The coating of complex three-dimensional structures with ultrathin metal films is of great interest for current technical applications, particularly in microelectronics, as well as for basic research on, for example, photonics or spintronics. While atomic layer deposition (ALD) has become a well-established fabrication method for thin oxide films on such geometries, attempts to develop ALD processes for elemental metal films have met with only mixed success. This can be understood by the lack of suitable precursors for many metals, the difficulty in reducing the metal cations to the metallic state, and the nature of metals as such, in particular their tendency to agglomerate to isolated islands. In this review, we will discuss these three challenges in detail for the example of Cu, for which ALD has been studied extensively due to its importance for microelectronic fabrication processes. Moreover, we give a comprehensive overview over metal ALD, ranging from a short summary of the early research on the ALD of the platinoid metals, which has meanwhile become an established technology, to very recent developments that target the ALD of electropositive metals. Finally, we discuss the most important applications of metal ALD.

1.
T.
Suntola
and
J.
Antson
, “
Method for producing compound thin films
,” U.S. patent US4058430a (15 November
1977
).
2.
M.
Ahonen
,
M.
Pessa
, and
T.
Suntola
, “
A study of ZnTe grown on glass substrates using an atomic layer evaporation method
,”
Thin Solid Films
65
,
301
307
(
1980
).
3.
J.
Aarik
,
A.
Aidla
,
A.
Jaek
,
M.
Leskelä
, and
L.
Niinistö
, “
In situ study of a strontium beta-diketonate precursor for thin film growth by atomic layer epitaxy
,”
J. Mater. Chem.
4
,
1239
1244
(
1994
).
4.
C. S.
Chen
,
J. H.
Lin
,
J. H.
You
, and
C. R.
Chen
, “
Properties of Cu(thd)2 as a precursor to prepare Cu/SiO2 catalyst using the atomic layer epitaxy technique
,”
J. Am. Chem. Soc.
128
,
15950
15951
(
2006
).
5.
E.-L.
Lakomaa
, “
Atomic layer epitaxy (ALE) on porous substrates
,”
Appl. Surf. Sci.
75
,
185
196
(
1994
).
6.
P.
Martensson
and
J.-O.
Carlsson
, “
Atomic layer epitaxy of copper growth and selectivity in the Cu(ll)-2,2,6,6-tetramethyl-3,5-heptanedionate/H2 process
,”
J. Electrochem. Soc.
145
,
2926
2931
(
1998
).
7.
P.
Martensson
and
J.-O.
Carlsson
, “
Atomic layer epitaxy of copper on tantalum
,”
Chem. Vap. Deposition
3
,
45
50
(
1997
).
8.
M.
Ritala
,
M.
Leskelä
,
E.
Rauhala
, and
J.
Jokinen
, “
Atomic layer epitaxy growth of tin thin films from TiI4 and NH3
,”
J. Electrochem. Soc.
145
,
2914
2920
(
1998
).
9.
T.
Törndahl
,
J.
Lu
,
M.
Ottosson
, and
J.-O.
Carlsson
, “
Epitaxy of copper on α-Al2O3(0 0 1) by atomic layer deposition
,”
J. Cryst. Growth
276
,
102
110
(
2005
).
10.
S. M.
George
and
Y.
Lee
, “
Prospects for thermal atomic layer etching using sequential, self-limiting fluorination and ligand-exchange reactions
,”
ACS Nano
10
,
4889
4894
(
2016
).
11.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
, “
Overview of atomic layer etching in the semiconductor industry
,”
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
12.
T.
Faraz
,
F.
Roozeboom
,
H. C. M.
Knoops
, and
W. M. M.
Kessels
, “
Atomic layer etching: What can we learn from atomic layer deposition?
,”
ECS J. Solid State Sci. Technol.
4
,
N5023
N5032
(
2015
).
13.
S. M.
George
, “
Atomic layer deposition: An overview
,”
Chem. Rev.
110
,
111
131
(
2010
).
14.
R. L.
Puurunen
, “
Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process
,”
J. Appl. Phys.
97
,
121301
(
2005
).
15.
S.
Klejna
and
S. D.
Elliott
, “
Understanding ‘clean-up’ of III-V native oxides during atomic layer deposition using bulk first principles models
,”
J. Nanosci. Nanotechnol.
11
,
8246
8250
(
2011
).
16.
K.
Kukli
,
M.
Ritala
,
J.
Lu
,
A.
Harsta
, and
M.
Leskelä
, “
Properties of HfO2 thin films grown by ALD from hafnium tetrakis(ethylmethylamide) and water
,”
J. Electrochem. Soc.
151
,
F189
F193
(
2004
).
17.
R. L.
Puurunen
, “
Analysis of hydroxyl group controlled atomic layer deposition of hafnium dioxide from hafnium tetrachloride and water
,”
J. Appl. Phys.
95
,
4777
(
2004
).
18.
X.
Luo
,
A. A.
Demkov
,
D.
Triyoso
,
P.
Fejes
,
R.
Gregory
, and
S.
Zollner
, “
Combined experimental and theoretical study of thin hafnia films
,”
Phys. Rev. B
78
,
245314
(
2008
).
19.
L.
Zhong
,
W. L.
Daniel
,
Z.
Zhang
,
S. A.
Campbell
, and
W. L.
Gladfelter
, “
Atomic layer deposition, characterization, and dielectric properties of HfO2/SiO2 nanolaminates and comparisons with their homogeneous mixtures
,”
Chem. Vap. Deposition
12
,
143
150
(
2006
).
20.
V.
Pore
,
A.
Rahtu
,
M.
Leskelä
,
M.
Ritala
,
D.
Sajavaara
, and
J.
Keinonen
, “
Atomic layer deposition of photocatalytic TiO2 thin films from titanium tetramethoxide and water
,”
Chem. Vap. Deposition
10
,
143
148
(
2004
).
21.
J.
Aarik
,
A.
Aidla
,
H.
Maendar
, and
T.
Uustare
, “
Atomic layer deposition of titanium dioxide from TiCl4 and H2O: Investigation of growth mechanism
,”
Appl. Surf. Sci.
172
,
148
158
(
2001
).
22.
T.
Tsubota
,
M.
Ohtaki
,
K.
Eguchi
, and
H.
Arai
, “
Thermoelectric properties of Al-doped ZnO as a promising oxide material for high temperature thermoelectric conversion
,”
J. Mater. Chem.
7
,
85
90
(
1997
).
23.
J.
Elam
,
M.
Schuisky
,
J.
Ferguson
, and
S.
George
, “
Surface chemistry and film growth during TiN atomic layer deposition using TDMAT and NH3
,”
Thin Solid Films
436
,
145
156
(
2003
).
24.
A.
Satta
,
J.
Schuhmacher
,
C. M.
Whelan
,
W.
Vandervorst
,
S. H.
Brongersma
,
G. P.
Beyer
,
K.
Maex
,
A.
Vantomme
,
M. M.
Viitanen
,
H. H.
Brongersma
, and
W. F. A.
Besling
, “
Growth mechanism and continuity of atomic layer deposited TiN films on thermal SiO2
,”
J. Appl. Phys.
92
,
7641
(
2002
).
25.
C. H.
Ahn
,
S. G.
Cho
,
H. J.
Lee
,
K. H.
Park
, and
S. H.
Jeong
, “
Characteristics of TiN thin films grown by ALD using TiCl4 and NH3
,”
Met. Mater. Int.
7
,
621
625
(
2001
).
26.
M.
Juppo
,
P.
Alen
,
M.
Ritala
, and
M.
Leskelä
, “
Trimethylaluminum as a reducing agent in the atomic layer deposition of Ti(Al)N thin films
,”
Chem. Vap. Deposition
7
,
211
217
(
2001
).
27.
J.
Musschoot
,
Q.
Xie
,
D.
Deduytsche
,
S. V.
den Berghe
,
R. V.
Meirhaeghe
, and
C.
Detavernier
, “
Atomic layer deposition of titanium nitride from TDMAT precursor
,”
Microelectron. Eng.
86
,
72
77
(
2009
).
28.
K.-E.
Elers
,
V.
Saanila
,
P. J.
Soininen
,
W.-M.
Li
,
J. T.
Kostamo
,
S.
Haukka
,
J.
Juhanoja
, and
W. F.
Besling
, “
Diffusion barrier deposition on a copper surface by atomic layer deposition
,”
Chem. Vap. Deposition
8
,
149
153
(
2002
).
29.
W.
Besling
,
A.
Satta
,
J.
Schuhmacher
,
T.
Abell
,
V.
Sutcliffe
,
A.-M.
Hoyas
,
G.
Beyer
,
D.
Gravesteijn
, and
K.
Maex
, “
Atomic layer deposition of barriers for interconnect
,” in
Proceedings of the IEEE 2002 International Interconnect Technology Conference (
2002
), Vol.
288–291
.
30.
J.
Yoon
,
S.
Kim
, and
K.
No
, “
Highly ordered and well aligned TiN nanotube arrays fabricated via template-assisted atomic layer deposition
,”
Mater. Lett.
87
,
124
126
(
2012
).
31.
C.
Detavernier
,
J.
Dendooven
,
D.
Deduytsche
, and
J.
Musschoot
, “
Thermal versus plasma-enhanced ALD: Growth kinetics and conformality
,”
Electrochem. Soc. Trans.
16
,
239
246
(
2008
).
32.
S.
Rossnagel
and
H.
Kim
, “
From PVD to CVD to ALD for interconnects and related applications
,” in
Proceedings of the IEEE 2001 International Interconnect Technology Conference
(
2001
), pp.
3
5
.
33.
M.
Saadaoui
,
H.
van Zeijl
,
W. H. A.
Wien
,
H. T. M.
Pham
,
C.
Kwakernaak
,
H. C. M.
Knoops
,
W. M. M. E.
Kessels
,
R. M. C. M.
van de Sanden
,
F. C.
Voogt
,
F.
Roozeboom
, and
P. M.
Sarro
, “
Enhancing the wettability of high aspect-ratio through-silicon vias lined with LPCVD silicon nitride or PE-ALD titanium nitride for void-free bottom-up copper electroplating
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
1
,
1728
1738
(
2011
).
34.
M.
Ritala
,
P.
Kalsi
,
D.
Riihelä
,
K.
Kukli
,
M.
Leskelä
, and
J.
Jokinen
, “
Controlled growth of TaN, Ta3N5, and TaOxNy, and taoxny thin films by atomic layer deposition
,”
Chem. Mater.
11
,
1712
1718
(
1999
).
35.
S. H.
Kim
,
M. K.
Song
, and
S. W.
Rhee
, “
Atomic vapor deposited tantalum carbo-nitride film using tbtdet and hydrogen
,”
Electrochem. Soc. Trans.
16
,
355
362
(
2008
).
36.
K. H.
Kim
,
S. J.
Jeong
,
J. S.
Yoon
,
Y. M.
Kim
, and
S. H.
Kwon
, “
Plasma-enhanced atomic layer deposition of Ta(C)N thin films for copper diffusion barrier
,”
Electrochem. Soc. Trans.
25
,
301
308
(
2009
).
37.
S.-H.
Kim
,
H. T.
Kim
,
S.-S.
Yim
,
D.-J. L. K.-S.
Kim
,
H.-M.
Kim
,
K.-B.
Kim
, and
H.
Sohn
, “
A bilayer diffusion barrier of ALD-Ru/ALD-TaCN for direct plating of Cu
,”
J. Electrochem. Soc.
155
,
H589
H594
(
2008
).
38.
W.
Besling
,
V.
Arnal
,
J.
Guillaumond
,
C.
Guedj
,
M.
Broekaart
,
L.
Chapelon
,
A.
Farcy
,
L.
Arnaud
, and
J.
Tones
, “
Integration of ALD TaN barriers in porous low-k interconnect for the 45 nm node and beyond; solution to relax electron scattering effect
,” in
IEDM Technical Digest on IEEE International Electron Devices Meeting
(
2004
), pp.
325
328
.
39.
O.
van der Straten
,
Y.
Zhu
,
E.
Eisenbraun
, and
A.
Kaloyeros
, “
Thermal and electrical barrier performance testing of ultrathin atomic layer deposition tantalum-based materials for nanoscale copper metallization
,” in
Proceedings of the IEEE 2002 International Interconnect Technology Conference (
2002
), pp.
188
190
.
40.
S.-W.
Kim
,
S.-H.
Kwon
,
S.-J.
Jeong
, and
S.-W.
Kang
, “
Improvement of copper diffusion barrier properties of tantalum nitride films by incorporating ruthenium using PEALD
,”
J. Electrochem. Soc.
155
,
H885
H888
(
2008
).
41.
S.
Kumar
,
D.
Greenslit
,
T.
Chakraborty
, and
E. T.
Eisenbraun
, “
Atomic layer deposition growth of a novel mixed-phase barrier for seedless copper electroplating applications
,”
J. Vac. Sci. Technol. A
27
,
572
576
(
2009
).
42.
P.
Alen
,
M.
Ritala
,
K.
Arstila
,
J.
