Coupled oscillators are highly complex dynamical systems, and it is an intriguing concept to use this oscillator dynamics for computation. The idea is not new, but is currently the subject to intense research as part of the quest for “beyond Moore” electronic devices. To a large extent, these efforts are motivated by biological observations: neural systems and mammalian brains, which seem to operate on oscillatory signals. In this paper, we give a survey of oscillator-based computing, with the goal of understanding its promise and limitation for next-generation computing. Our focus will be on the physics of (mostly nanoscale) oscillatory systems and on their characteristics that may enable effective computing.

1.
See http://spectrum.ieee.org/static/special-report-50-years-of-moores-law for “e.g.
IEEE Spectrum: Special Report: 50 Years of Moore's Law, the Glorious History and Inevitable Decline of One of Technology's Greatest Winning Streaks
.”
2.
C.
Horsman
,
S.
Stepney
,
R. C.
Wagner
, and
V.
Kendon
, “
When does a physical system compute?
,”
Proc. R. Soc. A
470
(
2169
),
20140182
(
2014
).
3.
K.
Zuse
, “
The computing universe
,”
Int. J. Theor. Phys.
21
(
6–7
),
589
600
(
1982
).
4.
R. P.
Feynman
, “
Simulating physics with computers
,”
Int. J. Theor. Phys.
21
(
6
),
467
488
(
1982
).
5.
O.
Bournez
and
A.
Pouly
, “
A survey on analog models of computation
,” preprint arXiv:1805.05729 (
2018
).
6.
F. R. J.
Spearman
,
J. J.
Gait
,
A. V.
Hemingway
, and
R. W.
Hynes
, “
TRIDAC, a large analogue computing machine
,”
Proc. IEE-Part B
103
(
9
),
375
390
(
1956
).
7.
R.
Rojas
,
Neural Networks: A Systematic Introduction
(
Springer
1996
).
8.
P.
Baldi
and
R.
Meir
, “
Computing with arrays of coupled oscillators: An application to preattentive texture discrimination
,”
Neural Comput.
2
(
4
),
458
471
(
1990
).
9.
S.
Furber
and
S.
Temple
, “
Neural systems engineering
,”
J. R. Soc. Interface
4
(
13
),
193
206
(
2007
).
10.
H.
de Garis
,
C.
Shuo
,
B.
Goertzel
, and
L.
Ruiting
, “
A world survey of artificial brain projects, Part I: Large-scale brain simulations
,”
Neurocomputing
74
,
3
29
(
2010
).
11.
E. M.
Izhikevich
and
G. M.
Edelman
, “
Large-scale model of mammalian thalamocortical systems
,”
Proc. Natl. Acad. Sci. U. S. A
105
(
9
),
3593
3598
(
2008
).
12.
D.
Bhowmik
and
M.
Shanahan
, “
How well do oscillator models capture the behaviour of biological neurons?
,” in
International Joint Conference on Neural Networks (IJCNN)
(IEEE,
2012
), pp.
1
8
.
13.
C. D.
Schuman
,
T. E.
Potok
,
R. M.
Patton
,
J.
Douglas Birdwell
,
M. E.
Dean
,
G. S.
Rose
, and
J. S.
Plank
, “
A survey of neuromorphic computing and neural networks in hardware
,” preprint arXiv:1705.06963 (
2017
).
14.
D.
Malagarriga
,
M. A.
García-Vellisca
,
A. E. P.
Villa
,
J. M.
Buldú
,
J.
García-Ojalvo
, and
A. J.
Pons
, “
Synchronization-based computation through networks of coupled oscillators
,”
Front. Comput. Neurosci.
9
,
97
(
2015
).
15.
J.
von Neumann
, “
Non-linear capacitance or inductance switching, amplifying, and memory organs
,” U.S. Patent 2,815,488 (3 December
1957
).
16.
R. L.
Wigington
, “
A new concept in computing
,”
Proc. IRE
47
(
4
),
516
523
(
1959
).
17.
K.
Bernstein
,
R. K.
Cavin
 III
,
W.
Porod
,
A.
Seabaugh
, and
J.
Welser
, “
Device and architecture outlook for beyond-CMOS switches
,”
Proc. IEEE
98
(
12
),
2169
2184
(
2010
).
18.
Synchronization: A Universal Concept in Nonlinear Sciences
, edited by,
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
(
Cambridge university Press
,
2003
), Vol.
12
.
19.
S. H.
Strogatz
, “
From Kuramoto to crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
(
1
),
1
20
(
2000
).
20.
L.
Deng
and
D.
Yu
, “
Deep learning: Methods and applications
,”
Foundations Trends Signal Process.
7
(
3–4
),
197
387
(
2014
).
21.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
(
7553
),
436
444
(
2015
).
22.
J.
Lu
,
S.
Young
,
I.
Arel
, and
J.
Holleman
, “
A 1 TOPS/W analog deep machine-learning engine with floating-gate storage in 0.13 μ m CMOS
,”
IEEE J. Solid-State Circuits
50
(
1
),
270
281
(
2015
).
23.
A.
Parihar
,
N.
Shukla
,
M.
