Two-dimensional (2D) materials have brought fresh prospects for spintronics, as evidenced by the rapid scientific progress made in this frontier over the past decade. In particular, for charge perpendicular to plane vertical magnetic tunnel junctions, the 2D crystals present exclusive features such as atomic-level thickness control, near-perfect crystallography without dangling bonds, and novel electronic structure-guided interfaces with tunable hybridization and proximity effects, which lead to an entirely new group of spinterfaces. Such crystals also present new ways of integration of atomically thin barriers in magnetic tunnel junctions and an unprecedented means for developing composite barriers with atomic precision. All these new aspects have sparked interest for theoretical and experimental efforts, revealing intriguing spin-dependent transport and spin inversion effects. Here, we discuss some of the distinctive effects observed in ferromagnetic junctions with prominent 2D crystals such as graphene, hexagonal boron nitride, and transition metal dichalcogenides and how spinterface phenomena at such junctions affect the observed magnetoresistance in devices. Finally, we discuss how the recently emerged 2D ferromagnets bring upon an entirely novel category of van der Waals interfaces for efficient spin transmission and dynamic control through exotic heterostructures.

1.
S.
Sanvito
, “
Molecular spintronics: The rise of spinterface science
,”
Nat. Phys.
6
,
562
564
(
2010
).
2.
J. M.
De Teresa
,
A.
Barthélémy
,
A.
Fert
 et al, “
Role of metal-oxide interface in determining the spin polarization of magnetic tunnel junctions
,”
Science
286
,
507
509
(
1999
).
3.
E. Y.
Tsymbal
,
O. N.
Mryasov
, and
P. R.
LeClair
, “
Spin-dependent tunnelling in magnetic tunnel junctions
,”
J. Phys.: Condens. Matter
15
,
R109
R142
(
2003
).
4.
J. M.
De Teresa
,
A.
Barthélémy
,
A.
Fert
 et al, “
Inverse tunnel magnetoresistance in Co/SrTiO3/La0.7Sr0.3MnO3: New ideas on spin-polarized tunneling
,”
Phys. Rev. Lett.
82
,
4288
4291
(
1999
).
5.
S.
Roche
,
J.
Åkerman
,
B.
Beschoten
 et al, “
Graphene spintronics: The European flagship perspective
,”
2D Mater.
2
,
030202
(
2015
).
6.
W.
Han
,
R. K.
Kawakami
,
M.
Gmitra
 et al, “
Graphene spintronics
,”
Nat. Nanotechnol.
9
,
794
807
(
2014
).
7.
M. V.
Kamalakar
,
C.
Groenveld
,
A.
Dankert
 et al, “
Long distance spin communication in chemical vapour deposited graphene
,”
Nat. Commun.
6
,
6766
(
2015
).
8.
I. G.
Serrano
,
J.
Panda
,
F.
Denoel
 et al, “
Two-dimensional flexible high diffusive spin circuits
,”
Nano Lett.
19
,
666
673
(
2019
).
9.
A.
Avsar
,
H.
Ochoa
,
F.
Guinea
 et al, “
Colloquium: Spintronics in graphene and other two-dimensional materials
” eprint: arXiv:1909.09188.
10.
V. M.
Karpan
,
G.
Giovannetti
,
P.
Khomyakov
 et al, “
Graphite and graphene as perfect spin filters
,”
Phys. Rev. Lett.
99
,
176602
(
2007
).
11.
V. M.
Karpan
,
P. A.
Khomyakov
,
A. A.
Starikov
 et al, “
Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene
,”
Phys. Rev. B
78
,
195419
(
2008
).
12.
O.
Yazyev
and
A.
Pasquarello
, “
Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride
,”
Phys. Rev. B
80
,
035408
(
2009
).
13.
Y. S.
Dedkov
,
M.
Fonin
, and
C.
Laubschat
, “
A possible source of spin-polarized electrons: The inert graphene/Ni(111) system
,”
Appl. Phys. Lett.
92
,
052506
(
2008
).
14.
A.
Dahal
and
M.
Batzill
, “
Graphene–nickel interfaces: A review
,”
Nanoscale
6
,
2548
(
2014
).
15.
Y. S.
Dedkov
and
M.
Fonin
, “
Electronic and magnetic properties of the graphene–ferromagnet interface
,”
New J. Phys.
12
,
125004
(
2010
).
16.
T. M. G.
Mohiuddin
,
E.
