).
164.
S. Y.
Bodnar
 et al, “
Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance
,”
Nat. Commun.
9
,
348
(
2018
).
165.
X. Z.
Chen
 et al, “
Antidamping-torque-induced switching in biaxial antiferromagnetic insulators
,”
Phys. Rev. Lett.
120
,
207204
(
2018
).
166.
S.
Lequeux
 et al, “
A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy
,”
Sci. Rep.
6
,
31510
(
2016
).
167.
J.
Cai
,
B.
Fang
,
C.
Wang
, and
Z.
Zeng
, “
Multilevel storage device based on domain-wall motion in a magnetic tunnel junction
,”
Appl. Phys. Lett.
111
,
182410
(
2017
).
168.
S.
Fukami
,
T.
Anekawa
,
C.
Zhang
, and
H.
Ohno
, “
A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration
,”
Nat. Nanotechnol.
11
,
621
(
2016
).
169.
S.
Fukami
,
C.
Zhang
,
S.
DuttaGupta
,
A.
Kurenkov
, and
H.
Ohno
, “
Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system
,”
Nat. Mater.
15
,
535
(
2016
).
170.
A.
Kurenkov
,
C.
Zhang
,
S.
DuttaGupta
,
S.
Fukami
, and
H.
Ohno
, “
Device-size dependence of field-free spin-orbit torque induced magnetization switching in antiferromagnet/ferromagnet structures
,”
Appl. Phys. Lett.
110
,
092410
(
2017
).
171.
S.
Zhang
 et al, “
A spin–orbit-torque memristive device
,”
Adv. Electron. Mater.
5
,
1800782
(
2019
).
172.
Y.
Cao
,
A. W.
Rushforth
,
Y.
Sheng
,
H.
Zheng
, and
K.
Wang
, “
Tuning a binary ferromagnet into a multistate synapse with spin–orbit-torque-induced plasticity
,”
Adv. Funct. Mater.
29
,
1808104
(
2019
).
173.
M. J.
Grzybowski
 et al, “
Imaging current-induced switching of antiferromagnetic domains in CuMnAs
,”
Phys. Rev. Lett.
118
,
057701
(
2017
).
174.
K.
Olejník
 et al, “
Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility
,”
Nat. Commun.
8
,
15434
(
2017
).
175.
T.
Moriyama
,
W.
Zhou
,
T.
Seki
,
K.
Takanashi
, and
T.
Ono
, “
Spin-orbit-torque memory operation of synthetic antiferromagnets
,”
Phys. Rev. Lett.
121
,
167202
(
2018
).
176.
A.
Kurenkov
 et al, “
Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin–orbit torque switching
,”
Adv. Mater.
31
,
1900636
(
2019
).
177.
A.
Sengupta
and
K.
Roy
, “
Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing
,”
Appl. Phys. Rev.
4
,
041105
(
2017
).
178.
P.
Krzysteczko
,
J.
Münchenberger
,
M.
Schäfers
,
G.
Reiss
, and
A.
Thomas
, “
The memristive magnetic tunnel junction as a nanoscopic synapse-neuron system
,”
Adv. Mater.
24
,
762
766
(
2012
).
179.
K.
Roy
,
A.
Sengupta
, and
Y.
Shim
, “
Perspective: Stochastic magnetic devices for cognitive computing
,”
J. Appl. Phys.
123
,
210901
(
2018
).
180.
M.
Romera
 et al, “
Vowel recognition with four coupled spin-torque nano-oscillators
,”
Nature
563
,
230
234
(
2018
).
181.
J.
Torrejon
 et al, “
Neuromorphic computing with nanoscale spintronic oscillators
,”
Nature
547
,
428
(
2017
).
182.
A.
Mizrahi
 et al, “
Neural-like computing with populations of superparamagnetic basis functions
,”
Nat. Commun.
9
,
1533
(
2018
).
183.
A.
Sengupta
,
P.
Panda
,
P.
Wijesinghe
,
Y.
Kim
, and
K.
Roy
, “
Magnetic tunnel junction mimics stochastic cortical spiking neurons
,”
Sci. Rep.
6
,
30039
(
2016
).
184.
A.
Sengupta
and
K.
Roy
, “
A vision for all-spin neural networks: A device to system perspective
,”
IEEE Trans. Circuits Syst.
63
,
2267
2277
(
2016
).
185.
T.
Devolder
 et al, “
Single-shot time-resolved measurements of nanosecond-scale spin-transfer induced switching: stochastic versus deterministic aspects
,”
Phys. Rev. Lett.
100
,
057206
(
2008
).
186.
C. M.
Liyanagedera
,
A.
Sengupta
,
A.
Jaiswal
, and
K.
Roy
, “
Stochastic spiking neural networks enabled by magnetic tunnel junctions: from nontelegraphic to telegraphic switching regimes
,”
Phys. Rev. Appl.
8
,
064017
(
2017
).
187.
D.
Vodenicarevic
 et al, “
Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing
,”
Phys. Rev. Appl.
8
,
054045
(
2017
).
188.