Keinonen
, and
M.
Leskelä
, “
The growth and diffusion barrier properties of atomic layer deposited NbNx thin films
,”
Thin Solid Films
491
,
235
241
(
2005
).
43.
M.
Ziegler
,
L.
Fritzsch
,
J.
Day
,
S.
Linzen
,
S.
Anders
,
J.
Toussaint
, and
H.-G.
Meyer
, “
Superconducting niobium nitride thin films deposited by metal organic plasma-enhanced atomic layer deposition
,”
Supercond. Sci. Technol.
26
,
025008
(
2013
).
44.
J. W.
Klaus
,
S. J.
Ferro
, and
S. M.
George
, “
Atomic layer deposition of tungsten nitride films using sequential surface reactions
,”
J. Electrochem. Soc.
147
,
1175
1181
(
2000
).
45.
J.
Klaus
,
S.
Ferro
, and
S.
George
, “
Atomically controlled growth of tungsten and tungsten nitride using sequential surface reactions
,”
Appl. Surf. Sci.
162–163
,
479
491
(
2000
).
46.
S.-H.
Kim
,
J.-K.
Kim
,
N.
Kwak
,
H.
Sohn
,
J.
Kim
,
S.-H.
Jung
,
M.-R.
Hong
,
S. H.
Lee
, and
J.
Collins
, “
Atomic layer deposition of low-resistivity and high-density tungsten nitride thin films using B2H2, WF6, and NH3
,”
Electrochem. Solid State Lett.
9
,
C54
C57
(
2006
).
47.
S.-H.
Kim
,
J.-K.
Kim
,
J. H.
Lee
,
N.
Kwak
,
J.
Kim
,
S.-H.
Jung
,
M.-R.
Hong
,
S. H.
Lee
,
J.
Collins
, and
H.
Sohn
, “
Characteristics of ALD tungsten nitride using B2H6, WF6, and NH3 and application to contact barrier layer for DRAM
,”
J. Electrochem. Soc.
154
,
D435
D441
(
2007
).
48.
A.
Rugge
,
J. S.
Becker
,
R. G.
Gordon
, and
S. H.
Tolbert
, “
Tungsten nitride inverse opals by atomic layer deposition
,”
Nano Lett.
3
,
1293
1297
(
2003
).
49.
K.
Park
,
W.-D.
Yun
,
B.-J.
Choi
,
H.-D.
Kim
,
W.-J.
Lee
,
S.-K.
Rha
, and
C. O.
Park
, “
Growth studies and characterization of silicon nitride thin films deposited by alternating exposures to Si2Cl6 and NH3
,”
Thin Solid Films
517
,
3975
3978
(
2009
).
50.
J.
Klaus
,
A.
Ott
,
A.
Dillon
, and
S.
George
, “
Atomic layer controlled growth of Si3N4 films using sequential surface reactions
,”
Surf. Sci. Lett.
418
,
L14
L19
(
1998
).
51.
B.
Marlid
,
M.
Ottosson
,
U.
Pettersson
,
K.
Larsson
, and
J.-O.
Carlsson
, “
Atomic layer deposition of BN thin films
,”
Thin Solid Films
402
,
167
171
(
2002
).
52.
J.
Ferguson
,
A.
Weimer
, and
S.
George
, “
Atomic layer deposition of boron nitride using sequential exposures of BCl3 and NH3
,”
Thin Solid Films
413
,
16
25
(
2002
).
53.
J.
Hämäläinen
,
M.
Ritala
, and
M.
Leskelä
, “
Atomic layer deposition of noble metals and their oxides
,”
Chem. Mater.
26
,
786
801
(
2014
).
54.
P. G.
Gordon
,
A.
Kurek
, and
S. T.
Barry
, “
Trends in copper precursor development for CVD and ALD applications
,”
ECS J. Solid State Sci. Technol.
4
,
N3188
N3197
(
2015
).
55.
T. J.
Knisley
,
L. C.
Kalutarage
, and
C. H.
Winter
, “
Precursors and chemistry for the atomic layer deposition of metallic first row transition metal films
,”
Coord. Chem. Rev.
257
,
3222
3231
(
2013
).
56.
M.
Juppo
,
M.
Ritala
, and
M.
Leskelä
, “
Deposition of copper films by an alternate supply of CuCl and Zn
,”
J. Vac. Sci. Technol. A
15
,
2330
2333
(
1997
).
57.
T.
Törndahl
,
M.
Ottosson
, and
J.-O.
Carlsson
, “
Growth of copper metal by atomic layer deposition using copper(i) chloride, water and hydrogen as precursors
,”
Thin Solid Films
458
,
129
136
(
2004
).
58.
J. A. T.
Norman
,
B. A.
Muratore
,
P. N.
Dyer
,
D. A.
Roberts
, and
A. K.
Hochberg
, “
New OMCVD precursors for selective copper metallization
,” in
Proceedings of the Eighth International IEEE on VLSI Multilevel Interconnection Conference
(
1991
), pp.
123
129
.
59.
J. A.
Norman
,
D. A.
Roberts
,
A. K.
Hochberg
,
P.
Smith
,
G. A.
Petersen
,
J. E.
Parmeter
,
C. A.
Apblett
, and
T. R.
Omstead
, “
Chemical additives for improved copper chemical vapour deposition processing
,”
Thin Solid Films
262
,
46
51
(
1995
).
60.
S. L.
Cohen
,
M.
Liehr
, and
S.
Kasi
, “
Selectivity in copper chemical vapor deposition
,”
Appl. Phys. Lett.
60
,
1585
1587
(
1992
).
61.
K.-K.
Choi
and
S.-W.
Rhee
, “
Effect of carrier gas on chemical vapor deposition of copper with (hexafluoroacetylacetonate)Cu(I)(3,3-dimethyl-1-butene)
,”
J. Electrochem. Soc.
148
,
C473
C478
(
2001
).
62.
J. A. T.
Norman
, “Us patent 5,187,300,”
1993
.
63.
K.-H.
Park
and
W. J.
Marshall
, “
Remarkably volatile copper(II) complexes of N,N′-unsymmetrically substituted 1,3-diketimines as precursors for Cu metal deposition via CVD or ALD
,”
J. Am. Chem. Soc.
127
,
9330
9331
(
2005
).
64.
K.-H.
Park
and
W. J.
Marshall
, “
Routes to N,N′-unsymmetrically substituted 1,3-diketimines
,”
J. Org. Chem.
70
,
2075
2081
(
2005
).
65.
K.-H.
Park
,
A. Z.
Bradley
,
J. S.
Thompson
, and
W. J.
Marshall
, “
Nonfluorinated volatile copper(I) 1,3-diketiminates as precursors for Cu metal deposition via atomic layer deposition
,”
Inorg. Chem.
45
,
8480
8482
(
2006
).
66.
K.-H.
Park
, U.S. patent 7488435b2 (10 February 2009).
67.
J. S.
Thompson
,
L.
Zhang
,
J. P.
Wyre
,
D. J.
Brill
, and
K. G.
Lloyd
, “
Vapor phase deposition of copper films with a Cu(I) beta-diketiminate precursor
,”
Thin Solid Films
517
,
2845
2850
(
2009
).
68.
J. S.
Thompson
,
L.
Zhang
,
J. P.
Wyre
,
D.
Brill
, and
Z.
Li
, “
Deposition of copper films with surface-activating agents
,”
Organometallics
31
,
7884
7894
(
2012
).
69.
J. S.
Thompson
,
A. Z.
Bradley
,
K.-H.
Park
,
K. D.
Dobbs
, and
W.
Marshall
, “
Copper(I) complexes with bis(trimethylsilyl)acetylene: Role of ancillary ligands in determining pi back-bonding interactions
,”
Organometallics
25
,
2712
2714
(
2006
).
70.
T.
Waechtler
,
S.-F.
Ding
,
L.
Hofmann
,
R.
Mothes
,
Q.
Xie
,
S.
Oswald
,
C.
Detavernier
,
S. E.
Schulz
,
X.-P.
Qu
,
H.
Lang
, and
T.
Gessner
, “
ALD-grown seed layers for electrochemical copper deposition integrated with different diffusion barrier systems
,”
Microelectron. Eng.
88
,
684
689
(
2011
).
71.
T.
Waechtler
,
S.
Oswald
,
N.
Roth
,
A.
Jakob
,
H.
Lang
,
R.
Ecke
,
S. E.
Schulz
,
T.
Gessner
,
A.
Moskvinova
,
S.
Schulze
, and
M.
Hietscholde
, “
Copper oxide films grown by atomic layer deposition from bis(tri-n-butylphosphane)copper(I)acetylacetonate on Ta, TaN, Ru, and SiO2
,”
J. Electrochem. Soc.
156
,
H453
H459
(
2009
).
72.
F.
Senocq
,
A.
Turgambaeva
,
N.
Prud'homme
,
U.
Patil
,
V.
Krisyuk
,
D.
Samelor
,
A.
Gleizes
, and
C.
Vahlas
, “
Thermal behaviour of CpCuPEt3 in gas phase and Cu thin films processing
,”
Surf. Coat. Technol.
201
,
9131
9134
(
2007
).
73.
A. M.
Willcocks
,
T.
Pugh
,
S. D.
Cosham
,
J.
Hamilton
,
S. L.
Sung
,
T.
Heil
,
P. R.
Chalker
,
P. A.
Williams
,
G.
Kociok-Koehn
, and
A. L.
Johnson
, “
Tailoring precursors for deposition: Synthesis, structure, and thermal studies of cyclopentadienylcopper(I) isocyanide complexes
,”
Inorg. Chem.
54
,
4869
4881
(
2015
).
74.
J. A.
Norman
,
M.
Perez
,
X.
Lei
, and
H.
Cheng
, “
New precursors for the atomic layer deposition of copper
,”
ECS Trans.
3
,
161
170
(
2007
).
75.
J. A.
Norman
,
M.
Perez
,
S. E.
Schulz
, and
T.
Waechtler
, “
New precursors for CVD copper metallization
,”
Microelectron. Eng.
85
,
2159
2163
(
2008
).
76.
Q.
Ma
and
F.
Zaera
, “
Thermal chemistry of the Cu-KI5 atomic layer deposition precursor on a copper surface
,”
J. Vac. Sci. Technol. A
33
,
01A108
(
2015
).
77.
B. S.
Lim
,
A.
Rahtu
,
J.-S.
Park
, and
R. G.
Gordon
, “
Synthesis and characterization of volatile, thermally stable, reactive transition metal amidinates
,”
Inorg. Chem.
42
,
7951
7958
(
2003
).
78.
Z.
Li
,
S. T.
Barry
, and
R. G.
Gordon
, “
Synthesis and characterization of copper(I) amidinates as precursors for atomic layer deposition (ALD) of copper metal
,”
Inorg. Chem.
44
,
1728
1735
(
2005
).
79.
Z.
Li
,
A.
Rahtu
, and
R. G.
Gordon
, “
Atomic layer deposition of ultrathin copper metal films from a liquid copper(I) amidinate precursor
,”
J. Electrochem. Soc.
153
,
C787
C794
(
2006
).
80.
Z.
Li
,
R. G.
Gordon
,
D. B.
Farmer
,
Y.
Lin
, and
J.
Vlassak
, “
Nucleation and adhesion of ALD copper on cobalt adhesion layers and tungsten nitride diffusion barriers
,”
Electrochem. Solid-State Lett.
8
,
G182
G185
(
2005
).
81.
Z.
Li
and
R. G.
Gordon
, “
Thin, continuous, and conformal copper films by reduction of atomic layer deposited copper nitride
,”
Chem. Vap. Deposition
12
,
435
441
(
2006
).
82.
Q.
Ma
,
F.
Zaera
, and
R. G.
Gordon
, “
Thermal chemistry of copper(I)-N,N′-di-sec-butylacetamidinate on Cu(110) single-crystal surfaces
,”
J. Vac. Sci. Technol. A
30
,
01A114
(
2012
).
83.
O.
Seitz
,
M.
Dai
,
F. S.
Aguirre-Tostado
,
R. M.
Wallace
, and
Y. J.
Chabal
, “
Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices
,”
J. Am. Chem. Soc.
131
,
18159
18167
(
2009
).
84.
J. P.
Coyle
,
W. H.
Monillas
,
G. P. A.
Yap
, and
S. T.
Barry
, “
Synthesis and thermal chemistry of copper (I) guanidinates
,”
Inorg. Chem.
47
,
683
689
(
2008
).
85.
J. P.
Coyle
,
P. A.
Johnson
,
G. A.
DiLabio
,
S. T.
Barry
, and
J.
Mueller
, “
Gas-phase thermolysis of a guanidinate precursor of copper studied by matrix isolation, time-of-flight mass spectrometry, and computational chemistry
,”
Inorg. Chem.
49
,
2844
2850
(
2010
).
86.
Z.
Guo
,
H.
Li
,
Q.
Chen
,
L.
Sang
,
L.
Yang
,
Z.
Liu
, and
X.