Jerry
,
S.
Datta
, and
A.
Raychowdhury
, “
Vertex coloring of graphs via phase dynamics of coupled oscillatory networks
,”
Sci. Rep.
7
(
1
),
911
(
2017
).
24.
M. G.
Kuzmina
,
E. A.
Manykin
, and
E. S.
Grichuk
, “
Oscillatory neural networks
,”
Problems of Parallel Information Processing
(
Walter de Gruyter
,
2013
).
25.
J.
Grollier
,
S.
Guha
,
H.
Ohno
, and
I. K.
Schuller
, “
Preface to Special Topic: New physics and materials for neuromorphic computation
,”
J. Appl. Phys.
124
,
151801
(
2018
).
26.
E.
Goto
, “
The parametron, a digital computing element which utilizes parametric oscillation
,”
Proc. IRE
47
(
8
),
1304
1316
(
1959
).
27.
S.
Muroga
and
K.
Takashima
, “
The parametron digital computer Musasino-1
,”
IRE Trans. Electron. Comput.
3
,
308
316
(
1959
).
28.
I.
Mahboob
and
H.
Yamaguchi
, “
Bit storage and bit flip operations in an electromechanical oscillator
,”
Nat. Nanotechnol.
3
(
5
),
275
279
(
2008
).
29.
J. M.
Manley
and
H. E.
Rowe
, “
Some general properties of nonlinear elements-part I. General energy relations
,”
Proc. IRE
44
(
7
),
904
913
(
1956
).
30.
G.
Csaba
,
T.
Ytterdal
, and
W.
Porod
, “
Neural network based on parametrically-pumped oscillators
,” in
IEEE International Conference on, Electronics, Circuits and Systems (ICECS)
(IEEE,
2016
), pp.
45
48
.
31.
D. E.
Nikonov
and
I. A.
Young
, “
Overview of beyond-CMOS devices and a uniform methodology for their benchmarking
,”
Proc. IEEE
101
(
12
),
2498
2533
(
2013
).
32.
H. A. H.
Fahmy
and
R. A.
Kiehl
, “
Complete logic family using tunneling-phase-logic devices
,” in
The Eleventh International Conference on Microelectronics, ICM'99
(IEEE,
1999
), pp.
153
156
.
33.
T.
Ohshima
and
R. A.
Kiehl
, “
Operation of bistable phase-locked single-electron tunneling logic elements
,”
J. Appl. Phys.
80
(
2
),
912
923
(
1996
).
34.
J.
Roychowdhury
, “
Boolean computation using self-sustaining nonlinear oscillators
,”
Proc. IEEE
103
(
11
),
1958
1969
(
2015
).
35.
T.
Wang
and
J.
Roychowdhury
, “
PHLOGON: Phase-based logic using oscillatory nano-systems
,” in
International Conference on Unconventional Computation and Natural Computation
(Springer, Cham,
2014
), pp.
353
366
.
36.
Z.
Hull
,
D.
Chiarulli
,
S.
Levitan
,
G.
Csaba
,
W.
Porod
,
M.
Pufall
,
W.
Rippard
 et al., “
Computation with Coupled Oscillators in an Image Processing Pipeline
,” in
Proceedings of the 15th International Workshop on Cellular Nanoscale Networks and Their Applications, CNNA 2016
(VDE,
2016
), pp.
1
2
.
37.
H.
Paugam-Moisy
, “
Spiking neuron networks: A survey
,” No. EPFL-REPORT-83371 (IDIAP,
2006
).
38.
W.
Maass
, “
Networks of spiking neurons: The third generation of neural network models
,”
Neural Networks
10
(
9
),
1659
1671
(
1997
).
39.
H.
Paugam-Moisy
and
S.
Bohte
, “
Computing with spiking neuron networks
,”
Handbook of Natural Computing
(
Springer
Berlin Heidelberg
,
2012
), pp.
335
376
.
40.
A.
Grning
and
S. M.
Bohte
, “
Spiking neural networks: Principles and challenges
,” in
ESANN
(
2014
).
41.
M. R.
Pufall
,
W. H.
Rippard
,
G.
Csaba
,
D. E.
Nikonov
,
G. I.
Bourianoff
, and
W.
Porod
, “
Physical implementation of coherently coupled oscillator networks
,”
IEEE J. Exploratory Solid-State Comput. Devices Circuits
1
,
76
84
(
2015
).
42.
E. M.
Izhikevich
,
B.
Szatmary
, and
C.
Petre
, “
Invariant pulse latency coding systems and methods systems and Methods
,” U.S. patent 8,467,623 (18 June
2013
).
43.
E. M.
Izhikevich
, “
Polychronization: Computation with spikes
,”
Neural Comput.
18
(
2
),
245
282
(
2006
).
44.
D.
Querlioz
,
O.
Bichler
, and
C.
Gamrat
, “
Simulation of a memristor-based spiking neural network immune to device variations
,” in
The 2011 International Joint Conference on Neural Networks (IJCNN)
(IEEE,
2011
), pp.
1775
1781
.
45.
G.
Csaba
,
A.
Papp
,
W.
Porod
, and
R.