Hill
,
D.
Elias
 et al, “
Graphene in multilayered CPP spin valves
,”
IEEE Trans. Magn.
44
,
2624
2627
(
2008
).
17.
E.
Cobas
,
A. L.
Friedman
,
O. M. J.
Van't Erve
 et al, “
Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions
,”
Nano Lett.
12
,
3000
3004
(
2012
).
18.
B.
Dlubak
,
M.-B.
Martin
,
R. S.
Weatherup
 et al, “
Graphene-passivated nickel as an oxidation-resistant electrode for spintronics
,”
ACS Nano
6
,
10930
10934
(
2012
).
19.
D.
Usachov
,
A.
Fedorov
,
M. M.
Otrokov
 et al, “
Observation of single-spin dirac fermions at the graphene/ferromagnet interface
,”
Nano Lett.
15
,
2396
2401
(
2015
).
20.
G.
Zhou
,
G.
Tang
,
T.
Li
 et al, “
Graphene-passivated cobalt as a spin-polarized electrode: Growth and application to organic spintronics
,”
J. Phys. D: Appl. Phys.
50
,
095001
(
2017
).
21.
W.
Li
,
L.
Xue
,
H. D.
Abruña
 et al, “
Magnetic tunnel junctions with single-layer-graphene tunnel barriers
,”
Phys. Rev. B
89
,
184418
(
2014
).
22.
J.-H.
Park
and
H.-J.
Lee
, “
Out-of-plane magnetoresistance in ferromagnet/graphene/ferromagnet spin-valve junctions
,”
Phys. Rev. B
89
,
165417
(
2014
).
23.
P. U.
Asshoff
,
J. L.
Sambricio
,
A. P.
Rooney
 et al, “
Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene
,”
2D Mater.
4
,
031004
(
2017
).
24.
M.
Piquemal-Banci
,
R.
Galceran
,
M.-B.
Martin
 et al, “
2D-MTJs: Introducing 2D materials in magnetic tunnel junctions
,”
J. Phys. D: Appl. Phys.
50
,
203002
(
2017
).
25.
M. Z.
Iqbal
,
N. A.
Qureshi
, and
G.
Hussain
, “
Recent advancements in 2D-materials interface based magnetic junctions for spintronics
,”
J. Magn. Magn. Mater.
457
,
110
125
(
2018
).
26.
M.-B.
Martin
,
B.
Dlubak
,
R. S.
Weatherup
 et al, “
Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes
,”
ACS Nano
8
,
7890
7895
(
2014
).
27.
E. D.
Cobas
,
O. M. J.
van't Erve
,
S.-F.
Cheng
 et al, “
Room-temperature spin filtering in metallic ferromagnet–multilayer graphene–ferromagnet junctions
,”
ACS Nano
10
,
10357
10365
(
2016
).
28.
F.
Godel
,
M. V.
Kamalakar
,
B.
Doudin
 et al, “
Voltage-controlled inversion of tunnel magnetoresistance in epitaxial nickel/graphene/MgO/cobalt junctions
,”
Appl. Phys. Lett.
105
,
152407
(
2014
).
29.
M.-B.
Martin
,
B.
Dlubak
,
R. S.
Weatherup
 et al, “
Protecting nickel with graphene spin-filtering membranes: A single layer is enough
,”
Appl. Phys. Lett.
107
,
012408
(
2015
).
30.
A. K.
Singh
and
J.
Eom
, “
Negative magnetoresistance in a vertical single-layer graphene spin valve at room temperature
,”
ACS Appl. Mater. Interfaces
6
,
2493
2496
(
2014
).
31.
J.-J.
Chen
,
J.
Meng
,
Y.-B.
Zhou
 et al, “
Layer-by-layer assembly of vertically conducting graphene devices
,”
Nat. Commun.
4
,
1921
(
2013
).
32.
M. Z.
Iqbal
,
M. W.
Iqbal
,
J. H.
Lee
 et al, “
Spin valve effect of NiFe/graphene/NiFe junctions
,”
Nano Res.
6
,
373
380
(
2013
).
33.
J.
Meng
,
J.-J.
Chen
,
Y.
Yan
 et al, “
Vertical graphene spin valve with Ohmic contacts
,”
Nanoscale
5
,
8894
(
2013
).
34.
M. Z.
Iqbal
,
M. W.
Iqbal
,
X.