Wang
, “
Low-temperature atomic layer deposition of high purity, smooth, low resistivity copper films by using amidinate precursor and hydrogen plasma
,”
Chem. Mater.
27
,
5988
5996
(
2015
).
87.
J. P.
Coyle
,
A.
Kurek
,
P. J.
Pallister
,
E. R.
Sirianni
,
G. P. A.
Yap
, and
S. T.
Barry
, “
Preventing thermolysis: Precursor design for volatile copper compounds
,”
Chem. Commun.
48
,
10440
10442
(
2012
).
88.
J. P.
Coyle
,
J. J. M.
Hastie
,
J.
Mueller
, and
S. T.
Barry
, “
Novel monomeric copper precursors: Evaluation for low temperature thermal ALD
,” in
ALD Conference Dresden
(
2012
).
89.
J. P.
Coyle
,
G.
Dey
,
E. R.
Sirianni
,
M. L.
Kemell
,
G. P. A.
Yap
,
M.
Ritala
,
M.
Leskelä
,
S. D.
Elliott
, and
S. T.
Barry
, “
Deposition of copper by plasma-enhanced atomic layer deposition using a novel N-heterocyclic carbene precursor
,”
Chem. Mater.
25
,
1132
1138
(
2013
).
90.
J. P.
Coyle
,
E. R.
Sirianni
,
I.
Korobkov
,
G. P. A.
Yap
,
G.
Dey
, and
S. T.
Barry
, “
Study of monomeric copper complexes supported by N-heterocyclic and acyclic diamino carbenes
,”
Organometallics
36
,
2800
2810
(
2017
).
91.
D. J.
Hagen
,
I. M.
Povey
,
S.
Rushworth
,
J. S.
Wrench
,
L.
Keeney
,
M.
Schmidt
,
N.
Petkov
,
S. T.
Barry
,
J. P.
Coyle
, and
M. E.
Pemble
, “
Atomic layer deposition of Cu with a carbene-stabilized Cu(I)silylamide
,”
J. Chem. Mater. C
2
,
9205
9214
(
2014
).
92.
A. M.
James
,
R. K.
Laxman
,
F. R.
Fronczek
, and
A. W.
Maverick
, “
Phosphorescence and structure of a tetrameric copper(I)-amide cluster
,”
Inorg. Chem.
37
,
3785
3791
(
1998
).
93.
J. A. T.
Norman
, U.S. patent 70,205,422 b2 (17 April
2007
).
94.
S.
Voss
,
S.
Gandikota
,
L.-Y.
Chen
,
R.
Tao
,
D.
Cong
,
A.
Duboust
,
N.
Yoshida
, and
S.
Ramaswami
, “
Chemical studies of CVD Cu deposited on Ta and TaN barriers under various process conditions
,”
Microelectron. Eng.
50
,
501
508
(
2000
).
95.
C. J.
Jones
,
d and f Block Chemistry
(
Wiley Interscience
,
2002
).
96.
L.
Wu
and
E.
Eisenbraun
, “
Effects of hydrogen plasma treatments on the atomic layer deposition of copper
,”
Electrochem. Solid-State Lett.
11
,
H107
H110
(
2008
).
97.
C.
Jezewski
,
W. A.
Lanford
,
C. J.
Wiegand
,
J. P.
Singh
,
P.-I.
Wang
,
J. J.
Senkevich
, and
T.-M.
Lua
, “
Inductively coupled hydrogen plasma-assisted Cu ALD on metallic and dielectric surfaces
,”
J. Electrochem. Soc.
152
,
C60
C64
(
2005
).
98.
I. J.
Hsu
,
B. E.
McCandless
,
C.
Weiland
, and
B. G.
Willis
, “
Characterization of ALD copper thin films on palladium seed layers
,”
J. Vac. Sci. Technol. A
27
,
660
667
(
2009
).
99.
X.
Jiang
,
H.
Wang
,
J.
Qi
, and
B. G.
Willis
, “
In-situ spectroscopic ellipsometry study of copper selective-area atomic layer deposition on palladium
,”
J. Vac. Sci. Technol. A
32
,
041513
(
2014
).
100.
P.
Doppelt
, “
Why is coordination chemistry stretching the limits of micro-electronics technology?
,”
Coord. Chem. Rev.
178–180
,
1785
1809
(
1998
).
101.
S.-W.
Kang
,
J.-Y.
Yun
, and
Y. H.
Chang
, “
Growth of Cu metal films at room temperature using catalyzed reactions
,”
Chem. Mater.
22
,
1607
1609
(
2010
).
102.
Z.
Zhong
,
X.
Wang
,
J.
Ding
, and
N.
Yuan
, “
Nanometer-thick copper films grown by thermal atomic layer deposition
,”
Thin Solid Films
589
,
673
680
(
2015
).
103.
R. P.
Chaukulkar
,
N. F. W.
Thissen
,
V. R.
Rai
, and
S.
Agarwal
, “
Low temperature hydrogen plasma-assisted atomic layer deposition of copper studied using in situ infrared reflection absorption spectroscopy
,”
J. Vac. Sci. Technol. A
32
,
01A108
(
2014
).
104.
B.
Han
,
K.-M.
Park
,
K.
Park
,
J.-W.
Park
, and
W.-J.
Lee
, “
Atomic layer deposition of copper thin film using CuII(diketoiminate)2 and H2
,” in
IEEE International Interconnect Technology Conference, 2009, IITC 2009
(
2009
), pp.
173
174
.
105.
K.-M.
Park
,
J.-K.
Kim
,
B.
Han
,
W.-J.
Lee
,
J.
Kim
, and
H.-K.
Shin
, “
Influence of the deposition temperature on the properties of copper thin films prepared by alternating injection of Cu(ethylketoiminate)2 and H2 on a ruthenium substrate
,”
Microelectron. Eng.
89
,
27
30
(
2012
).
106.
J.
Mao
,
E.
Eisenbraun
,
V.
Omarjee
,
A.
Korolev
, and
C.
Dussarrat
, “
Scaling of copper seed layer thickness using plasma-enhanced ALD and an optimized precursor
,” in
2011 22nd Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC)
(
2011
), pp.
1
4
.
107.
J.
Mao
,
E.
Eisenbraun
,
V.
Omarjee
,
A.
Korolev
,
C.
Lansalot
, and
C.
Dussarrat
, “
Ultra-low temperature deposition of copper seed layers by PEALD
,”
Electrochem. Soc. Trans.
33
,
125
135
(
2010
).
108.
J.
Mao
,
E.
Eisenbraun
,
V.
Omarjee
,
A.
Korolev
, and
C.
Dussarrat
, “
Room temperature copper seed layer deposition by plasma-enhanced atomic layer deposition
,”
Electrochem. Soc. Trans.
35
,
125
132
(
2011
).
109.
D. J.
Hagen
,
J.
Connolly
,
R.
Nagle
,
I. M.
Povey
,
S.
Rushworth
,
P.
Carolan
,
P.
Ma
, and
M. E.
Pemble
, “
Plasma enhanced atomic layer deposition of copper: A comparison of precursors
,”
Surf. Coat. Technol.
230
,
3
12
(
2013
).
110.
T.
Gerfin
,
M.
Becht
, and
K.-H.
Dahmen
, “
Preparation of copper and copper oxide films by metal-organic chemical vapour deposition using β-ketoiminato complexes
,”
Mater. Sci. Eng. B
17
,
97
100
(
1993
).
111.
R.
Becker
,
A.
Devi
,
J.
Weiss
,
U.
Weckenmann
,
M.
Winter
,
C.
Kiener
,
H.-W.
Becker
, and
R. A.
Fischer
, “
A study on the metal-organic CVD of pure copper films from low cost copper(II) dialkylamino-2-propoxides: Tuning the thermal properties of the precursor by small variations of the ligand
,”
Chem. Vap. Deposition
9
,
149
156
(
2003
).
112.
R.
Becker
,
H.
Parala
,
F.
Hipler
,
O. P.
Tkachenko
,
K. V.
Klementiev
,
W.
Gruenert
,
H.
Wilmer
,
O.
Hinrichsen
,
M.
Muhler
,
A.
Birkner
,
C.
Woell
,
S.
Schaefer
, and
R. A.
Fischer
, “
MOCVD-loading of mesoporous siliceous matrices with Cu/ZnO: Supported catalysts for methanol synthesis
,”
Angew. Chem. Int. Ed.
43
,
2839
2842
(
2004
).
113.
R.
Becker
,
J.
Weiß
,
M.
Winter
,
K.
Merz
, and
R. A.
Fischer
, “
New heterometallic copper zinc alkoxides: Synthesis, structure properties and pyrolysis to Cu/ZnO composites
,”
J. Organomet. Chem.
630
,
253
262
(
2001
).
114.
B. H.
Lee
,
J. K.
Hwang
,
J. W.
Nam
,
S. U.
Lee
,
J. T.
Kim
,
S.-M.
Koo
,
A.
Baunemann
,
R. A.
Fischer
, and
M. M.
Sung
, “
Low-temperature atomic layer deposition of copper metal thin films: Self-limiting surface reaction of copper dimethylamino-2-propoxide with diethylzinc
,”
Angew. Chem. Int. Ed.
121
,
4606
4609
(
2009
).
115.
T. J.
Knisley
,
T. C.
Ariyasena
,
T.
Sajavaara
,
M. J.
Saly
, and
C. H.
Winter
, “
Low temperature growth of high purity, low resistivity copper films by atomic layer deposition
,”
Chem. Mater.
23
,
4417
4419
(
2011
).
116.
R.
Becker
, “
Metallorganische Precursorchemie für das Cu/ZnO system
,” PhD thesis (
Ruhr-Universität Bochum
,
2003
).
117.
M.
Becker
,
R. N.
d'Alnoncourt
,
K.
Kahler
,
J.
Sekulic
,
R. A.
Fischer
, and
M.
Muhler
, “
The synthesis of highly loaded Cu/Al2O3 and Cu/ZnO/Al2O3 catalysts by the two-step CVD of Cu(II)diethylamino-2-propoxide in a fluidized-bed reactor
,”
Chem. Vap. Deposition
16
,
85
92
(
2010
).
118.
K.
Väyrynen
,
K.
Mizohata
,
J.
Räisänen
,
D.
Peeters
,
A.
Devi
,
M.
Ritala
, and
M.
Leskelä
, “
Low-temperature atomic layer deposition of low-resistivity copper thin films using Cu(dmap)2 and tertiary butyl hydrazine
,”
Chem. Mater.
29
,
6502
6510
(
2017
).
119.
Y.
Kim
,
C. K.
Kim
,
T.-M.
Chung
,
S. L.
Lee
,
K.-S.
An
,
T. S.
Yang
, and
H. S.
Jang
, “
Volatile copper aminoalkoxide complex and deposition of copper thin film using same
,” U.S. patent US6,982,341 b1 (3 January
2006
).
120.
J.-H.
Park
,
D.-S.
Han
,
Y.-J.
Kang
,
S.-R.
Shin
, and
J.-W.
Park
, “
Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of CuAl alloy
,”
J. Vac. Sci. Technol. A
32
,
01A131
(
2014
).
121.
D.-Y.
Moon
,
D.-S.
Han
,
J.-H.
Park
,
S.-Y.
Shin
,
J.-W.
Park
,
B. M.
Kim
, and
J. Y.
Cho
, “
Plasma-enhanced atomic layer deposition of CuMn films with formation of a MnSixOy barrier layer
,”
Thin Solid Films
521
,
146
149
(
2012
).
122.
T.
Yoshino
,
M.
Enzu
,
A.
Sakurai
,
A.
Nishida
, and
M.
Okabe
, “
Copper compound, starting material for forming thin film, and method for manufacturing thin film
,” U.S. patent US20170044188a1 (16 February
2017
).
123.
I.
Giebelhaus
,
E.
Varechkina
,
T.
Fischer
,
M.
Rumyantseva
,
V.
Ivanov
,
A.
Gaskov
,
J. R.
Morante
,
J.
Arbiol
,
W.
Tyrra
, and
S.
Mathur
, “
One-dimensional CuOSnO2 pn heterojunctions for enhanced detection of H2S
,”
J. Mater. Chem. A
1
,
11261
(
2013
).
124.
A.
Sasinska
,
D.
Ritschel
,
L.
Czympiel
, and
S.
Mathur
, “
Metallic copper thin films grown by plasma-enhanced atomic layer deposition of air stable precursors
,”
Adv. Eng. Mater.
19
,
1600593
(
2016
).
125.
V.
Krisyuk
,
I.
Baidina
,
I.
Korolkov
,
P.
Semyannikov
,
P.
Stabnikov
,
S.
Trubin
, and
A.
Turgambaeva
, “
New volatile heteroleptic complex of copper(II): Comparison of two polymorphs
,”
Polyhedron
49
,
1
6
(
2013
).
126.
V. V.
Krisyuk
,
S. V.
Sysoev
,
Y. M.
Rumyantsev
,
S. A.
Prokhorova
,
E. V.
Maximovskiy
,
M. L.
Kosinova
, and
I. K.
Igumenov
, “
New heteroleptic copper(II) complexes as MOCVD precursors
,”
Phys. Proc.