Yeniceri
, “
Non-boolean computing based on linear waves and oscillators
,” in
2015 45th European Solid State Device Research Conference (ESSDERC)
(IEEE,
2015
), pp.
101
104
.
46.
J. M.
Cruz-Albrecht
,
M. W.
Yung
, and
N.
Srinivasa
, “
Energy-efficient neuron, synapse and STDP integrated circuits
,”
IEEE Trans. Biomed. Circuits Syst.
6
(
3
),
246
256
(
2012
).
47.
J. R.
Westra
,
C. J.
Verhoeven
, and
A. H.
Van Roermund
,
Oscillators and Oscillator Systems
(
Kluwer
,
2000
).
48.
D. S.
Gardner
,
G.
Schrom
,
F.
Paillet
,
B.
Jamieson
,
T.
Karnik
, and
S.
Borkar
, “
Review of on-chip inductor structures with magnetic films
,”
IEEE Trans. Magn.
45
(
10
),
4760
4766
(
2009
).
49.
B. D.
Sahoo
, “
Ring oscillator based sub-1V leaky integrate-and-fire neuron circuit
,” in
IEEE International Symposium on, Circuits and Systems (ISCAS)
(IEEE,
2017
), pp.
1
4
.
50.
M. D.
Feuer
,
R. H.
Hendel
,
R. A.
Kiehl
,
J. C. M.
Hwang
,
V. G.
Keramidas
,
C. L.
Allyn
, and
R.
Dingle
, “
High-speed low-voltage ring oscillators based on selectively doped heterojunction transistors
,”
IEEE Electron Device Lett.
4
(
9
),
306
307
(
1983
).
51.
F.
Corinto
,
A.
Ascoli
, and
M.
Gilli
, “
Nonlinear dynamics of memristor oscillators
,”
IEEE Trans. Circuits Syst. I
58
(
6
),
1323
1336
(
2011
).
52.
N.
Shukla
,
A.
Parihar
,
M.
Cotter
,
M.
Barth
,
X.
Li
,
N.
Chandramoorthy
,
H.
Paik
 et al., “
Pairwise coupled hybrid vanadium dioxide-MOSFET (HVFET) oscillators for non-boolean associative computing
,” in
IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2014
), pp.
28
27
.
53.
J.
Torrejon
,
M.
Riou
,
F. A.
Araujo
,
S.
Tsunegi
,
G.
Khalsa
,
D.
Querlioz
,
P.
Bortolotti
 et al., “
Neuromorphic computing with nanoscale spintronic oscillators
,”
Nature
547
(
7664
),
428
(
2017
).
54.
A.
Ruotolo
,
V.
Cros
,
B.
Georges
,
A.
Dussaux
,
J.
Grollier
,
C.
Deranlot
,
R.
Guillemet
,
K.
Bouzehouane
,
S.
Fusil
, and
A.
Fert
, “
Phase-locking of magnetic vortices mediated by antivortices
,”
Nat. Nanotechnol.
4
(
8
),
528
532
(
2009
).
55.
N.
Locatelli
,
V.
Cros
, and
J.
Grollier
, “
Spin-torque building blocks
,”
Nat. Mater.
13
(
1
),
11
20
(
2014
).
56.
Y.-J.
Chen
,
H. K.
Lee
,
R.
Verba
,
J. A.
Katine
,
I.
Barsukov
,
V.
Tiberkevich
,
J. Q.
Xiao
,
A. N.
Slavin
, and
I. N.
Krivorotov
, “
Parametric resonance of magnetization excited by electric field
,”
Nano Lett.
17
(
1
),
572
577
(
2016
).
57.
S.
Urazhdin
,
V.
Tiberkevich
, and
A.
Slavin
, “
Parametric excitation of a magnetic nanocontact by a microwave field
,”
Phys. Rev. Lett.
105
(
23
),
237204
(
2010
).
58.
D. N.
Guerra
,
A. R.
Bulsara
,
W. L.
Ditto
,
S.
Sinha
,
K.
Murali
, and
P.
Mohanty
, “
A noise-assisted reprogrammable nanomechanical logic gate
,”
Nano Lett.
10
(
4
),
1168
1171
(
2010
).
59.
I.
Mahboob
,
E.
Flurin
,
K.
Nishiguchi
,
A.
Fujiwara
, and
H.
Yamaguchi
, “
Interconnect-free parallel logic circuits in a single mechanical resonator
,”
Nat. Commun.
2
,
198
(
2011
).
60.
J. C.
Coulombe
,
M. C.
York
, and
J.
Sylvestre
, “
Computing with networks of nonlinear mechanical oscillators
,”
PLoS One
12
(
6
),
e0178663
(
2017
).
61.
D.
Weinstein
and
S. A.
Bhave
, “
The resonant body transistor
,”
Nano Lett.
10
(
4
),
1234
1237
(
2010
).
62.
B.
Bahr
,
Y.
He
,
Z.
Krivokapic
,
S.
Banna
, and
D.
Weinstein
, “
32 GHz resonant-fin transistors in 14 nm FinFET technology
,” in
IEEE International Solid-State Circuits Conference-(ISSCC)
(IEEE,
2018
), pp.