Jin
 et al, “
Interlayer dependent polarity of magnetoresistance in graphene spin valves
,”
J. Mater. Chem. C
3
,
298
302
(
2015
).
35.
M. Z.
Iqbal
,
G.
Hussain
,
S.
Siddique
 et al, “
Interlayer reliant magnetotransport in graphene spin valve
,”
J. Magn. Magn. Mater.
441
,
39
42
(
2017
).
36.
S.
Entani
,
T.
Seki
,
Y.
Sakuraba
 et al, “
Magnetoresistance effect in Fe20 Ni80/graphene/Fe20 Ni80 vertical spin valves
,”
Appl. Phys. Lett.
109
,
082406
(
2016
).
37.
M.
Julliere
, “
Tunneling between ferromagnetic films
,”
Phys. Lett. A
54
,
225
226
(
1975
).
38.
Y.
Zhang
,
V. W.
Brar
,
F.
Wang
 et al, “
Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene
,”
Nat. Phys.
4
,
627
630
(
2008
).
39.
J.
Halle
,
N.
Néel
,
M.
Fonin
 et al, “
Understanding and engineering phonon-mediated tunneling into graphene on metal surfaces
,”
Nano Lett.
18
,
5697
5701
(
2018
).
40.
A.
Allard
and
L.
Wirtz
, “
Graphene on metallic substrates: Suppression of the Kohn anomalies in the phonon dispersion
,”
Nano Lett.
10
,
4335
4340
(
2010
).
41.
E. N.
Voloshina
,
A.
Generalov
,
M.
Weser
 et al, “
Structural and electronic properties of the graphene/Al/Ni(111) intercalation system
,”
New J. Phys.
13
,
113028
(
2011
).
42.
N.
Néel
,
C.
Steinke
,
T. O.
Wehling
 et al, “
Inelastic electron tunneling into graphene nanostructures on a metal surface
,”
Phys. Rev. B
95
,
161410
(
2017
).
43.
I.
Žutić
,
A.
Matos-Abiague
,
B.
Scharf
 et al, “
Proximitized materials
,”
Mater. Today
22
,
85
107
(
2019
).
44.
M.
Gmitra
,
D.
Kochan
,
P.
Högl
 et al, “
Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides
,”
Phys. Rev. B
93
,
155104
(
2016
).
45.
A.
Avsar
,
J. Y.
Tan
,
T.
Taychatanapat
 et al, “
Spin-orbit proximity effect in graphene
,”
Nat. Commun.
5
,
4875
(
2014
).
46.
C. K.
Safeer
,
J.
Ingla-Aynés
,
F.
Herling
 et al, “
Room-temperature spin Hall effect in graphene/MoS2 van der Waals heterostructures
,”
Nano Lett.
19
,
1074
1082
(
2019
).
47.
M.
Gmitra
and
J.
Fabian
, “
Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
92
,
155403
(
2015
).
48.
Y. K.
Luo
,
J.
Xu
,
T.
Zhu
 et al, “
Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves
,”
Nano Lett.
17
,
3877
3883
(
2017
).
49.
A.
Avsar
,
D.
Unuchek
,
J.
Liu
 et al, “
Optospintronics in graphene via proximity coupling
,”
ACS Nano
11
,
11678
11686
(
2017
).
50.
Z.
Qiao
,
W.
Ren
,
H.
Chen
 et al, “
Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator
,”
Phys. Rev. Lett.
112
,
116404
(
2014
).
51.
P.
Wei
,
S.
Lee
,
F.
Lemaitre
 et al, “
Strong interfacial exchange field in the graphene/EuS heterostructure
,”
Nat. Mater.
15
,
711
716
(
2016
).
52.
Z.
Wang
,
C.
Tang
,
R.
Sachs
 et al, “
Proximity-induced ferromagnetism in graphene revealed by the anomalous hall effect
,”
Phys. Rev. Lett.
114
,
016603
(
2015
).
53.
K.
Zollner
,
M.
Gmitra
,
T.
Frank
 et al, “
Theory of proximity-induced exchange coupling in graphene on hBN/(Co, Ni)
,”
Phys. Rev. B
94
,
155441
(
2016
).
54.
K.
Zollner
,
P. E.
Faria Junior
, and
J.
Fabian
, “
Proximity exchange effects in MoSe2 and WSe2 heterostructures with CrI3: Twist angle, layer, and gate dependence
,”
Phys. Rev. B
100
,
085128
(
2019
).