46
,
174
182
(
2013
).
127.
B.
Vidjayacoumar
,
D. J. H.
Emslie
,
S. B.
Clendenning
,
J. M.
Blackwell
,
J. F.
Britten
, and
A.
Rheingold
, “
Investigation of AlMe3, BEt3, and ZnEt2 as co-reagents for low-temperature copper metal ALD/pulsed-CVD
,”
Chem. Mater.
22
,
4844
4853
(
2010
).
128.
T. H.
Baum
, “
Laser chemical vapor deposition of gold: The effect of organometallic structure
,”
J. Electrochem. Soc.
134
,
2616
2619
(
1987
).
129.
V. L.
Young
,
D. F.
Cox
, and
M. E.
Davis
, “
Metalorganic chemical vapor deposition of copper from copper(II) dimethylamino ethoxide
,”
Chem. Mater.
5
,
1701
1709
(
1993
).
130.
G. M.
Whitesides
,
J. S.
Sadowski
, and
J.
Lilburn
, “
Copper (I) alkoxides. Synthesis, reactions, and thermal decomposition
,”
J. Am. Chem. Soc.
96
,
2829
2835
(
1974
).
131.
Y.
Chi
,
P.-F.
Hsu
,
T.-W.
Lin
,
C.-S.
Liu
, and
A. J.
Carty
, “
Self-reducible Cu(II) source reagents for chemical vapor deposition of copper metal
,” U.S. patent US6,369,256 b1 (9 April
2002
).
132.
T. H.
Baum
,
G.
Bhandari
, and
C.
Xu
, “
Chemical vapor deposition precursors for deposition of copper
,” U.S. patent US6,822,107 b1 (23 November
2004
).
133.
D. J.
Hagen
,
J.
Connolly
,
I. M.
Povey
,
S.
Rushworth
, and
M. E.
Pemble
, “
Island coalescence during film growth: An underestimated limitation of Cu ALD
,”
Adv. Mater. Interfaces
4
,
1700274
(
2017
).
134.
A.
Niskanen
,
A.
Rahtu
,
T.
Sajavaara
,
K.
Arstila
,
M.
Ritala
, and
M.
Leskelä
, “
Radical-enhanced atomic layer deposition of metallic copper thin films
,”
J. Electrochem. Soc.
152
,
G25
G28
(
2005
).
135.
L.
Wu
and
E.
Eisenbraun
, “
Integration of atomic layer deposition-grown copper seed layers for Cu electroplating applications
,”
J. Electrochem. Soc.
156
,
H734
H739
(
2009
).
136.
R.
Solanki
and
B.
Pathangey
, “
Atomic layer deposition of copper seed layers
,”
Electrochem. Solid-State Lett.
3
,
479
480
(
2000
).
137.
T. S.
Tripathi
and
M.
Karppinen
, “
Efficient process for direct atomic layer deposition of metallic Cu thin films based on an organic reductant
,”
Chem. Mater.
29
,
1230
1235
(
2017
).
138.
B.
Vidjayacoumar
,
D. J. H.
Emslie
,
J. M.
Blackwell
,
S. B.
Clendenning
, and
J. F.
Britten
, “
Solution reactions of a bis(pyrrolylaldiminate)copper(II) complex with peralkyl zinc, aluminum, and boron reagents: Investigation of the pathways responsible for copper metal deposition
,”
Chem. Mater.
22
,
4854
4866
(
2010
).
139.
L. C.
Kalutarage
,
S. B.
Clendenning
, and
C. H.
Winter
, “
Low-temperature atomic layer deposition of copper films using borane dimethylamine as the reducing co-reagent
,”
Chem. Mater.
26
,
3731
3738
(
2014
).
140.
L.
Wu
,
W.
Zeng
, and
E.
Eisenbraun
, “
Integration of electrochemically deposited Cu on plasma enhanced atomic layer deposition-grown Cu seed layers
,”
Electrochem. Soc. Trans.
11
,
67
78
(
2007
).
141.
G. A. T.
Eyck
,
J. J.
Senkevich
,
F.
Tang
,
D.
Liu
,
S.
Pimanpang
,
T.
Karaback
,
G.-C.
Wang
,
T.-M.
Lu
,
C.
Jezewski
, and
W. A.
Lanfield
, “
Plasma-assisted atomic layer deposition of palladium
,”
Chem. Vap. Deposition
11
,
60
66
(
2005
).
142.
H.
Shimizu
,
K.
Sakoda
,
T.
Momose
,
M.
Koshi
, and
Y.
Shimogaki
, “
Hot-wire-assisted atomic layer deposition of a high quality cobalt film using cobaltocene: Elementary reaction analysis on NHx radical formation
,”
J. Vac. Sci. Technol. A
30
,
01A144
(
2012
).
143.
H. C. M.
Knoops
,
E.
Langereis
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
, “
Conformality of plasma-assisted ALD: Physical processes and modeling
,”
J. Electrochem. Soc.
157
,
G241
C249
(
2010
).
144.
Z.-K.
Tan
,
K.
Johnson
,
Y.
Vaynzof
,
A. A.
Bakulin
,
L.-L.
Chua
,
P. K. H.
Ho
, and
R. H.
Friend
, “
Suppressing recombination in polymer photovoltaic devices via energy-level cascades
,”
Adv. Mater.
25
,
4131
4138
(
2013
).
145.
D.
Goodman
,
T. E.
Madey
,
M.
Ono
, and
J. T.
Yates
, Jr.
, “
Interaction of hydrogen, carbon monoxide, and formaldehyde with ruthenium
,”
J. Appl. Phys.
50
,
279
290
(
1977
).
146.
G.
Ertl
and
J.
Tornau
, “
The catalytic decomposition of formaldehyde on palladium
,”
Z. Phys. Chem. Neue Folge
104
,
301
308
(
1977
).
147.
S.
Delgado
,
A.
Munoz
,
M.
Medina
, and
C.
Pastor
, “
Synthesis and structural characterization of copper(II)bishexafluoroacetylacetonate complexes with N-donor ligands
,”
Inorg. Chim. Acta
359
,
109
117
(
2006
).
148.
L. L.
Funcki
and
T. R.
Ortolano
, “
The effects of axial ligation on the ligand field spectra of copper(II) beta-diketonates
,”
Inorg. Chem.
7
,
567
573
(
1968
).
149.
G.
Dey
and
S. D.
Elliott
, “
Mechanism for the atomic layer deposition of copper using diethylzinc as the reducing agent: A density functional theory study using gas-phase molecules as a model
,”
J. Phys. Chem. A
116
,
8893
8901
(
2012
).
150.
G.
Klivenyi
,
I.
Kovacs
, and
F.
Solymosi
, “
Thermal and photo-induced dissociation of (C2H5)2Zn on Rh(111) surface
,”
Surf. Sci.
442
,
115
130
(
1999
).
151.
I.
Kovacs
,
N.
Iost
, and
F.
Solymosi
, “
Thermal and photo-induced dissociation of (C2H5)2Zn to yield C2H5 on the Pd(100) surface
,”
J. Chem. Phys.
101
,
4236
4247
(
1994
).
152.
M. A.
Rueter
and
J. M.
Vohs
, “
Adsorption and reaction of diethylzinc on GaAs(100)
,”
J. Vac. Sci. Technol. B
10
,
2163
2169
(
1992
).
153.
M.
Rueter
and
J.
Vohs
, “
The surface reactions of ethyl groups on Si (100) formed via dissociation of adsorbed diethylzinc
,”
Surf. Sci.
262
,
42
50
(
1992
).
154.
H.
Dumont
,
A.
Marbeuf
,
J.-E.
Bouree
, and
O.
Gorochov
, “
Pyrolysis pathways and kinetics of thermal decomposition of diethylzinc and diethyltellurium studied by mass spectrometry
,”
J. Mater. Chem.
3
,
1075
1079
(
1993
).
155.
G.
Dey
,
J. S.
Wrench
,
D. J.
Hagen
,
L.
Keeneya
, and
S. D.
Elliott
, “
Quantum chemical and solution phase evaluation of metallocenes as reducing agents for the prospective atomic layer deposition of copper
,”
Dalton Trans.
44
,
10188
10199
(
2015
).
156.
T.
Törndahl
,
M.
Ottosson
, and
J.-O.
Carlsson
, “
Growth of copper(I) nitride by ALD using copper(II) hexafluoroacetylacetonate, water, and ammonia as precursors
,”
J. Electrochem. Soc.
153
,
C146
C151
(
2006
).
157.
J.-M.
Park
,
K.
Jin
,
B.
Han
,
M. J.
Kim
,
J.
Jung
,
J. J.
Kim
, and
W.-J.
Lee
, “
Atomic layer deposition of copper nitride film and its application to copper seed layer for electrodeposition
,”
Thin Solid Films
556
,
434
439
(
2014
).
158.
S. L.
Cohen
,
M.
Liehr
, and
S.
Kasi
, “
Mechanisms of copper chemical vapor deposition
,”
Appl. Phys. Lett.
60
,
50
52
(
1992
).
159.
J.
Mulley
,
R.
Bennett
, and
V.
Dhanak
, “
Adsorption, orientation and thermal decomposition of copper(II) hexafluoroacetylacetonate on rutile TiO2(110)
,”
Surf. Sci.
602
,
2967
2974
(
2008
).
160.
D. G.
Rayner
,
J. S.
Mulley
, and
R. A.
Bennett
, “
Copper deposition on TiO2 from copper(II)hexafluoroacetylacetonate
,”
J. Vac. Sci. Technol. A
31
,
01A121
(
2013
).
161.
P. J.
Pallister
and
S. T.
Barry
, “
Surface chemistry of group 11 atomic layer deposition precursors on silica using solid-state nuclear magnetic resonance spectroscopy
,”
J. Chem. Phys.
146
,
052812
(
2017
).
162.
H.
Kim
,
T.
Koseki
,
T.
Ohba
,
T.
Ohta
,
Y.
Kojima
,
H.
Sato
, and
Y.
Shimogaki
, “
Cu wettability and diffusion barrier property of Ru thin film for Cu metallization
,”
J. Electrochem. Soc.
152
,
G594
G600
(
2005
).
163.
D. J.
Hagen
, “
Atomic layer deposition of copper for CMOS interconnects
,” Ph.D. thesis (
University College Cork
,
2014
).
164.
M.
Dai
,
J.
Kwon
,
M. D.
Halls
,
R. G.
Gordon
, and
Y. J.
Chabal
, “
Surface and interface processes during atomic layer deposition of copper on silicon oxide
,”
Langmuir
26
,
3911
3917
(
2010
).
165.
M.
Dai
,
J.
Kwon
,
E.
Langereis
,
L.
Wielunski
,
Y. J.
Chabal
,
Z.
Li
, and
R. G.
Gordon
, “
In-situ FTIR study of atomic layer deposition (ALD) of copper metal films
,”
Electrochem. Soc. Trans.
11
,
91
101
(
2007
).
166.
Q.
Ma
,
H.
Guo
,
R. G.
Gordon
, and
F.
Zaera
, “
Uptake of copper acetamidinate ALD precursors on nickel surfaces
,”
Chem. Mater.
22
,
352
359
(
2010
).
167.
Q.
Ma
and
F.
Zaera
, “
Chemistry of Cu(acac)2 on Ni(110) and Cu(110) surfaces: Implications for atomic layer deposition processes
,”
J. Vac. Sci. Technol. A
31
,
01A112
(
2013
).
168.
T.
Kim
,
Y.
Yao
,
J. P.
Coyle
,
S. T.
Barry
, and
F.
Zaera
, “
Thermal chemistry of Cu(I)-iminopyrrolidinate and Cu(I)-guanidinate atomic layer deposition (ALD) precursors on Ni(110) single-crystal surfaces
,”
Chem. Mater.
25
,
3630
3639
(
2013
).
169.
Y.
Yao
,
J. P.
Coyle
,
S. T.
Barry
, and
F.
Zaera
, “
Thermal decomposition of copper iminopyrrolidinate atomic layer deposition (ALD) precursors on silicon oxide surfaces
,”
J. Phys. Chem. C
120
,
14149
14156
(
2016
).
170.
E.
Machado
,
M.
Kaczmarski
,
P.
Ordejo
,
D.
Garg
,
J.
Norman
, and
H.
Cheng
, “
First-principles analyses and predictions on the reactivity of barrier layers of Ta and TaN toward organometallic precursors for deposition of copper films
,”
Langmuir
21
,
7608
7614
(
2005
).
171.
C. G.
Granqvist
and
R. A.
Buhrman
, “
Statistical model for coalescence of islands in discontinuous films
,”
Appl. Phys. Lett.
27
,
693
694
(
1975
).
172.
C. G.
Granqvist
and
R. A.
Buhrman
, “
Ultrafine metal particles
,”
J. Appl. Phys.
47
,
2200
2219
(
1976
).
173.
A.
Niskanen
,
T.
Hatanpaa
,
K.
Arstila
,
M.
Leskelä
, and
M.