348
350
.
63.
J.-C.
Mage
,
B.
Marcilhac
,
M.
Poulain
,
Y.
Lemaitre
,
J.
Kermorvant
, and
J.-M.
Lesage
, “
Low noise oscillator based on 2D superconducting resonator
,” in
Joint Conference of the IEEE International, Frequency Control and the European Frequency and Time Forum (FCS)
(IEEE,
2011
), pp.
1
4
.
64.
K.
Wiesenfeld
,
P.
Colet
, and
S. H.
Strogatz
, “
Synchronization transitions in a disordered Josephson series array
,”
Phys. Rev. Lett.
76
(
3
),
404
(
1996
).
65.
K.
Segall
,
M.
LeGro
,
S.
Kaplan
,
O.
Svitelskiy
,
S.
Khadka
,
P.
Crotty
, and
D.
Schult
, “
Synchronization dynamics on the picosecond time scale in coupled Josephson junction neurons
,”
Phys. Rev. E
95
(
3
),
032220
(
2017
).
66.
J.
Zhao
,
P.
Zhao
,
H.
Yu
, and
Y.
Yu
, “
External driving synchronization in a superconducting quantum interference device based oscillator
,”
Jpn. J. Appl. Phys., Part 1
55
(
11
),
110301
(
2016
).
67.
N.
Mazouz
,
K.
Krischer
,
G.
Figen
, and
G.
Ertl
, “
Synchronization and pattern formation in electrochemical oscillators: Model calculations
,”
J. Phys. Chem. B
101
(
14
),
2403
2410
(
1997
).
68.
S.
Farzeen
,
G.
Ren
, and
C.
Chen
, “
An ultra-low power ring oscillator for passive UHF RFID transponders
,” in
53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)
(IEEE,
2010
), pp.
558
561
.
69.
S.
Kaka
,
M. R.
Pufall
,
W. H.
Rippard
,
T. J.
Silva
,
S. E.
Russek
, and
J. A.
Katine
, “
Mutual phase-locking of microwave spin torque nano-oscillators
,”
Nature
437
(
7057
),
389
392
(
2005
).
70.
A. A.
Awad
,
P.
Durrenfeld
,
A.
Houshang
,
M.
Dvornik
,
E.
Iacocca
,
R. K.
Dumas
, and
J.
Akerman
, “
Long-range mutual synchronization of spin Hall nano-oscillators
,”
Nat. Phys.
13
(
3
),
292
299
(
2017
).
71.
M. J.
Deen
,
M. H.
Kazemeini
, and
S.
Naseh
, “
Performance characteristics of an ultra-low power VCO
,” in
Proceedings of the 2003 International Symposium on Circuits and Systems, ISCAS'03
(IEEE,
2003
), Vol.
1
, pp.
I
-
I
.
72.
A.
Parihar
,
N.
Shukla
,
S.
Datta
, and
A.
Raychowdhury
, “
Exploiting synchronization properties of correlated electron devices in a non-boolean computing fabric for template matching
,”
IEEE J. Emerging Sel. Top. Circuits Syst.
4
(
4
),
450
459
(
2014
).
73.
C.-C.
Nguyen
and
R. T.
Howe
, “
An integrated CMOS micromechanical resonator high-Q oscillator
,”
IEEE J. Solid-State Circuits
34
(
4
),
440
455
(
1999
).
74.
O.
Paul
, “
Micro transducer operation
,” in
MEMS: A Practical Guide of Design, Analysis, and Applications
, edited by
J.
Korvink
and
O.
Paul
(
Springer Science Business Media
,
Chicago
,
2010
).
75.
A. A.
Abidi
, “
Phase noise and jitter in CMOS ring oscillators
,”
IEEE J. Solid-State Circuits
41
(
8
),
1803
1816
(
2006
).
76.
P.
Maffezzoni
,
B.
Bahr
,
Z.
Zhang
, and
L.
Daniel
, “
Oscillator array models for associative memory and pattern recognition
,”
IEEE Trans. Circuits Syst. I
62
(
6
),
1591
1598
(
2015
).
77.
N.
Shukla
,
A.
Parihar
,
E.
Freeman
,
H.
Paik
,
G.
Stone
,
V.
Narayanan
,
H.
Wen
,
Z.
Cai
,
V.
Gopalan
,
R.
Engel-Herbert
, and
D. G.
Schlom
, “
Synchronized charge oscillations in correlated electron systems
,”
Sci. Rep.
4
,
4964
(
2014
).
78.
D. E.
Nikonov
,
G.
Csaba
,
W.
Porod
,
T.
Shibata
,
D.
Voils
,
D.
Hammerstrom
,
I. A.
Young
, and
G. I.
Bourianoff
, “
Coupled-oscillator associative memory array operation for pattern recognition
,”
IEEE J. Exploratory Solid-State Comput. Devices Circuits
1
,
85
93
(
2015
).
79.
A.
Mizrahi
,
N.
Locatelli
,
R.
Lebrun
,
V.
Cros
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
D.
Querlioz
, and
J.