55.
C.
Cardoso
,
D.
Soriano
,
N. A.
García-Martínez
 et al, “
Van der Waals spin valves
,”
Phys. Rev. Lett.
121
,
067701
(
2018
).
56.
S.
Yuasa
and
D. D.
Djayaprawira
, “
Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier
,”
J. Phys. D: Appl. Phys.
40
,
R337
R354
(
2007
).
57.
K. Z.
Gao
,
O.
Heinonen
, and
Y.
Chen
, “
Read and write processes, and head technology for perpendicular recording
,”
J. Magn. Magn. Mater.
321
,
495
507
(
2009
).
58.
L.
Britnell
,
R. V.
Gorbachev
,
R.
Jalil
 et al, “
Electron tunneling through ultrathin boron nitride crystalline barriers
,”
Nano Lett.
12
,
1707
1710
(
2012
).
59.
T.
Yamaguchi
,
Y.
Inoue
,
S.
Masubuchi
 et al, “
Electrical spin injection into graphene through monolayer hexagonal boron nitride
,”
Appl. Phys. Express
6
,
073001
(
2013
).
60.
M. V.
Kamalakar
,
A.
Dankert
,
J.
Bergsten
 et al, “
Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride
,”
Sci. Rep.
4
,
6146
(
2014
).
61.
W.
Fu
,
P.
Makk
,
M.
Bräuninger
 et al, “
Large-scale fabrication of BN tunnel barriers for graphene spintronics
,”
J. Appl. Phys.
116
,
074306
(
2014
).
62.
M. V.
Kamalakar
,
A.
Dankert
,
J.
Bergsten
 et al, “
Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures
,”
Appl. Phys. Lett.
105
,
212405
(
2014
).
63.
V. M.
Karpan
,
P. A.
Khomyakov
,
G.
Giovannetti
 et al, “
Ni(111)|graphene|h-BN junctions as ideal spin injectors
,”
Phys. Rev. B
84
,
153406
(
2011
).
64.
Q.
Wu
,
L.
Shen
,
Z.
Bai
 et al, “
Efficient spin injection into graphene through a tunnel barrier: Overcoming the spin-conductance mismatch
,”
Phys. Rev. Appl.
2
,
044008
(
2014
).
65.
M. V.
Kamalakar
,
A.
Dankert
,
P. J.
Kelly
 et al, “
Inversion of spin signal and spin filtering in ferromagnet hexagonal boron nitride-graphene van der Waals heterostructures
,”
Sci. Rep.
6
,
21168
(
2016
).
66.
M. Z.
Iqbal
,
S.
Siddique
, and
G.
Hussain
, “
Spin valve effect of 2D-materials based magnetic junctions
,”
Adv. Eng. Mater.
20
,
1
6
(
2018
).
67.
M.
Piquemal-Banci
,
R.
Galceran
,
F.
Godel
 et al, “
Insulator-to-metallic spin-filtering in 2D-magnetic tunnel junctions based on hexagonal boron nitride
,”
ACS Nano
12
,
4712
4718
(
2018
).
68.
P. U.
Asshoff
,
J. L.
Sambricio
,
S.
Slizovskiy
 et al, “
Magnetoresistance in Co-hBN-NiFe tunnel junctions enhanced by resonant tunneling through single defects in ultrathin hBN barriers
,”
Nano Lett.
18
,
6954
6960
(
2018
).
69.
A.
Dankert
,
M. V.
Kamalakar
,
A.
Wajid
 et al, “
Tunnel magnetoresistance with atomically thin two dimensional hexagonal boron nitride barriers
,”
Nano Res.
8
,
1357
1364
(
2014
).
70.
M.
Piquemal-Banci
,
R.
Galceran
,
S.
Caneva
 et al, “
Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers
,”
Appl. Phys. Lett.
108
,
102404
(
2016
).
71.
K.
Tarawneh
,
N.
Al-Aqtash
, and
R.
Sabirianov
, “
Large magnetoresistance in planar Fe/MoS2/Fe tunnel junction
,”
Comput. Mater. Sci.
124
,
15
22
(
2016
).
72.
A.
Kumar
, “
Enhanced magnetoresistance in in-plane monolayer MoS2 with CrO2 electrodes
,”
J. Supercond. Novel Magn.
31
,
3245
3250
(
2018
).
73.