Ritala
, “
Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylates
,”
Chem. Vap. Deposition
13
,
408
413
(
2007
).
174.
M.
Kariniemi
,
J.
Niinistö
,
T.
Hatanpaa
,
M.
Kemell
,
T.
Sajavaara
,
M.
Ritala
, and
M.
Leskelä
, “
Plasma-enhanced atomic layer deposition of silver thin films
,”
Chem. Mater.
23
,
2901
2907
(
2011
).
175.
M.
Mäkelä
,
T.
Hatanpää
,
K.
Mizohata
,
K.
Meinander
,
J.
Niinistö
,
J.
Räisänen
,
M.
Ritala
, and
M.
Leskelä
, “
Studies on thermal atomic layer deposition of silver thin films
,”
Chem. Mater.
29
,
2040
2045
(
2017
).
176.
M. M.
Minjauw
,
E.
Solano
,
S. P.
Sree
,
R.
Asapu
,
M.
Van Daele
,
R. K.
Ramachandran
,
G.
Heremans
,
S. W.
Verbruggen
,
S.
Lenaerts
,
J. A.
Martens
,
C.
Detavernier
, and
J.
Dendooven
, “
Plasma-enhanced atomic layer deposition of silver using Ag(fod)(PEt3) and NH3-plasma
,”
Chem. Mater.
29
,
7114
7121
(
2017
).
177.
P. R.
Chalker
,
S.
Romani
,
P. A.
Marshall
,
M. J.
Rosseinsky
,
S.
Rushworth
, and
P. A.
Williams
, “
Liquid injection atomic layer deposition of silver nanoparticles
,”
Nanotechnology
21
,
405602
(
2010
).
178.
Z.
Golrokhi
,
P. A.
Marshall
,
S.
Romani
,
S.
Rushworth
,
P. R.
Chalker
, and
R. J.
Potter
, “
The influence of tertiary butyl hydrazine as a co-reactant on the atomic layer deposition of silver
,”
Appl. Surf. Sci.
399
,
123
131
(
2017
).
179.
S.
Samoilenkov
,
M.
Stefan
,
G.
Wahl
,
S.
Paramonov
,
N.
Kuzmina
, and
A.
Kaul
, “
Low-temperature MOCVD of conducting, micrometer-thick, silver films
,”
Chem. Vap. Deposition
8
,
74
78
(
2002
).
180.
E.
Szlyk
,
P.
Piszczek
,
A.
Grodzicki
,
M.
Chaberski
,
A.
Golin'ski
,
J.
Szatkowski
, and
T.
Blaszczyk
, “
CVD of Ag(I) complexes with tertiary phosphines and perfluorinated carboxylates - a new class of silver precursors
,”
Chem. Vap. Deposition
7
,
111
116
(
2001
).
181.
N.
Boysen
,
T.
Hasselmann
,
S.
Karle
,
D.
Rogalla
,
D.
Theirich
,
M.
Winter
,
T.
Riedl
, and
A.
Devi
, “
An N-heterocyclic carbene based silver precursor for plasma-enhanced spatial atomic layer deposition of silver thin films at atmospheric pressure
,”
Angew. Chem.
57
,
16224
16227
(
2018
).
182.
P.
Piszczek
,
E.
Szlyk
,
M.
Chaberski
,
C.
Taeschner
,
A.
Leonhardt
,
W.
Bala
, and
K.
Bartkiewicz
, “
Characterization of silver trimethylacetate complexes with tertiary phosphines as CVD precursors of thin silver films
,”
Chem. Vap. Deposition
11
,
53
59
(
2005
).
183.
A. A.
Amusan
,
B.
Kalkofen
,
H.
Gargouri
,
K.
Wandel
,
C.
Pinnow
,
M.
Lisker
, and
E. P.
Burte
, “
Ag films grown by remote plasma enhanced atomic layer deposition on different substrates
,”
J. Vac. Sci. Technol. A
34
,
01A126
(
2016
).
184.
F. J.
van den Bruele
,
M.
Smets
,
A.
Illiberi
,
Y.
Creyghton
,
P.
Buskens
,
F.
Roozeboom
, and
P.
Poodt
, “
Atmospheric pressure plasma enhanced spatial ALD of silver
,”
J. Vac. Sci. Technol. A
33
,
01A131
(
2015
).
185.
H.
Brune
, “
Microscopic view of epitaxial metal growth: Nucleation and aggregation
,”
Surf. Sci. Rep.
31
,
125
229
(
1998
).
186.
L.
Gao
,
P.
Haerter
,
C.
Linsmeier
,
A.
Wiltner
,
R.
Emling
, and
D.
Schmitt-Landsiedel
, “
Silver metal organic chemical vapor deposition for advanced silver metallization
,”
Microelectron. Eng.
82
,
296
300
(
2005
).
187.
K.-M.
Chi
,
K.-H.
Chen
,
S.-M.
Peng
, and
G.-H.
Lee
, “
Synthesis and characterization of (beta-diketonato)silver vinyltriethylsilane compounds and their application to CVD of silver thin films. crystal structure of the (2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedionato)silver vinyltriethylsilane dimer
,”
Organometallics
15
,
2575
2578
(
1996
).
188.
L.
Zanotto
,
F.
Benetollo
,
M.
Natali
,
G.
Rossetto
,
P.
Zanella
,
S.
Kaciulis
, and
A.
Mezzi
, “
Facile synthesis and characterization of new beta-diketonate silver complexes. single-crystal structures of (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(2,2'-hipyridine)silver(l) and (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N,N′,N′-tetramethylethylenediamine)silver(l) and their use as precursors in the MOCVD of silver films
,”
Chem. Vap. Deposition
10
,
207
213
(
2004
).
189.
A.
Grodzicki
,
I.
Lakomska
,
P.
Piszczek
,
I.
Szymanska
, and
E.
Szlyk
, “
Copper(I), silver(I) and gold(I) carboxylate complexes as precursors in chemical vapour deposition of thin metallic films
,”
Coord. Chem. Rev.
249
,
2239
2258
(
2005
).
190.
D. J.
Mandia
,
M. B. E.
Griffiths
,
W.
Zhou
,
P. G.
Gordon
,
J.
Albert
, and
S. T.
Barry
, “
In situ monitoring by a tilted fiber bragg grating optical probe: Probing nucleation in chemical vapour deposition of gold
,”
Phys. Proc.
46
,
12
20
(
2013
).
191.
R. G.
Parkhomenko
,
A. I.
Plekhanov
,
A.
Kuchyanov
,
S. V.
Trubin
,
B. M.
Kuchunov
, and
L. K.
Igumenov
, “
Gold nanostructure formation in the photonic crystal matrix by means of MOCVD technique
,”
Surf. Coat. Technol.
230
,
279
283
(
2013
).
192.
R. G.
Parkhomenko
,
A. E.
Turgambaeva
,
N. B.
Morozova
,
S. V.
Trubin
,
V. V.
Krisyuk
, and
I. K.
Igumenov
, “
New liquid precursors for the metal-organic CVD of gold films
,”
Chem. Vap. Deposition
19
,
38
44
(
2013
).
193.
A. E.
Turgambaeva
,
G.
Zharkova
,
P.
Semyannikov
,
V. V.
Krisyuk
,
T.
Koretskaya
,
S.
Trubin
,
B.
Kuchumov
, and
I.
Igumenov
, “
Oxygen-free precursor for chemical vapor deposition of gold films: Thermal properties and decomposition mechanism
,”
Gold Bull.
44
,
177
184
(
2011
).
194.
A.
Turgambaeva
,
R.
Parkhomenko
,
V.
Aniskin
,
V.
Krisyuk
, and
I.
Igumenov
, “
A comparative study of a series of dimethylgold(III) complexes with S,S chelating ligands used as MOCVD precursors
,”
Phys. Proc.
46
,
167
173
(
2013
).
195.
M.
Mäkelä
,
T.
Hatanpää
,
K.
Mizohata
,
J.
Räisänen
,
M.
Ritala
, and
M.
Leskelä
, “
Thermal atomic layer deposition of continuous and highly conducting gold thin films
,”
Chem. Mater.
29
,
6130
6136
(
2017
).
196.
M. B. E.
Griffiths
,
P. J.
Pallister
,
D. J.
Mandia
, and
S. T.
Barry
, “
Atomic layer deposition of gold metal
,”
Chem. Mater.
28
,
44
46
(
2016
).
197.
M. M. B.
Holl
,
P. F.
Seidler
,
S. P.
Kowalczyk
, and
F. R.
McFeely
, “
Surface reactivity of alkylgold(I) complexes: Substrate-selective chemical vapor deposition of gold from RAuP(CH3)3 (R = CH2CH3, CH3) at remarkably low temperatures
,”
Inorg. Chem.
33
,
510
517
(
1994
).
198.
J. L.
Davidson
,
P.
John
,
P. G.
Roberts
,
M. G.
Jubber
, and
J. I. B.
Wilson
, “
Laser photochemical deposition of gold from trialkylphosphine alkylgold (I) complexes
,”
Chem. Mater.
6
,
1712
1718
(
1994
).
199.
R. D.
Sanner
,
J. J. H.
Satcher
, and
M. W.
Droege
, “
Synthesis and characterization of (trifluoromethyl)gold complexes
,”
Organometallics
8
,
1498
1506
(
1989
).
200.
N. H.
Dryden
,
J. G.
Shapter
,
L. L.
Coatsworth
,
P. R.
Norton
, and
R. J.
Puddephatt
, “
[CF3Au(C≡NMe)] as a precursor for CVD of gold
,”
Chem. Mater.
4
,
979
981
(
1992
).
201.
P. D.
Tran
and
P.
Doppelt
, “
Gold CVD using trifluorophosphine gold(I) chloride precursor and its toluene solutions
,”
J. Electrochem. Soc.
154
,
D520
D525
(
2007
).
202.
E.
Szlyk
,
P.
Piszczek
,
I.
Lakomska
,
A.
Grodzicki
,
J.
Szatkowski
, and
T.
Blaszczyk
, “
Au(I) and Ag(I) complexes with tertiary phosphines and perfluorinated carboxylates as precursors for CVD of gold and silver
,”
Chem. Vap. Deposition
6
,
105
108
(
2000
).
203.
S.
Graells
,
R.
Alcubilla
,
G.
Badenes
, and
R.
Quidant
, “
Growth of plasmonic gold nanostructures by electron beam induced deposition
,”
Appl. Phys. Lett.
91
,
121112
(
2007
).
204.
M.
Okumura
,
S.
Nakamura
,
S.
Tsubota
,
T.
Nakamura
,
M.
Azuma
, and
M.
Haruta
, “
Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2
,”
Catal. Lett.
51
,
53
58
(
1998
).
205.
M.
Tanaka
,
M.
Shimojo
,
M.
Han
,
K.
Mitsuishi
, and
K.
Furuya
, “
Ultimate sized nano-dots formed by electron beam-induced deposition using an ultrahigh vacuum transmission electron microscope
,”
Surf. Interface Anal.
37
,
261
264
(
2005
).
206.
I.
Utke
,
B.
Dwir
,
K.
Leifer
,
F.
Cicoira
,
P.
Doppelt
,
P.
Hoffmann
, and
E.
Kapon
, “
Electron beam induced deposition of metallic tips and wires for microelectronics applications
,”
Microelectron. Eng.
53
,
261
264
(
2000
).
207.
J. D.
Wnuk
,
J. M.
Gorham
,
S. G.
Rosenberg
,
W. F.
van Dorp
,
T. E.
Madey
,
C. W.
Hagen
, and
D. H.
Fairbrother
, “
Electron beam irradiation of dimethyl-(acetylacetonate) gold(III)adsorbed onto solid substrates
,”
J. Appl. Phys.
107
,
054301
(
2010
).
208.
S. T.
Christensen
,
J. W.
Elam
,
F. A.
Rabuffetti
,
Q.
Ma
,
S. J.
Weigand
,
B.
Lee
,
S.
Seifert
,
P. C.
Stair
,
K. R.
Poeppelmeier
,
M. C.
Hersam
, and
M. J.
Bedzyk
, “
Controlled growth of platinum nanoparticles on strontium titanate nanocubes by atomic layer deposition
,”
Small
5
,
750
757
(
2009
).
209.
H. C. M.
Knoops
,
A. J. M.
Mackus
,
M. E.
Donders
,
M. C. M.
van de Sanden
,
P. H. L.
Notten
, and
W. M. M.
Kessels
, “
Remote plasma and thermal ALD of platinum and platinum oxide films
,”
Electrochem. Soc. Trans.
16
,
209
218
(
2008
).
210.
W.
Zhang
,
T.
Qiu
,
X.-P.
Qu
, and
P. K.
Chu
, “
Atomic layer deposition of platinum thin films on anodic aluminium oxide templates as surface-enhanced raman scattering substrates
,”
Vacuum
89
,
257
260
(
2013
).
211.
A. J. M.
Mackus
,
N.
Leick
,
L.