Grollier
, “
Controlling the phase locking of stochastic magnetic bits for ultra-low power computation
,”
Sci. Rep.
6
,
30535
(
2016
).
80.
W.
Shmuel
and
J. D.
Cowan
,
Reliable Computation in the Presence of Noise
, No. 22 (
MIT Press
,
Cambridge, Mass
,
1963
).
81.
D.
Middleton
and Institute of Electrical and Electronics Engineers
,
An Introduction to Statistical Communication Theory
(
McGraw-Hill
,
New York
,
1960
),Vol.
960
.
82.
A.
Raychowdhury
,
A.
Parihar
,
G. H.
Smith
,
V.
Narayanan
,
G.
Csaba
,
M.
Jerry
,
W.
Porod
, and
S.
Datta
, “
Computing with networks of oscillatory dynamical systems
,”
Proc. IEEE
107
(
1
),
73
89
(
2018
).
83.
G.
Csaba
,
W.
Porod
,
M.
Pufall
, and
W.
Rippard
, “
Analog circuits based on the synchronization of field-line coupled spin-torque oscillators
,” in
IEEE 15th International Conference on Nanotechnology (IEEE-NANO)
(IEEE,
2015
), pp.
1343
1345
.
84.
R.
Lebrun
,
S.
Tsunegi
,
P.
Bortolotti
,
H.
Kubota
,
A. S.
Jenkins
,
M.
Romera
,
K.
Yakushiji
 et al., “
Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme
,”
Nat. Commun.
8
,
15825
(
2017
).
85.
Y.
Xu
and
J. E.-Y.
Lee
, “
Mechanically coupled SOI Lame-mode resonator-arrays: Synchronized oscillations with high quality factors of 1 million
,” in
Joint European Frequency and Time Forum and International Frequency Control Symposium (EFTF/IFC)
(IEEE,
2013
), pp.
133
136
.
86.
M.
Elyasi
,
C. S.
Bhatia
, and
H.
Yang
, “
Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects
,”
J. Appl. Phys.
117
(
6
),
063907
(
2015
).
87.
T.
Taniguchi
, “
Synchronization of spin torque oscillators through spin Hall magnetoresistance
,”
IEEE Trans. Magn.
53
(
11
),
1
7
(
2017
).
88.
C.-Z.
Wang
,
H.-Y.
Xu
,
N. D.
Rizzo
,
R. A.
Kiehl
, and
Y.-C.
Lai
, “
Phase Locking of a pair of ferromagnetic nano-oscillators on a topological insulator
,”
Phys. Rev. Appl.
10
(
6
),
064003
(
2018
).
89.
H.
Arai
and
H.
Imamura
, “
Spin-wave coupled spin torque oscillators for artificial neural network
,”
J. Appl. Phys.
124
(
15
),
152131
(
2018
).
90.
C.
Liu
,
J.
Chen
,
T.
Liu
,
F.
Heimbach
,
H.
Yu
,
Y.
Xiao
,
J.
Hu
 et al., “
Long-distance propagation of short-wavelength spin waves
,”
Nat. Commun.
9
(
1
),
738
(
2018
).
91.
F. C.
Hoppensteadt
and
E. M.
Izhikevich
, “
Synchronization of MEMS resonators and mechanical neurocomputing
,”
IEEE Trans. Circuits Syst. I
48
(
2
),
133
138
(
2001
).
92.
F. C.
Hoppensteadt
and
E. M.
Izhikevich
, “
Pattern recognition via synchronization in phase-locked loop neural networks
,”
IEEE Trans. Neural Networks
11
(
3
),
734
738
(
2000
).
93.
J. A.
Acebrn
,
L. L.
Bonilla
,
C. J.
Prez Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
(
1
),
137
(
2005
).
94.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
(
17
),
174102
(
2004
).
95.
Y.
Fang
,
V. V.
Yashin
,
D. M.
Chiarulli
, and
S. P.
Levitan
, “
A simplified phase model for oscillator based computing
,” in
IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
(IEEE,
2015
), pp.
231
236
.
96.
S.
Ling
,
R.
Xu
, and
A. S.
Bandeira
, “
On the landscape of synchronization networks: A perspective from nonconvex optimization
,”
SIAM J. Optim.
29
(
3
),
1879
1907
(
2019
).
97.
T.
Yamane
,
Y.
Katayama
,
R.
Nakane
,
G.
Tanaka
, and
D.
Nakano
, “
Wave-based reservoir computing by synchronization of coupled oscillators
,” in
Neural Information Processing
, Lecture Notes in Computer Science Vol.
9491
, edited by
S.
Arik
,
T.
Huang
,
W.
Lai
, and
Q.
Liu
(
Springer
,
2015
).
98.
G.
Dion
,
S.
Mejaouri
, and
J.
Sylvestre
, “
Reservoir computing with a single delay-coupled non-linear mechanical oscillator
,”
J. Appl. Phys.
124
(
15
),
152132
(
2018
).
99.
B.
Schrauwen
,
D.
Verstraeten
, and
J. V.
Campenhout
, “
An overview of reservoir computing: Theory, applications and implementations
,” in
Proceedings of the 15th European Symposium on Artificial Neural Networks
(
2007
), pp.