W. C.
Wong
,
S. M.
Ng
,
H. F.
Wong
 et al, “
Spin-Valve Junction With Transfer-Free MoS2 Spacer Prepared by Sputtering
,”
IEEE Trans. Magn.
53
,
1600205
(
2017
).
74.
A.
Dankert
,
P.
Pashaei
,
M. V.
Kamalakar
 et al, “
Spin-polarized tunneling through chemical vapor deposited multilayer molybdenum disulfide
,”
ACS Nano
11
,
6389
6395
(
2017
).
75.
H.
Zhang
,
M.
Ye
,
Y.
Wang
 et al, “
Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions
,”
Phys. Chem. Chem. Phys.
18
,
16367
16376
(
2016
).
76.
K.
Dolui
,
A.
Narayan
,
I.
Rungger
 et al, “
Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
90
,
041401(R)
(
2014
).
77.
W.
Rotjanapittayakul
,
W.
Pijitrojana
,
T.
Archer
 et al, “
Spin injection and magnetoresistance in MoS2-based tunnel junctions using Fe3Si Heusler alloy electrodes
,”
Sci. Rep.
8
,
4779
(
2018
).
78.
H.-C.
Wu
,
C. Ó.
Coileáin
,
M.
Abid
 et al, “
Spin-dependent transport properties of Fe3O4/MoS2/Fe3O4 junctions
,”
Sci. Rep.
5
,
15984
(
2015
).
79.
M. F.
Khan
,
H.
Kim
,
G.
Nazir
 et al, “
Layer dependent magnetoresistance of vertical MoS2 magnetic tunnel junctions
,”
Nanoscale
10
,
16703
16710
(
2018
).
80.
Y.
Zhang
,
H.
Ning
,
Y.
Li
 et al, “
Negative to positive crossover of the magnetoresistance in layered WS2
,”
Appl. Phys. Lett.
108
,
153114
(
2016
).
81.
M. Z.
Iqbal
,
M. W.
Iqbal
,
S.
Siddique
 et al, “
Room temperature spin valve effect in NiFe/WS2/Co junctions
,”
Sci. Rep.
6
,
21038
(
2016
).
82.
K.
Zhao
,
Y.
Xing
,
J.
Han
 et al, “
Magnetic transport property of NiFe/WSe2/NiFe spin valve structure
,”
J. Magn. Magn. Mater.
432
,
10
13
(
2017
).
83.
E.
Zhang
,
R.
Chen
,
C.
Huang
 et al, “
Tunable positive to negative magnetoresistance in atomically thin WTe2
,”
Nano Lett.
17
,
878
885
(
2017
).
84.
W.
Wang
,
A.
Narayan
,
L.
Tang
 et al, “
Spin-valve effect in NiFe/MoS2/NiFe junctions
,”
Nano Lett.
15
,
5261
5267
(
2015
).
85.
L. D. N.
Mouafo
,
F.
Godel
,
G.
Froehlicher
 et al, “
Tuning contact transport mechanisms in bilayer MoSe2 transistors up to Fowler–Nordheim regime
,”
2D Mater.
4
,
015037
(
2016
).
86.
J. S.
Moodera
,
L. R.
Kinder
,
T. M.
Wong
 et al, “
Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions
,”
Phys. Rev. Lett.
74
,
3273
3276
(
1995
).
87.
T.
Miyazaki
and
N.
Tezuka
, “
Giant magnetic tunneling effect in Fe/Al2O3/Fe junction
,”
J. Magn. Magn. Mater.
139
,
L231
L234
(
1995
).
88.
C.
Chappert
,
A.
Fert
, and
F. N.
Van Dau
, “
The emergence of spin electronics in data storage
,”
Nat. Mater.
6
,
813
823
(
2007
).
89.
L. M.
Falicov
,
D. T.
Pierce
,
S. D.
Bader
 et al, “
Surface, interface, and thin-film magnetism
,”
J. Mater. Res.
5
,
1299
1340
(
1990
).
90.
J.-G. (Jimmy)
Zhu
and
C.
Park
, “
Magnetic tunnel junctions
,”
Mater. Today
9
,
36
45
(
2006
).
91.
L. W.
Martin
,
Y.-H.
Chu
, and
R.
Ramesh
, “
Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films
,”
Mater. Sci. Eng. R
68
,
89
133
(
2010
).
92.
S.