Baker
, and
W. M. M.
Kessels
, “
Catalytic combustion and dehydrogenation reactions during atomic layer deposition of platinum
,”
Chem. Mater.
24
,
1752
1761
(
2012
).
212.
J.
Hämäläinen
,
F.
Munnik
,
M.
Ritala
, and
M.
Leskelä
, “
Atomic layer deposition of platinum oxide and metallic platinum thin films from Pt(acac)2 and ozone
,”
Chem. Mater.
20
,
6840
6846
(
2008
).
213.
S. M.
Geyer
,
R.
Methaapanon
,
B.
Shong
,
P. A.
Pianetta
, and
S. F.
Bent
, “
In vacuo photoemission studies of platinum atomic layer deposition using synchrotron radiation
,”
Phys. Chem. Lett.
4
,
176
179
(
2013
).
214.
J.
Heo
,
S.-J.
Won
,
D.
Eom
,
S. Y.
Lee
,
Y. B.
Ahn
,
C. S.
Hwang
, and
H. J.
Kim
, “
The role of the methyl and hydroxyl groups of low-k dielectric films on the nucleation of ruthenium by ALD
,”
Electrochem. Solid-State Lett.
11
,
H210
H213
(
2008
).
215.
K. J.
Park
,
J. M.
Doub
,
T.
Gougousi
, and
G. N.
Parsons
, “
Microcontact patterning of ruthenium gate electrodes by selective area atomic layer deposition
,”
Appl. Phys. Lett.
86
,
051903
(
2005
).
216.
H.
Wang
,
R. G.
Gordon
,
R.
Alvis
, and
R. M.
Ulfig
, “
Atomic layer deposition of ruthenium thin films from an amidinate precursor
,”
Chem. Vap. Deposition
15
,
312
319
(
2009
).
217.
S.-H.
Choi
,
T.
Cheon
,
S.-H.
Kim
,
D.-H.
Kang
,
G.-S.
Park
, and
S.
Kim
, “
Thermal atomic layer deposition (ALD) of Ru films for Cu direct plating
,”
J. Electrochem. Soc.
158
,
D351
D356
(
2011
).
218.
I. K.
Igumenov
,
P. P.
Semyannikov
,
S. V.
Trubin
,
N. B.
Morozova
,
N. V.
Gelfond
,
A. V.
Mischenko
, and
J. A.
Norman
, “
Approach to control deposition of ultra thin films from metal organic precursors: Ru deposition
,”
Surf. Coat. Technol.
201
,
9003
9008
(
2007
).
219.
S.-S.
Yim
,
D.-J.
Lee
,
K.-S.
Kim
,
S.-H.
Kim
,
T.-S.
Yoon
, and
K.-B.
Kim
, “
Nucleation kinetics of Ru on silicon oxide and silicon nitride surfaces deposited by atomic layer deposition
,”
J. Appl. Phys.
103
,
113509
(
2008
).
220.
T.
Aaltonen
,
M.
Ritala
,
K.
Arstila
,
J.
Keinonen
, and
M.
Leskelä
, “
Atomic layer deposition of ruthenium thin films from Ru(thd)3 and oxygen
,”
Chem. Vap. Deposition
10
,
215
219
(
2004
).
221.
R.
Methaapanon
,
S. M.
Geyer
,
H. B. R.
Lee
, and
S. F.
Bent
, “
The low temperature atomic layer deposition of ruthenium and the effect of oxygen exposure
,”
J. Mater. Chem.
22
,
25154
(
2012
).
222.
J.
Hämäläinen
,
T.
Sajavaara
,
E.
Puukilainen
,
M.
Ritala
, and
M.
Leskelä
, “
Atomic layer deposition of osmium
,”
Chem. Mater.
24
,
55
60
(
2012
).
223.
K. J.
Park
and
G. N.
Parsons
, “
Selective area atomic layer deposition of rhodium and effective work function characterization in capacitor structures
,”
Appl. Phys. Lett.
89
,
043111
(
2006
).
224.
T.
Aaltonen
,
M.
Ritala
, and
M.
Leskelä
, “
Ald of rhodium thin films from Rh(acac)3 and oxygen
,”
Electrochem. Solid-State Lett.
8
,
C99
C101
(
2005
).
225.
T.
Aaltonen
,
M.
Ritala
,
V.
Sammelselg
, and
M.
Leskelä
, “
Atomic layer deposition of iridium thin films
,”
J. Electrochem. Soc.
151
,
G489
G492
(
2004
).
226.
E.
Färm
,
M.
Kemell
,
M.
Ritala
, and
M.
Leskelä
, “
Self-assembled octadecyltrimethoxysilane monolayers enabling selective-area atomic layer deposition of iridium
,”
Chem. Vap. Deposition
12
,
415
417
(
2006
).
227.
S.-W.
Kim
,
S.-H.
Kwon
,
D.-K.
Kwak
, and
S.-W.
Kang
, “
Phase control of iridium and iridium oxide thin films in atomic layer deposition
,”
J. Appl. Phys.
103
,
023517
(
2008
).
228.
S. D.
Elliott
, “
Mechanism, products, and growth rate of atomic layer deposition of noble metals
,”
Langmuir
26
,
9179
9182
(
2010
).
229.
A.
Salaun
,
S. B.
Newcomb
,
I. M.
Povey
,
M.
Salaun
,
L.
Keeney
,
A.
O'Mahony
, and
M. E.
Pemble
, “
Nucleation and chemical transformation of RuO2 films grown on (100) Si substrates by atomic layer deposition
,”
Chem. Vap. Deposition
17
,
114
122
(
2011
).
230.
Y.-L.
Chen
,
C.-C.
Hsu
,
Y.-H.
Song
,
Y.
Chi
,
A. J.
Carty
,
S.-M.
Peng
, and
G.-H.
Lee
, “
Iridium metal thin films and patterned IrO2 nanowires deposited using iridium(I) carbonyl precursors
,”
Chem. Vap. Deposition
12
,
442
447
(
2006
).
231.
J.
Hämäläinen
,
E.
Puukilainen
,
M.
Kemell
,
L.
Costelle
,
M.
Ritala
, and
M.
Leskelä
, “
Atomic layer deposition of iridium thin films by consecutive oxidation and reduction steps
,”
Chem. Mater.
21
,
4868
4872
(
2009
).
232.
T.
Aaltonen
,
P.
Alen
,
M.
Ritala
, and
M.
Leskelä
, “
Ruthenium thin films grown by atomic layer deposition
,”
Chem. Vap. Deposition
9
,
45
49
(
2003
).
233.
S. K.
Kim
,
J. H.
Han
,
G. H.
Kim
, and
C. S.
Hwang
, “
Investigation on the growth initiation of Ru thin films by atomic layer deposition
,”
Chem. Mater.
22
,
2850
2856
(
2010
).
234.
H.-B.-R.
Lee
,
K. L.
Pickrahn
, and
S. F.
Bent
, “
Effect of O3 on growth of Pt by atomic layer deposition
,”
J. Phys. Chem. C
118
,
12325
12332
(
2014
).
235.
S. K.
Park
,
R.
Kanjolia
,
J.
Anthis
,
R.
Odedra
,
N.
Boag
,
L.
Wielunski
, and
Y. J.
Chabal
, “
Atomic layer deposition of Ru/RuO2 thin films studied by in situ infrared spectroscopy
,”
Chem. Mater.
22
,
4867
4878
(
2010
).
236.
N.
Leick
,
R. O. F.
Verkuijlen
,
L.
Lamagna
,
E.
Langereis
,
S.
Rushworth
,
F.
Roozeboom
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
, “
Atomic layer deposition of Ru from CpRu(CO)2Et using O2 gas and O2 plasma
,”
J. Vac. Sci. Technol. A
29
,
021016
(
2011
).
237.
M. M.
Minjauw
,
J.
Dendooven
,
B.
Capon
,
M.
Schaekers
, and
C.
Detavernier
, “
Near room temperature plasma enhanced atomic layer deposition of ruthenium using the RuO4-precursor and H2-plasma
,”
J. Mater. Chem. C
3
,
4848
4851
(
2015
).
238.
J.
Gatineau
,
K.
Yanagita
, and
C.
Dussarrat
, “
A new RuO4 solvent solution for pure ruthenium film depositions
,”
Microelectron. Eng.
83
,
2248
2252
(
2006
).
239.
H. J.
Jung
,
J. H.
Han
,
E. A.
Jung
,
B. K.
Park
,
J.-H.
Hwang
,
S. U.
Son
,
C. G.
Kim
,
T.-M.
Chung
, and
K.-S.
An
, “
Atomic layer deposition of ruthenium and ruthenium oxide thin films from a zero-valent (1,5-hexadiene)(1-isopropyl-4-methylbenzene)ruthenium complex and O2
,”
Chem. Mater.
26
,
7083
7090
(
2014
).
240.
S.
Yeo
,
J.-Y.
Park
,
S.-J.
Lee
,
D.-J.
Lee
,
J. H.
Seo
, and
S.-H.
Kim
, “
Ruthenium and ruthenium dioxide thin films deposited by atomic layer deposition using a novel zero-valent metalorganic precursor (ethylbenzene)(1,3-butadiene)Ru(0), and molecular oxygen
,”
Microeletron. Eng.
137
,
16
22
(
2015
).
241.
T.-K.
Eom
,
W.
Sari
,
K.-J.
Choi
,
W.-C.
Shin
,
J. H.
Kim
,
D.-J.
Lee
,
K.-B.
Kim
,
H.
Sohn
, and
S.-H.
Kim
, “
Low temperature atomic layer deposition of ruthenium thin films using isopropylmethylbenzene-cyclohexadiene-ruthenium and O2
,”
Electrochem. Solid-State Lett.
12
,
D85
D88
(
2009
).
242.
S.
Yeo
,
S.-H.
Choi
,
J.-Y.
Park
,
S.-H.
Kim
,
T.
Cheon
,
B.-Y.
Lim
, and
S.
Kim
, “
Atomic layer deposition of ruthenium (Ru) thin films using ethylbenzen-cyclohexadiene Ru(0) as a seed layer for copper metallization
,”
Thin Solid Films
546
,
2
8
(
2013
).
243.
T.
Hong
,
S.-H.
Choi
,
S.
Yeo
,
J.-Y.
Park
,
S.-H.
Kim
,
T.
Cheon
,
H.
Kim
,
M.-K.
Kim
, and
H.
Kim
, “
Atomic layer deposition of Ru thin films using a Ru(0) metallorganic precursor and O2
,”
ECS J. Solid State Sci. Technol.
2
,
P47
P53
(
2013
).
244.
D. Z.
Austin
,
M. A.
Jenkins
,
D.
Allman
,
S.
Hose
,
D.
Price
,
C. L.
Dezelah
, and
J. F.
Conley
, “
Atomic layer deposition of ruthenium and ruthenium oxide using a zero-oxidation state precursor
,”
Chem. Mater.
29
,
1107
1115
(
2017
).
245.
S. M.
Geyer
,
R.
Methaapanon
,
R.
Johnson
,
S.
Brennan
,
M. F.
Toney
,
B.
Clemens
, and
S.
Bent
, “
Structural evolution of platinum thin films grown by atomic layer deposition
,”
J. Appl. Phys.
116
,
064905
(
2014
).
246.
A. J. M.
Mackus
,
M. J.
Weber
,
N. F. W.
Thissen
,
D.
Garcia-Alonso
,
R. H. J.
Vervuurt
,
S.
Assali
,
A. A.
Bol
,
M. A.
Verheijen
, and
W. M. M.
Kessels
, “
Atomic layer deposition of Pd and Pt nanoparticles for catalysis: On the mechanisms of nanoparticle formation
,”
Nanotechnology
27
,
034001
(
2015
).
247.
F.
Grillo
,
H.
Van Bui
,
J. A.
Moulijn
,
M. T.
Kreutzer
, and
J. R.
van Ommen
, “
Understanding and controlling the aggregative growth of platinum nanoparticles in atomic layer deposition: An avenue to size selection
,”
J. Phys. Chem. Lett.
8
,
975
983
(
2017
).
248.
F.
Grillo
,
J. A.
Moulijn
,
M. T.
Kreutzer
, and
J. R.
van Ommen
, “
Nanoparticle sintering in atomic layer deposition of supported catalysts: Kinetic modeling of the size distribution
,”
Catal. Today
316
,
51
61
(
2018
).
249.
J.
Dendooven
,
R. K.
Ramachandran
,
E.
Solano
,
M.
Kurttepeli
,
L.
Geerts
,
G.
Heremans
,
J.
Rongé
,
M. M.
Minjauw
,
T.
Dobbelaere
,
K.
Devloo-Casier
,
J. A.
Martens
,
A.
Vantomme
,
S.
Bals
,
G.
Portale
,
A.
Coati
, and
C.
Detavernier
, “
Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition
,”
Nat. Commun.
8
,
1074
(
2017
).
250.
E.
Solano
,
J.
Dendooven
,
R. K.
Ramachandran
,
K. V.
de Kerckhove
,
T.
Dobbelaere
,
D.
Hermida-Merino
, and
C.