471
482
.
100.
G.
Tanaka
,
T.
Yamane
,
J. B.
Héroux
,
R.
Nakane
,
N.
Kanazawa
,
S.
Takeda
,
H.
Numata
,
D.
Nakano
, and
A.
Hirose
, “
Recent advances in physical reservoir computing: A review
,”
Neural Networks
115
,
100
123
(
2019
).
101.
F. C.
Hoppensteadt
and
E. M.
Izhikevich
, “
Oscillatory neurocomputers with dynamic connectivity
,”
Phys. Rev. Lett.
82
(
14
),
2983
(
1999
).
102.
J. J.
Hopfield
, “
Neural networks and physical systems with emergent collective computational abilities
,”
Proc. Natl. Acad. Sci. U. S. A.
79
(
8
),
2554
2558
(
1982
).
103.
A. N.
Michel
,
J. A.
Farrell
, and
W.
Porod
, “
Qualitative analysis of neural networks
,”
IEEE Trans. Circuits Syst.
36
(
2
),
229
243
(
1989
).
104.
B.
Popescu
,
G.
Csaba
,
D.
Popescu
,
A. H.
Fallahpour
,
P.
Lugli
,
W.
Porod
, and
M.
Becherer
, “
Simulation of coupled spin torque oscillators for pattern recognition
,”
J. Appl. Phys.
124
(
15
),
152128
(
2018
).
105.
R.
Follmann
,
E. E.
Macau
,
E.
Rosa
, and
J. R.
Piqueira
, “
Phase oscillatory network and visual pattern recognition
,”
IEEE Trans. Neural Networks Learn. Syst.
26
(
7
),
1539
1544
(
2015
).
106.
W.
Gerstner
, “
Chapter 6: Hebbian Learning and Plasticity
,”
From Neuron to Cognition Via Comput. Neurosci.
(
2016
).
107.
W. A.
Borders
,
H.
Akima
,
S.
Fukami
,
S.
Moriya
,
S.
Kurihara
,
Y.
Horio
,
S.
Sato
, and
H.
Ohno
, “
Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation
,”
Appl. Phys. Express
10
(
1
),
013007
(
2016
).
108.
F. C.
Hoppensteadt
and
E. M.
Izhikevich
,
Weakly Connected Neural Networks
(
Springer Science and Business Media
,
2012
), Vol.
126
.
109.
E.
Vassilieva
,
G.
Pinto
,
J. A.
De Barros
, and
P.
Suppes
, “
Learning pattern recognition through quasi-synchronization of phase oscillators
,”
IEEE Trans. Neural Networks
22
(
1
),
84
95
(
2011
).
110.
D.
Vodenicarevic
,
N.
Locatelli
,
F. A.
Araujo
,
J.
Grollier
, and
D.
Querlioz
, “
A nanotechnology-ready computing scheme based on a weakly coupled oscillator network
,”
Sci. Rep.
7
,
44772
(
2017
).
111.
D.
Vodenicarevic
,
N.
Locatelli
,
J.
Grollier
, and
D.
Querlioz
, “
Nano-oscillator-based classification with a machine learning-compatible architecture
,”
J. Appl. Phys.
124
(
15
),
152117
(
2018
).
112.
M.
Romera
,
P.
Talatchian
,
S.
Tsunegi
,
F. A.
Araujo
,
V.
Cros
,
P.
Bortolotti
,
J.
Trastoy
 et al., “
Vowel recognition with four coupled spin-torque nano-oscillators
,”
Nature
563
(
7730
),
230
(
2018
).
113.
D.
Heger
and
K.
Krischer
, “
Robust autoassociative memory with coupled networks of Kuramoto-type oscillators
,”
Phys. Rev. E
94
(
2
),
022309
(
2016
).
114.
Y.
Yuminaka
,
Y.
Sasaki
,
T.
Aoki
, and
T.
Higuchi
, “
Design of neural networks based on wave-parallel computing technique
,” in
Cellular Neural Networks and Analog VLSI
(
Springer U.S.
,
1998
), pp.
91
103
.
115.
A.
Mondragon-Torres
,
R.
Gonzalez-Carvajal
,
J.
Pineda de Gyvez
, and
E.
Sanchez-Sinencio
, “
Frequency-domain intrachip communication schemes for CNN
,” in
Fifth IEEE International Workshop on Cellular Neural Networks and Their Applications Proceedings
(IEEE,
1998
), pp.
398
403
..
116.
M. P.
Craven
,
K. M.
Curtis
, and
B. R.
Hayes-Gill
, “
Frequency division multiplexing in analogue neural network
,”
Electron. Lett.
27
(
11
),
918
920
(
1991
).
117.
M. P.
Craven
,
K. M.
Curtis
, and
B. R.
Hayes-Gill
, “
Consideration of multiplexing in neural network hardware
,”
IEE Proc.-Circuits, Devices Syst.
141
(
3
),
237
240
(
1994
).
118.
A.
Horvath
,
G.
Csaba
, and, and
W.