Cardoso
,
P. P.
Freitas
,
C.
de Jesus
 et al, “
Spin-tunnel-junction thermal stability and interface interdiffusion above 300 °C
,”
Appl. Phys. Lett.
76
,
610
612
(
2000
).
93.
W.
Shen
,
D.
Mazumdar
,
X.
Zou
 et al, “
Effect of film roughness in MgO-based magnetic tunnel junctions
,”
Appl. Phys. Lett.
88
,
182508
(
2006
).
94.
V.
Da Costa
,
C.
Tiusan
,
T.
Dimopoulos
 et al, “
Tunneling phenomena as a probe to investigate atomic scale fluctuations in metal/oxide/metal magnetic tunnel junctions
,”
Phys. Rev. Lett.
85
,
876
879
(
2000
).
95.
V.
Da Costa
,
Y.
Henry
,
F.
Bardou
 et al, “
Experimental evidence and consequences of rare events in quantum tunneling
,”
Eur. Phys. J. B
13
,
297
303
(
2000
).
96.
E. Y.
Tsymbal
and
D. G.
Pettifor
, “
Spin-polarized electron tunneling across a disordered insulator
,”
Phys. Rev. B
58
,
432
437
(
1998
).
97.
J. P.
Velev
,
K. D.
Belashchenko
,
S. S.
Jaswal
 et al, “
Effect of oxygen vacancies on spin-dependent tunneling in Fe∕MgO∕Fe magnetic tunnel junctions
,”
Appl. Phys. Lett.
90
,
072502
(
2007
).
98.
J.-B.
Beaufrand
,
J.-F.
Dayen
,
N. T.
Kemp
 et al, “
Magnetoresistance signature of resonant states in electromigrated Ni nanocontacts
,”
Appl. Phys. Lett.
98
,
142504
(
2011
).
99.
E.
Tsymbal
,
A.
Sokolov
,
I.
Sabirianov
 et al, “
Resonant inversion of tunneling magnetoresistance
,”
Phys. Rev. Lett.
90
,
186602
(
2003
).
100.
P. M.
Levy
,
K.
Wang
,
P. H.
Dederichs
 et al, “
An approximate calculation for transport in magnetic tunnel junctions in the presence of localized states
,”
Philos. Mag. B
82
,
763
769
(
2002
).
101.
C.
Uiberacker
and
P. M.
Levy
, “
Role of symmetry on interface states in magnetic tunnel junctions
,”
Phys. Rev. B
64
,
193404
(
2001
).
102.
L.
Martins
,
J.
Ventura
,
R.
Ferreira
 et al, “
Optimization of the buffer surface of CoFeB/MgO/CoFeB-based magnetic tunnel junctions by ion beam milling
,”
Appl. Surf. Sci.
424
,
58
62
(
2017
).
103.
E.
Tsymbal
,
K.
Belashchenko
,
J.
Velev
 et al, “
Interface effects in spin-dependent tunneling
,”
Prog. Mater. Sci.
52
,
401
420
(
2007
).
104.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
,
419
425
(
2013
).
105.
Y.
Liu
,
N. O.
Weiss
,
X.
Duan
 et al, “
Van der Waals heterostructures and devices
,”
Nat. Rev. Mater.
1
,
16042
(
2016
).
106.
X.
Li
,
J.-T.
,
J.
Zhang
 et al, “
Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3 GeTe2 electrodes
,”
Nano Lett.
19
,
5133
5139
(
2019
).
107.
Z.
Wang
,
D.
Sapkota
,
T.
Taniguchi
 et al, “
Tunneling spin valves based on Fe3 GeTe2/hBN/Fe3 GeTe2 van der Waals heterostructures
,”
Nano Lett.
18
,
4303
4308
(
2018
).
108.
D. R.
Klein
,
D.
MacNeill
,
J. L.
Lado
 et al, “
Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling
,”
Science
360
,
1218
1222
(
2018
).
109.
T. R.
Paudel
and
E. Y.
Tsymbal
, “
Spin filtering in CrI3 tunnel junctions
,”
ACS Appl. Mater. Interfaces
11
,
15781
15787
(
2019
).
110.
T.
Song
,
X.
Cai
,
M. W.-Y.
Tu
 et al, “
Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
,”
Science
360
,
1214
1218
(
2018
).
111.
N. D.
Mermin
and
H.
Wagner
, “
Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models
,”
Phys. Rev. Lett.
17
,
1133
1136
(
1966
).
112.
V.