Detavernier
, “
Key role of surface oxidation and reduction processes in the coarsening of Pt nanoparticles
,”
Nanoscale
9
,
13159
13170
(
2017
).
251.
T.
Aaltonen
,
M.
Ritala
,
Y.-L.
Tung
,
Y.
Chi
,
K.
Arstila
,
K.
Meinander
, and
M.
Leskelä
, “
Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature
,”
J. Mater. Res.
19
,
3353
3358
(
2004
).
252.
T.
Aaltonen
, “
Atomic layer deposition of noble metal thin films
,” PhD, thesis (
University of Helsinki
,
2005
).
253.
J. J.
Senkevich
,
F.
Tang
,
D.
Rogers
,
J. T.
Drotar
,
C.
Jezewski
,
W. A.
Lanford
,
G.-C.
Wang
, and
T.-M.
Lu
, “
Substrate-independent palladium atomic layer deposition
,”
Chem. Vap. Deposition
9
,
258
264
(
2003
).
254.
J. J.
Senkevich
,
G.-R.
Yang
,
T.-M.
Lu
,
T. S.
Cale
,
C.
Jezewski
, and
W. A.
Lanford
, “
Phosphorus atomic layers promoting the chemisorption of highly polarizable transition metallorganics
,”
Chem. Vap. Deposition
8
,
189
192
(
2002
).
255.
R. A.
Back
and
S.
Yamamoto
, “
The gas-phase photochemistry and thermal decomposition of glyoxylic acid
,”
Can. J. Chem.
63
,
542
548
(
1985
).
256.
J.
Elam
,
A.
Zinovev
,
C.
Han
,
H.
Wang
,
U.
Welp
,
J.
Hryn
, and
M.
Pellin
, “
Atomic layer deposition of palladium films on Al2O3 surfaces
,”
Thin Solid Films
515
,
1664
1673
(
2006
).
257.
D. N.
Goldstein
and
S. M.
George
, “
Enhancing the nucleation of palladium atomic layer deposition on Al2O3 using trimethylaluminum to prevent surface poisoning by reaction products
,”
Appl. Phys. Lett.
95
,
143106
(
2009
).
258.
D.
Goldstein
and
S.
George
, “
Surface poisoning in the nucleation and growth of palladium atomic layer deposition with Pd(hfac)2 and formalin
,”
Thin Solid Films
519
,
5339
5347
(
2011
).
259.
G. A. T.
Eyck
,
S.
Pimanpang
,
H.
Bakhru
,
T.-M.
Lu
, and
G.-C.
Wang
, “
Atomic layer deposition of Pd on an oxidized metal substrate
,”
Chem. Vap. Deposition
12
,
290
294
(
2006
).
260.
G. A. T.
Eyck
,
S.
Pimanpang
,
J. S.
Juneja
,
H.
Bakhru
,
T.-M.
Lu
, and
G.-C.
Wang
, “
Plasma-enhanced atomic layer deposition of palladium on a polymer substrate
,”
Chem. Vap. Deposition
13
,
307
311
(
2007
).
261.
J.
Hämäläinen
,
E.
Puukilainen
,
T.
Sajavaara
,
M.
Ritala
, and
M.
Leskelä
, “
Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactants
,”
Thin Solid Films
531
,
243
250
(
2013
).
262.
J.
Klaus
,
S.
Ferro
, and
S.
George
, “
Atomic layer deposition of tungsten using sequential surface chemistry with a sacrificial stripping reaction
,”
Thin Solid Films
360
,
145
153
(
2000
).
263.
W.
Lei
,
L.
Henn-Lecordier
,
M.
Anderle
,
G. W.
Rubloff
,
M.
Barozzi
, and
M.
Bersani
, “
Real-time observation and optimization of tungsten atomic layer deposition process cycle
,”
J. Vac. Sci. Technol. B
24
,
780
789
(
2006
).
264.
R. K.
Grubbs
,
N. J.
Steinmetz
, and
S. M.
George
, “
Gas phase reaction products during tungsten atomic layer deposition using WF6 and Si2H6
,”
J. Vac. Sci. Technol. B
22
,
1811
1821
(
2004
).
265.
R. W.
Wind
,
F. H.
Fabreguette
,
Z. A.
Sechrist
, and
S. M.
George
, “
Nucleation period, surface roughness, and oscillations in mass gain per cycle during W atomic layer deposition on Al2O3
,”
J. Appl. Phys.
105
,
074309
(
2009
).
266.
R.
Grubbs
,
C.
Nelson
,
N.
Steinmetz
, and
S.
George
, “
Nucleation and growth during the atomic layer deposition of W on Al2O3 and Al2O3 on W
,”
Thin Solid Films
467
,
16
27
(
2004
).
267.
J. W.
Elam
,
J. A.
Libera
,
M. J.
Pellin
,
A. V.
Zinovev
,
J. P.
Greene
, and
J. A.
Nolen
, “
Atomic layer deposition of w on nanoporous carbon aerogels
,”
Appl. Phys. Lett.
89
,
053124
(
2006
).
268.
T. F.
Baumann
,
J.
Biener
,
Y. M.
Wang
,
S. O.
Kucheyev
,
E. J.
Nelson
,
J. J. H.
Satcher
,
J. W.
Elam
,
M. J.
Pellin
, and
A. V.
Hamza
, “
Atomic layer deposition of uniform metal coatings on highly porous aerogel substrates
,”
Chem. Mater.
18
,
6106
6108
(
2006
).
270.
P. T.
Blanchard
,
K. A.
Bertness
,
T. E.
Harvey
,
A. W.
Sanders
,
N. A.
Sanford
,
S. M.
George
, and
D.
Seghete
, “
MOSFETs made from GaN nanowires with fully conformal cylindrical gates
,”
IEEE Trans. Nanotechnol.
11
,
479
482
(
2012
).
271.
M.
Lee
,
J.-H.
Cheng
,
Y. C.
Lee
,
D.
Seghete
,
S. M.
George
,
J. B.
Schlager
,
K.
Bertness
, and
N. A.
Sanford
, “
Packaging and interconnect technologies for the development of GaN nanowire-based light emitting diodes
,” in
ECTC
(
2009
), pp.
843
847
.
272.
B.
Davidson
,
Y.
Chang
,
D.
Seghete
,
S.
George
, and
V.
Bright
, “
Atomic layer deposition (ALD) tungsten NEMS devices via a novel top-down approach
,” in
MEMS, IEEE
(
2009
), pp.
120
123
.
273.
B.
Davidson
,
S.
George
, and
V.
Bright
, “
Atomic layer deposition (ALD) tungsten NEMS) tungsten nano-electromechanical transistors
,” in
MEMS, IEEE
(
2010
), pp.
424
427
.
274.
S. P.
Haukka
,
A.
Niskanen
, and
M.
Tuominen
, “
Selective formation of metallic films on metallic surfaces
,” U.S. patent US20130189837 a1 (25 July
2013
).
275.
D.
Seghete
,
J. G. B.
Rayner
,
A.
Cavanagh
,
V.
Anderson
, and
S.
George
, “
Molybdenum atomic layer deposition using MoF6 and Si2H6 as the reactants
,”
Chem. Mater.
23
,
1668
1678
(
2011
).
276.
M.
Utriainen
,
M.
Kröger-Laukkanen
,
L.-S.
Johansson
, and
L.
Niinistö
, “
Studies of metallic thin film growth in an atomic layer epitaxy reactor using M(acac)2 (M = Ni, Cu, Pt) precursors
,”
Appl. Surf. Sci.
157
,
151
158
(
2000
).
277.
G. I.
Zharkova
,
S. I.
Dorovskikh
,
S. V.
Sysoev
,
I. P.
Asanov
,
A. V.
Panin
,
N. B.
Morozova
, and
I. K.
Igumenov
, “
O,N-coordinated Ni(II) beta-diketonate derivatives: Synthesis, thermal properties, MOCVD applications
,”
Surf. Coat. Technol.
230
,
290
296
(
2013
).
278.
K.-W.
Do
,
C.-M.
Yang
,
I.-S.
Kang
,
K.-M.
Kim
,
K.-H.
Back
,
H.-I.
Cho
,
H.-B.
Lee
,
S.-H.
Kong
,
S.-H.
Hahm
,
D.-H.
Kwon
,
J.-H.
Lee
, and
J.-H.
Lee
, “
Formation of low-resistivity nickel silicide with high temperature stability from atomic-layer-deposited nickel thin film
,”
Jpn. J. Appl. Phys.
45
,
2975
2979
(
2006
).
279.
W.-H.
Kim
,
H.-B.-R.
Lee
,
K.
Heo
,
Y. K.
Lee
,
T.-M.
Chung
,
C. G.
Kim
,
S.
Hong
,
J.
Heo
, and
H.
Kim
, “
Atomic layer deposition of Ni thin films and application to area-selective deposition
,”
J. Electrochem. Soc.
158
,
D1
D5
(
2011
).
280.
H.-B.-R.
Lee
,
W.-H.
Kim
,
Y.
Park
,
S.
Baik
, and
H.
Kim
, “
Cobalt and nickel atomic layer depositions for contact applications
,” in
Interconnect Technology Conference, 2009, IITC 2009
(
IEEE International
,
2009
), pp.
157
158
.
281.
H.-S.
Kang
,
J.-B.
Ha
,
J.-H.
Lee
,
C. K.
Choi
,
J. Y.
Lee
, and
K.-M.
Lee
, “
Effect of catalyst for nickel films for NiSi formation with improved interface roughness
,”
Thin Solid Films
519
,
6658
6661
(
2011
).
282.
J.
Chae
,
H.-S.
Park
, and
S.-W.
Kang
, “
Atomic layer deposition of nickel by the reduction of preformed nickel oxide
,”
Electrochem. Solid-State Lett.
5
,
C64
C66
(
2002
).
283.
M.
Daub
,
M.
Knez
,
U.
Goesele
, and
K.
Nielsch
, “
Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes
,”
J. Appl. Phys.
101
,
09J111
(
2007
).
284.
B. S.
Lim
,
A.
Rahtu
, and
R. G.
Gordon
, “
Atomic layer deposition of transition metals
,”
Nat. Mater.
2
,
749
754
(
2003
).
285.
Q.
Guo
,
Z.
Guo
,
J.
Shi
,
W.
Xiong
,
H.
Zhang
,
Q.
Chen
,
Z.
Liu
, and
X.
Wang
, “
Atomic layer deposition of nickel carbide from a nickel amidinate precursor and hydrogen plasma
,”
ACS Appl. Mater. Interfaces
10
,
8384
8390
(
2018
).
286.
C.
Lansalot-Matras
, “
Nickel allylamidinate precursors for deposition of nickel—containing films
,” U.S. patent US2013/0168614 a1 (4 July
2013
).
287.
L. C.
Kalutarage
,
P. D.
Martin
,
M. J.
Heeg
, and
C. H.
Winter
, “
Volatile and thermally stable mid to late transition metal complexes containing α-imino alkoxide ligands, a new strongly reducing coreagent, and thermal atomic layer deposition of Ni, Co, Fe, and Cr metal films
,”
J. Am. Chem. Soc.
135
,
12588
12591
(
2013
).
288.
T. J.
Knisley
,
M. J.
Saly
,
M. J.
Heeg
,
J. L.
Roberts
, and
C. H.
Winter
, “
Volatility and high thermal stability in mid- to late-first-row transition-metal diazadienyl complexes
,”
Organometallics
30
,
5010
5017
(
2011
).
289.
M. C.
Karunarathne
,
T. J.
Knisley
,
G. S.
Tunstull
,
M. J.
Heeg
, and
C. H.
Winter
, “
Exceptional thermal stability and high volatility in mid to late first row transition metal complexes containing carbohydrazide ligands
,”
Polyhedron
52
,
820
830
(
2013
).
290.
L. C.
Kalutarage
,
P. D.
Martin
,
M. J.
Heeg
, and
C. H.
Winter
, “
Synthesis, structure, and solution reduction reactions of volatile and thermally stable mid to late first row transition metal complexes containing hydrazonate ligands
,”
Inorg. Chem.
52
,
5385
5394
(
2013
).
291.
J.
Wu
,
J.
Li
,
C.
Zhou
,
X.
Lei
,
T.
Gaffney
,
J. A. T.
Norman
,
Z.
Li
,
R.
Gordon
, and
H.
Cheng
, “
Computational study on the relative reactivities of cobalt and nickel amidinates via β-H migration
,”
Organometallics
26
,
2803
2805
(
2007
).
292.
K.-M.
Lee
,
C. Y.
Kim
,
C. K.
Choi
,
J.-B. H.
Sang-Won Yun
,
J.-H.
Lee
, and
J. Y.
Lee
, “
Interface properties of nickel-silicide films deposited by using plasma-assisted atomic layer deposition
,”
J. Korean Phys. Soc.
55
,
1153
1157
(
2009
).
293.
H.-B.-R.
Lee
,
J.
Kim
,
H.
Kim
,
W.-H.
Kim
,
J. W.
Lee
, and
I.