S. I.
Kiselev
 et al, “
Microwave oscillations of a nanomagnet driven by a spin-polarized current
,”
Nature
425
,
380
383
(
2003
).
189.
A. F.
Vincent
 et al, “
Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems
,”
IEEE Trans. Biomed. Circuits Syst.
9
,
166
174
(
2015
).
190.
F. C.
Hoppensteadt
and
E. M.
Izhikevich
, “
Oscillatory neurocomputers with dynamic connectivity
,”
Phys. Rev. Lett.
82
,
2983
2986
(
1999
).
191.
J.
Guyonnet
,
I.
Gaponenko
,
S.
Gariglio
, and
P.
Paruch
, “
Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films
,”
Adv. Mater.
23
,
5377
5382
(
2011
).
192.
J.
Seidel
 et al, “
Conduction at domain walls in oxide multiferroics
,”
Nat. Mater.
8
,
229
234
(
2009
).
193.
P.
Maksymovych
 et al, “
Dynamic conductivity of ferroelectric domain walls in BiFeO3
,”
Nano Lett.
11
,
1906
1912
(
2011
).
194.
T.
Sluka
,
A. K.
Tagantsev
,
P.
Bednyakov
, and
N.
Setter
, “
Free-electron gas at charged domain walls in insulating BaTiO3
,”
Nat. Commun.
4
,
1806
1808
(
2013
).
195.
S. Y.
Yang
 et al, “
Above-bandgap voltages from ferroelectric photovoltaic devices
,”
Nat. Nanotechnol.
5
,
143
147
(
2010
).
196.
R.
Guo
,
L.
You
,
L.
Chen
,
D.
Wu
, and
J.
Wang
, “
Photovoltaic property of BiFeO3 thin films with 109° domains
,”
Appl. Phys. Lett.
99
,
122902
(
2011
).
197.
S.
Boyn
, Ferroelectric tunnel junctions:memristors for neuromorphic computing L ' U NIVERSITE P ARIS -S ACLAY PREPAREE A. (
2016
).
198.
Z.
Fan
,
J.
Xiao
,
J.
Wang
,
L.
Zhang
,
J.
Deng
,
Z.
Liu
,
Z.
Dong
,
J.
Wang
, and
J. S.
Chen
, “
Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films
,”
Appl. Phys. Lett.
108
,
232905
(
2016
).
199.
Z.
Fan
,
J.
Deng
,
J.
Wang
,
Z.
Liu
,
P.
Yang
,
J.
Xiao
,
X.
Yan
,
Z.
Dong
,
J.
Wang
, and
J. S.
Chen
, “
Ferroelectricity emerging in strained (111)-textured ZrO2 thin films
,”
Appl. Phys. Lett.
108
,
012906
(
2016
).
200.
Y.
Wei
,
P.
Nukala
,
M.
Salverda
,
S.
Matzen
,
H. J.
Zhao
 et al, “
A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films
,”
Nat. Mater.
17
,
1095
1100
(
2018
).
201.
Y.
Wei
,
S.
Matzen
,
G.
Agnus
,
M.
Salverda
,
P.
Nukala
,
T.
Maroutian
 et al., “
Magnetic tunnel junctions based on ferroelectric Hf0.5Zr0.5O2 tunnel barriers
,”
Phys. Rev. Appl.
12
,
031001
(
2019
).
202.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
, and
C. S.
Hwang
, “
The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity
,”
Appl. Phys. Lett.
104
,
072901
(
2014
).
203.
M.
Hyuk Park
,
H. J.
Kim
,
Y. J.
Kim
,
W.
Lee
,
T.
Moon
, and
C. S.
Hwang
, “
Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature
,”
Appl. Phys. Lett.
102
,
242905
(
2013
).
204.
A.
Chernikova
,
M.
Kozodaev
,
A.
Markeev
,
D.
Negrov
,
M.
Spiridonov
 et al, “
Ultrathin Hf0.5Zr0.5O2 ferroelectric films on Si
,”
ACS Appl. Mater. Interfaces
8
,
7232
7237
(
2016
).
205.
D.
Pinna
 et al, “
Skyrmion gas manipulation for probabilistic computing
,”
Phys. Rev. Appl.
9
,
64018
(
2018
).
206.
J.
Cai
 et al, “
Voltage-controlled spintronic stochastic neuron based on a magnetic tunnel junction
,”
Phys. Rev. Appl.
11
,
34015
(
2019
).
207.
D.
Son
 et al, “
Multifunctional wearable devices for diagnosis and therapy of movement disorders
,”
Nat. Nanotechnol.
9
,
397
404
(
2014
).
208.
Y.
Liu
,
K.
He
,
G.
Chen
,
W. R.
Leow
, and
X.
Chen
, “
Nature-inspired structural materials for flexible electronic devices
,”
Chem. Rev.
117
,
12893
12941
(
2017
).
209.
C.
Wu
,
T. W.
Kim
,
H. Y.
Choi
,
D. B.
Strukov
, and
J. J.
Yang
, “
Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability
,”
Nat. Commun.
8
,
752
(
2017
).
You do not currently have access to this content.