Carteaux
,
F.
Moussa
, and
M.
Spiesser
, “
2d ising-like ferromagnetic behaviour for the lamellar cr2si2te6 compound: A neutron scattering investigation
,”
EPL
29
,
251
256
(
1995
).
113.
C.
Gong
,
L.
Li
,
Z.
Li
 et al, “
Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
,”
Nature
546
,
265
269
(
2017
).
114.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
 et al, “
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,”
Nature
546
,
270
273
(
2017
).
115.
M.
Bonilla
,
S.
Kolekar
,
Y.
Ma
 et al, “
Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates
,”
Nat. Nanotechnol.
13
,
289
293
(
2018
).
116.
S.
Lebègue
,
T.
Björkman
,
M.
Klintenberg
 et al, “
Two-dimensional materials from data filtering and ab initio calculations
,”
Phys. Rev. X
3
,
031002
(
2013
).
117.
Z.
Fei
,
B.
Huang
,
P.
Malinowski
 et al, “
Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2
,”
Nat. Mater.
17
,
778
782
(
2018
).
118.
W.
Xing
,
Y.
Chen
,
P. M.
Odenthal
 et al, “
Electric field effect in multilayer Cr2 Ge2 Te6: A ferromagnetic 2D material
,”
2D Mater.
4
,
024009
(
2017
).
119.
B.
Huang
,
G.
Clark
,
D. R.
Klein
 et al, “
Electrical control of 2D magnetism in bilayer CrI3
,”
Nat. Nanotechnol.
13
,
544
548
(
2018
).
120.
Z.
Wang
,
I.
Gutiérrez-Lezama
,
N.
Ubrig
 et al, “
Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3
,”
Nat. Commun.
9
,
2516
(
2018
).
121.
D.
Ghazaryan
,
M. T.
Greenaway
,
Z.
Wang
 et al, “
Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3
,”
Nat. Electron.
1
,
344
349
(
2018
).
122.
C.
Tan
,
J.
Lee
,
S.-G.
Jung
 et al, “
Hard magnetic properties in nanoflake van der Waals Fe3GeTe2
,”
Nat. Commun.
9
,
1554
(
2018
).
123.
M. W.
Lin
,
H. L.
Zhuang
,
J.
Yan
 et al, “
Ultrathin nanosheets of CrSiTe3: A semiconducting two-dimensional ferromagnetic material
,”
. Mater. Chem. C
4
,
315
322
(
2016
).
124.
S.
Jiang
,
L.
Li
,
Z.
Wang
 et al, “
Controlling magnetism in 2D CrI3 by electrostatic doping
,”
Nat. Nanotechnol.
13
,
549
553
(
2018
).
125.
S.
Jiang
,
J.
Shan
, and
K. F.
Mak
, “
Electric-field switching of two-dimensional van der Waals magnets
,”
Nat. Mater.
17
,
406
410
(
2018
).
126.
D.
Zhong
,
K. L.
Seyler
,
X.
Linpeng
 et al, “
Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
,”
Sci. Adv.
3
,
e1603113
(
2017
).
127.
L. D.
Alegria
,
H.
Ji
,
N.
Yao
 et al, “
Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures
,”
Appl. Phys. Lett.
105
,
053512
(
2014
).
128.
F.
Katmis
,
V.
Lauter
,
F. S.
Nogueira
 et al, “
A high temperature ferromagnetic topological insulating phase by proximity coupling
,”
Nature
533
,
513
516
(
2016
).
129.
N.
Sivadas
,
S.
Okamoto
,
X.
Xu
 et al, “
Stacking-dependent magnetism in bilayer CrI3
,”
Nano Lett.
18
,
7658
7664
(
2018
).
130.
P.
Jiang
,
C.
Wang
,
D.
Chen
 et al, “
Stacking tunable interlayer magnetism in bilayer CrI3
,”
Phys. Rev. B
99
,
144401
(
2019
).
131.
D.
Soriano
,
C.
Cardoso
, and
J.
Fernández-Rossier
, “
Interplay between interlayer exchange and stacking in CrI3 bilayers
,”
Solid State Commun.
299
,
113662
(
2019
).
132.
D.
Weber
,
L. M.
Schoop
,
V.
Duppel
 et al, “
Magnetic properties of restacked 2D spin 1/2 honeycomb RuCl3 nanosheets
,”
Nano Lett.
16
,
3578
3584
(
2016
).
133.