Porod
, “
Dynamic coupling of spin torque oscillators for associative memories
,” in
14th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA)
(IEEE,
2014
), pp.
1
2
.
120.
T. T.
Bui
and
T.
Shibata
, “
Compact bell-shaped analog matching-cell module for digital-memory-based associative processors
,”
Jpn. J. Appl. Phys., Part 1
47
(
4S
),
2788
(
2008
).
121.
K.
Yogendra
,
C.
Liyanagedera
,
D.
Fan
,
Y.
Shim
, and
K.
Roy
, “
Coupled spin-torque nano-oscillator-based computation: A simulation study
,”
ACM J. Emerging Technol. Comput. Syst.
13
(
4
),
56
(
2017
).
122.
G.
Csaba
and
W.
Porod
, “
Computational study of spin-torque oscillator interactions for non-Boolean computing applications
,”
IEEE Trans. Magn.
49
(
7
),
4447
4451
(
2013
).
123.
M.
Pufall
,
W. H.
Rippard
,
E.
Jue
,
G.
Csaba
, and
K.
Roy
, “
Estimating degree of match with arrays of spin torque oscillators
,” in
62nd Annual Conference on Magnetism and Magnetic Materials November 6–10, 2017
(
Pittsburgh
,
PA
,
2017
).
124.
M.
Koo
,
M. R.
Pufall
,
Y.
Shim
,
A. B.
Kos
,
G.
Csaba
,
W.
Porod
,
W. H.
Rippard
, and
K.
Roy
, “
Coupled spin-torque-oscillator based distance computation: Application to image processing
,”
Nat. Electron.
(unpublished).
125.
N.
Shukla
,
S.
Datta
,
A.
Parihar
, and
A.
Raychowdhury
, “
Computing with coupled relaxation oscillators
,” in
Future Trends in Microelectronics: Journey into the Unknown
, edited by
S.
Luryi
,
J.
Xu
, and
A.
Zaslavsky
(
Wiley
,
2016
).
126.
D.
Graupe
,
Principles of Artificial Neural Networks
(
World Scientific
,
2013
), Vol.
7
.
127.
D.
Anderson
and
G.
McNeill
, “
Artificial neural networks technology
,”
Kaman Sci. Corp.
258
(
6
),
1
83
(
1992
).
128.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
).
129.
D.
Yu
and
L.
Deng
, “
Deep learning and its applications to signal and information processing [exploratory dsp]
,”
IEEE Signal Process. Mag.
28
(
1
),
145
154
(
2011
).
130.
A.
He
,
K. K.
Bae
,
T. R.
Newman
,
J.
Gaeddert
,
K.
Kim
,
R.
Menon
,
L.
Morales-Tirado
,
Y.
Zhao
,
J. H.
Reed
, and
W. H.
Tranter
, “
A survey of artificial intelligence for cognitive radios
,”
IEEE Trans. Veh. Technol.
59
(
4
),
1578
1592
(
2010
).
131.
A.
Fehske
,
J.
Gaeddert
, and
J. H.
Reed
, “
A new approach to signal classification using spectral correlation and neural networks
,” in
First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005
(IEEE,
2005
), pp.
144
150
.
132.
R. H.
Rand
,
A. H.
Cohen
, and
P. J.
Holmes
, “
Systems of coupled oscillators as models of central pattern generators
,”
Neural Control of Rhythmic Movements in Vertebrates
(
Wiley
,
Cohen
,
1988
), pp.
333
367
.
133.
A.
Velichko
,
M.
Belyaev
,
V.
Putrolaynen
,
A.
Pergament
, and
V.
Perminov
, “
Switching dynamics of single and coupled VO2-based oscillators as elements of neural networks
,”
Int. J. Mod. Phys. B
31
(
2
),
1650261
(
2017
).
134.
S.
Dutta
,
A.
Parihar
,
A.
Khanna
,
J.
Gomez
,
W.
Chakraborty
,
M.
Jerry
,
B.
Grisafe
,
A.
Raychowdhury
, and
S.
Datta
, “
Programmable coupled oscillators for synchronized locomotion
,”
Nat. Commun.
10
(
1
),
3299
(
2019
).
135.
K. A.
Smith
, “
Neural networks for combinatorial optimization: A review of more than a decade of research
,”
Informs J. Comput.
11
(
1
),
15
34
(
1999
).
136.
C. W.
Wu
, “
Graph coloring via synchronization of coupled oscillators
,”
IEEE Trans. Circuits Syst. I
45
(
9
),
974
978
(
1998
).
137.
J.
Wu
,
L.
Jiao
,
R.
Li
, and
W.
Chen
, “
Clustering dynamics of nonlinear oscillator network: Application to graph coloring problem
,”
Physica D
240
(
24
),
1972
1978
(
2011
).
138.
R. M.
Karp
, “
Reducibility among combinatorial problems
,” in
Complexity of Computer Computations
(
Springer
U.S.
,
1972
), pp.
85
103
.
139.
H. T.
Siegelmann
, “
Computation beyond the turing limit
,” in
Neural Networks and Analog Computation
(
Birkhauser
,
Boston
,
1999
), pp.
153
164
.
140.
M.