D. R.
Klein
,
D.
MacNeill
,
Q.
Song
 et al, “
Enhancement of interlayer exchange in an ultrathin two-dimensional magnet
,”
Nat. Phys.
15
,
1255
1260
(
2019
).
134.
T.
Song
,
Z.
Fei
,
M.
Yankowitz
 et al, “
Switching 2D magnetic states via pressure tuning of layer stacking
” eprint: arXiv:1905.10860v1.
135.
W.
Chen
,
Z.
Sun
,
L.
Gu
 et al, “
Direct observation of van der Waals stacking dependent interlayer magnetism
,”
Science
366
,
983
987
(
2019
).
136.
T.
Jungwirth
,
J.
Sinova
,
A.
Manchon
 et al, “
The multiple directions of antiferromagnetic spintronics
,”
Nat. Phys.
14
,
200
203
(
2018
).
137.
J. C. W.
Song
and
N. M.
Gabor
, “
Electron quantum metamaterials in van der Waals heterostructures
,”
Nat. Nanotechnol.
13
,
986
993
(
2018
).
138.
H.
Henck
,
Z.
Ben Aziza
,
D.
Pierucci
 et al, “
Electronic band structure of two-dimensional WS2/graphene van der Waals heterostructures
,”
Phys. Rev. B
97
,
155421
(
2018
).
139.
T.
Wakamura
,
F.
Reale
,
P.
Palczynski
 et al, “
Spin-orbit interaction induced in graphene by transition-metal dichalcogenides
,”
Phys. Rev. B
99
,
245402
(
2019
).
140.
A. W.
Cummings
,
J. H.
Garcia
,
J.
Fabian
 et al, “
Giant spin lifetime anisotropy in graphene induced by proximity effects
,”
Phys. Rev. Lett.
119
,
206601
(
2017
).
141.
K.
Song
,
D.
Soriano
,
A. W.
Cummings
 et al, “
Spin proximity effects in graphene/topological insulator heterostructures
,”
Nano Lett.
18
,
2033
2039
(
2018
).
142.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
 et al, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
,
43
50
(
2018
).
143.
J.
Linder
and
J. W. A.
Robinson
, “
Superconducting spintronics
,”
Nat. Phys.
11
,
307
315
(
2015
).
144.
C.
Vo-Van
,
Z.
Kassir-Bodon
,
H.
Yang
 et al, “
Ultrathin epitaxial cobalt films on graphene for spintronic investigations and applications
,”
New J. Phys.
12
,
103040
(
2010
).
145.
N.
Rougemaille
,
A. T.
N'Diaye
,
J.
Coraux
 et al, “
Perpendicular magnetic anisotropy of cobalt films intercalated under graphene
,”
Appl. Phys. Lett.
101
,
142403
(
2012
).
146.
H.
Yang
,
G.
Chen
,
A. A. C.
Cotta
 et al, “
Significant Dzyaloshinskii-Moriya interaction at graphene-ferromagnet interfaces due to the Rashba effect
,”
Nat. Mater.
17
,
605
609
(
2018
).
147.
A. K.
Chaurasiya
,
A.
Kumar
,
R.
Gupta
 et al, “
Direct observation of unusual interfacial Dzyaloshinskii-Moriya interaction in graphene/NiFe/Ta heterostructures
,”
Phys. Rev. B
99
,
035402
(
2019
).
148.
F.
Ajejas
,
A.
Gudín
,
R.
Guerrero
 et al, “
Unraveling Dzyaloshinskii–Moriya interaction and chiral nature of graphene/cobalt interface
,”
Nano Lett.
18
,
5364
5372
(
2018
).
149.
D.
Jariwala
,
T. J.
Marks
, and
M. C.
Hersam
, “
Mixed-dimensional van der Waals heterostructures
,”
Nat. Mater.
16
,
170
181
(
2017
).
150.
L. D. N.
Mouafo
,
F.
Godel
,
G.
Melinte
 et al, “
Anisotropic magneto-Coulomb properties of 2D-0D heterostructure single electron device
,”
Adv. Mater.
30
,
1802478
(
2018
).
151.
F.
Godel
,
L. D. N.
Mouafo
,
G.
Froehlicher
 et al, “
Conductance oscillations in a graphene/nanocluster hybrid material: Toward large-area single-electron devices
,”
Adv. Mater.
29
,
1604837
(
2017
).
You do not currently have access to this content.