Dyakonov
, “
When will useful quantum computers be constructed?
,”
IEEE Spectrum
56
(
3
),
24
29
(
2019
).
141.
M. W.
Johnson
,
M. H. S.
Amin
,
S.
Gildert
,
T.
Lanting
,
F.
Hamze
,
N.
Dickson
,
R.
Harris
,
A. J.
Berkley
,
J.
Johansson
,
P.
Bunyk
,
E. M.
Chapple
,
C.
Enderud
,
J. P.
Hilton
,
K.
Karimi
,
E.
Ladizinsky
,
N.
Ladizinsky
,
T.
Oh
,
I.
Perminov
,
C.
Rich
,
M. C.
Thom
,
E.
Tolkacheva
,
C. J. S.
Truncik
,
S.
Uchaikin
,
J.
Wang
,
B.
Wilson
 et al., “
Quantum annealing with manufactured spins
,”
Nature
473
,
194
198
(
2011
).
142.
S.
Aaronson
, “
Guest column: NP-complete problems and physical reality
,”
ACM Sigact News
36
(
1
),
30
52
(
2005
).
143.
F. L.
Traversa
,
C.
Ramella
,
F.
Bonani
, and
M.
Di Ventra
, “
Memcomputing NP-complete problems in polynomial time using polynomial resources and collective states
,”
Sci. Adv.
1
(
6
),
e1500031
(
2015
).
144.
Y. V.
Pershin
and
M.
Di Ventra
, “
Memcomputing: A computing paradigm to store and process information on the same physical platform
,” in
International Workshop on Computational Electronics (IWCE)
(IEEE,
2014
), pp.
1
2
.
145.
Y. V.
Pershin
and
M.
Di Ventra
, “
Memcomputing: A computing paradigm to store and process information on the same physical platform
,” in
2014 International Workshop on Computational Electronics (IWCE)
(IEEE, 2014), pp. 1–2.
146.
F. L.
Traversa
and
M.
Di Ventra
, “
Universal memcomputing machines
,”
IEEE Trans. Neural Networks Learn. Syst.
26
(
11
),
2702
2715
(
2015
).
147.
M.
Di Ventra
and
Y. V.
Pershin
, “
Just add memory
,”
Sci. Am.
312
,
56
61
(
2015
).
148.
Y. V.
Pershin
and
M.
Di Ventra
, “
Solving mazes with memristors: A massively parallel approach
,”
Phys. Rev. E
84
(
4
),
046703
(
2011
).
149.
F. L.
Traversa
,
F.
Bonani
,
Y. V.
Pershin
, and
M.
Di Ventra
, “
Dynamic computing random access memory
,”
Nanotechnology
25
(
28
),
285201
(
2014
).
150.
Y.
Yamamoto
,
K.
Aihara
,
T.
Leleu
,
K-i
Kawarabayashi
,
S.
Kako
,
M.
Fejer
,
K.
Inoue
, and
H.
Takesue
, “
Coherent Ising machines—Optical neural networks operating at the quantum limit
,”
npj Quantum Inf.
3
(
1
),
49
(
2017
).
151.
T.
Wang
and
J.
Roychowdhury
, “
Oscillator-based ising machine
,” e-print arXiv:1709.08102.
152.
M.
Ercsey-Ravasz
,
T.
Roska
, and
Z.
Neda
, “
Cellular neural networks for NP-hard optimization
,”
EURASIP J. Adv. Signal Process.
2009
,
646975
(
2009
).
153.
M.
Ercsey-Ravasz
and
Z.
Toroczkai
, “
The chaos within Sudoku
,”
Sci. Rep.
2
,
725
(
2012
).
154.
M.
Ercsey-Ravasz
and
Z.
Toroczkai
, “
Optimization hardness as transient chaos in an analog approach to constraint satisfaction
,”
Nat. Phys.
7
(
12
),
966
(
2011
).
155.
B.
Molnár
,
F.
Molnár
,
M.
Varga
,
Z.
Toroczkai
, and
M.
Ercsey-Ravasz
, “
A continuous-time MaxSAT solver with high analog performance
,”
Nat. Commun.
9
(
1
),
4864
(
2018
).
156.
M.
Di Ventra
and
F. L.
Traversa
, “
Perspective: Memcomputing: Leveraging memory and physics to compute efficiently
,”
J. Appl. Phys.
123
,
180901
(
2018
).
157.
T.
Roska
and
L. O.
Chua
, “
The CNN universal machine: An analogic array computer
,”
IEEE Trans. Circuits Syst. II
40
(
3
),
163
173
(
1993
).
158.
Y. V.
Pershin
and
M.
Di Ventra
, “
Experimental demonstration of associative memory with memristive neural networks
,”
Neural Networks
23
(
7
),
881
886
(
2010
).
159.
R. W.
Brockett
, “
Analog and digital computing
,” in
Future Tendencies in Computer Science, Control and Applied Mathematics
, Lecture Notes in Computer Science Vol.
653
, edited by
A.
Bensoussan
and
J. P.
Verjus
(
Springer
,
Berlin, Heidelberg
,
1992
).
You do not currently have access to this content.