Hwang
, “
Degradation of the deposition blocking layer during area-selective plasma-enhanced atomic layer deposition of cobalt
,”
J. Korean Phys. Soc.
56
,
104
107
(
2010
).
294.
H.-B.-R.
Lee
,
W.-H.
Kim
,
J. W.
Lee
,
J.-M.
Kim
,
K.
Heo
,
I. C.
Hwang
,
Y.
Park
,
S.
Hong
, and
H.
Kim
, “
High quality area-selective atomic layer deposition Co using ammonia gas as a reactant
,”
J. Electrochem. Soc.
157
,
D10
D15
(
2010
).
295.
T. D.-M.
Elko-Hansen
and
J. G.
Ekerdt
, “
XPS investigation of the atomic layer deposition half reactions of bis(N-tert-butyl-N′-ethylpropionamidinato) cobalt(II)
,”
Chem. Mater.
26
,
2642
2646
(
2014
).
296.
T. D.-M.
Elko-Hansen
,
A.
Dolocan
, and
J. G.
Ekerdt
, “
Atomic interdiffusion and diffusive stabilization of cobalt by copper during atomic layer deposition from bis(N-tert-butyl-N′-ethylpropionamidinato) cobalt(II)
,”
J. Phys. Chem. Lett.
5
,
1091
1095
(
2014
).
297.
T. D.-M.
Elko-Hansen
and
J. G.
Ekerdt
, “
Selective atomic layer deposition of cobalt for back end of line
,”
ECS Trans.
80
,
29
37
(
2017
).
298.
H.-B.-R.
Lee
and
H.
Kim
, “
Area selective atomic layer deposition of cobalt thin films
,”
Electrochem. Soc. Trans.
16
,
219
225
(
2008
).
299.
H.-B.-R.
Lee
and
H.
Kim
, “
High-quality cobalt thin films by plasma-enhanced atomic layer deposition
,”
Electrochem. Solid-State Lett.
9
,
G323
G325
(
2006
).
300.
H.
Shimizu
,
K.
Sakoda
,
T.
Momose
, and
Y.
Shimogaki
, “
Atomic layer deposited Co(W) film as a single-layered barrier/liner for next-generation Cu-interconnects
,”
Jpn. J. Appl. Phys.
51
,
05EB02
(
2012
).
301.
J.
Kwon
,
M.
Saly
,
M. D.
Halls
,
R. K.
Kanjolia
, and
Y. J.
Chabal
, “
Substrate selectivity of (tBu-allyl)Co(CO)3 during thermal atomic layer deposition of cobalt
,”
Chem. Mater.
24
,
1025
1030
(
2012
).
302.
J. P.
Klesko
,
M. M.
Kerrigan
, and
C. H.
Winter
, “
Low temperature thermal atomic layer deposition of cobalt metal films
,”
Chem. Mater.
28
,
700
703
(
2016
).
303.
M. M.
Kerrigan
,
J. P.
Klesko
, and
C. H.
Winter
, “
Low temperature, selective atomic layer deposition of cobalt metal films using bis(1,4-di-tert-butyl-1,3-diazadienyl)cobalt and alkylamine precursors
,”
Chem. Mater.
29
,
7458
7466
(
2017
).
304.
K.
Väyrynen
,
T.
Hatanpää
,
M.
Mattinen
,
M.
Heikkilä
,
K.
Mizohata
,
K.
Meinander
,
J.
Räisänen
,
M.
Ritala
, and
M.
Leskelä
, “
Diamine adduct of cobalt(II) chloride as a precursor for atomic layer deposition of stoichiometric cobalt(II) oxide and reduction thereof to cobalt metal thin films
,”
Chem. Mater.
30
,
3499
3507
(
2018
).
305.
D. X.
Ye
,
S.
Pimanpang
,
C.
Jezewski
,
F.
Tang
,
J. J.
Senkevich
,
G. C.
Wang
, and
T. M.
Lu
, “
Low temperature chemical vapor deposition of co thin films from Co2(CO)8
,”
Thin Solid Films
485
,
95
100
(
2005
).
306.
A. H.
Simon
,
T.
Bolom
,
C.
Niu
,
F. H.
Baumann
,
C. K.
Hu
,
C.
Parks
,
J.
Nag
,
H.
Kim
,
J. Y.
Lee
,
C. C.
Yang
,
S.
Nguyen
,
H. K.
Shobha
,
T.
Nogami
,
S.
Guggilla
,
J.
Ren
,
D.
Sabens
, and
J. F.
AuBuchon
, “
Electromigration comparison of selective CVD cobalt capping with PVD Ta(N) and CVD cobalt liners on 22 nm-groundrule dual-damascene Cu interconnects
,” in
2013 IEEE International Reliability Physics Symposium (IRPS)
(
2013
), pp.
3F.4.1
3F.4.6
.
307.
C. C.
Yang
,
P.
Flaitz
,
P. C.
Wang
,
F.
Chen
, and
D.
Edelstein
, “
Characterization of selectively deposited cobalt capping layers: Selectivity and electromigration resistance
,”
IEEE Electron Device Lett.
31
,
728
730
(
2010
).
308.
C. C.
Yang
,
F.
Baumann
,
P. C.
Wang
,
S.
Lee
,
P.
Ma
,
J.
AuBuchon
, and
D.
Edelstein
, “
CVD Co capping layers for Cu/low-k interconnects: Cu EM enhancement vs. Co thickness
,” in
2011 IEEE International Interconnect Technology Conference
(
2011
), pp.
1
3
.
309.
H. K.
Jung
,
H. B.
Lee
,
M.
Tsukasa
,
E.
Jung
,
J. H.
Yun
,
J. M.
Lee
,
G. H.
Choi
,
S.
Choi
, and
C.
Chung
, “
Formation of highly reliable Cu/low-k interconnects by using CVD Co barrier in dual damascene structures
,” in
2011 International Reliability Physics Symposium
(
2011
), pp.
3E.2.1
3E.2.5
.
310.
M.
He
,
X.
Zhang
,
T.
Nogami
,
X.
Lin
,
J.
Kelly
,
H.
Kim
,
T.
Spooner
,
D.
Edelstein
, and
L.
Zhao
, “
Mechanism of Co liner as enhancement layer for Cu interconnect gap-fill
,”
J. Electrochem. Soc.
160
,
D3040
D3044
(
2013
).
311.
C.
Georgi
,
A.
Hildebrandt
,
T.
Waechtler
,
S. E.
Schulz
,
T.
Gessner
, and
H.
Lang
, “
A cobalt layer deposition study: Dicobaltatetrahedranes as convenient MOCVD precursor systems
,”
J. Mater. Chem. C
2
,
4676
4682
(
2014
).
312.
A.
Baiker
and
M.
Mazeviejewski
, “
Formation and thermal stability of copper and nickel nitrides
,”
Ber. Bunsengesellschaft Phys. Chem.
80
,
2331
2341
(
1984
).
313.
R. E.
Harmon
,
S.
Gupta
, and
D. J.
Brown
, “
Hydrogenation of organic compounds using homogeneous catalysts
,”
Chem. Rev.
73
,
21
52
(
1973
).
314.
W. S.
Seo
,
J. H.
Shim
,
S. J.
Oh
,
E. K.
Lee
,
N. H.
Hur
, and
J. T.
Park
, “
Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals
,”
J. Am. Chem. Soc.
127
(
17
),
6188
6189
(
2005
).
315.
M. J.
Redman
and
E. G.
Steward
, “
Cobaltous oxide with the zinc blende/wurtzite-type crystal structure
,”
Nature
193
,
867
(
1962
).
316.
L. C.
Kalutarage
,
S. B.
Clendenning
, and
C. H.
Winter
, “
Manganese precursor selection and the thermal atomic layer deposition of copper/manganese alloy films
,”
ECS Trans.
64
,
147
157
(
2014
).
317.
D. V.
Baxter
,
M. H.
Chisholm
,
G. J.
Gama
,
A. L.
Hector
, and
I. P.
Parkin
, “
Low pressure chemical vapor deposition of metallic films of iron, manganese, cobalt, copper, germanium and tin employing bis(trimethyl)silylamido complexes, M(N(SiMe3)2)n
,”
Chem. Vap. Deposition
1
,
49
51
(
1995
).
318.
P. F.
Ma
,
J. M.
Tseng
,
M.
Chang
,
A.
Lakshmanan
, and
J.
Tang
, “
Methods for manganese nitride integration
,” U.S. patent 2013/0292806 a1 (7 November
2013
).
319.
D.
Knapp
and
D.
Thompson
, “
Metal amide deposition precursors and their stabilization with an inert ampoule liner
,” U.S. 20140242806 a1 (28 August
2014
).
320.
J. S.
Price
,
P.
Chadha
, and
D. J. H.
Emslie
, “
Base-free and bisphosphine ligand dialkylmanganese(II) complexes as precursors for manganese metal deposition
,”
Organometallics
35
,
168
180
(
2016
).
321.
Y. J.
Lee
and
S.-W.
Kang
, “
Study on the characteristics of aluminum thin films prepared by atomic layer deposition
,”
J. Vac. Sci. Technol. A
20
,
1983
1988
(
2002
).
322.
K. J.
Blakeney
and
C. H.
Winter
, “
Atomic layer deposition of aluminum metal films using a thermally stable aluminum hydride reducing agent
,”
Chem. Mater.
30
,
1844
1848
(
2018
).
323.
W. L.
Gladfelter
,
D. C.
Boyd
, and
K. F.
Jensen
, “
Trimethylamine complexes of alane as precursors for the low-pressure chemical vapor deposition of aluminum
,”
Chem. Mater.
1
,
339
343
(
1989
).
324.
A.
Ludviksson
,
M.
Nooney
,
R.
Bruno
,
A.
Bailey
,
T. T.
Kodas
, and
M. J.
Hampden-Smith
, “
Low-temperature thermal CVD of Ti-Al metal films using a strong reducing agent
,”
Chem. Vap. Deposition
4
,
129
132
(
1998
).
325.
K.
Blakeney
,
P.
Martin
, and
C.
Winter
, “
A volatile dialane complex from ring-expansion of an N-heterocyclic carbene and its use in atomic layer deposition of aluminum metal films
,”
chemRxiv
(
2018
).
326.
Y. J.
Lee
and
S.-W.
Kang
, “
Atomic layer deposition of aluminum thin films using an alternating supply of trimethylaluminum and a hydrogen plasma
,”
Electrochem. Solid-State Lett.
5
,
C91
C93
(
2002
).
327.
H.
Kim
and
S. M.
Rossnagel
, “
Plasma-enhanced atomic layer deposition of tantalum thin films: The growth and film properties
,”
Thin Solid Films
441
,
311
316
(
2003
).
328.
H.
Kim
, “
The application of atomic layer deposition for metallization of 65 nm and beyond
,”
Surf. Coat. Technol.
200
,
3104
3111
(
2006
).
329.
S. M.
Rossnagel
,
A.
Sherman
, and
F.
Turner
, “
Plasma-enhanced atomic layer deposition of Ta and Ti for interconnect diffusion barriers
,”
J. Vac. Sci. Technol. B
18
,
2016
2020
(
2000
).
330.
A.
Lemonds
,
J.
White
, and
J.
Ekerdt
, “
Surface science investigations of atomic layer deposition half-reactions using TaF5 and Si2H6
,”
Surf. Sci.
538
,
191
203
(
2003
).
331.
A.
Lemonds
,
T.
Bolom
,
W.
Ahearn
,
D.
Gay
,
J.
White
, and
J.
Ekerdt
, “
Atomic layer deposition of TaSix thin films on SiO2 using TaF5 and Si2H6
,”
Thin Solid Films
488
,
9
14
(
2005
).
332.
T.-H.
Kim
,
T.-K.
Eom
,
S.-H.
Kim
,
D.-H.
Kang
,
H.
Kim
,
S.
Yu
, and
J. M.
Lim
, “
Plasma-enhanced atomic layer deposition of TaCx films using tris(neopentyl) tantalum dichloride and H2 plasma
,”
Electrochem. Solid-State Lett.
14
,
D89
(
2011
).
333.
T. E.
Hong
,
T.-H.
Kim
,
J.-H.
Jung
,
S.-H.
Kim
, and
H.
Kim
, “
TaCx Thin films prepared by atomic layer deposition as diffusion barriers for Cu metallization
,”
J. Am. Ceram. Soc.
97
,
127
134
(
2014
).
334.
H.
Kim
and
S. M.
Rossnagel
, “
Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition
,”
J. Vac. Sci. Technol. A
20
,
802
(
2002
).
335.
J. P.
Klesko
,
C. M.
Thrush
, and
C. H.
Winter
, “
Thermal atomic layer deposition of titanium films using titanium tetrachloride and 2-methyl-1,4-bis(trimethylsilyl)-2,5-cyclohexadiene or 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine
,”
Chem. Mater.
27
,
4918
4921
(
2015
).
336.
K. J.
Blakeney
,
P. D.
Martin
, and
C. H.
Winter
, “
Aluminum dihydride complexes and their unexpected application in atomic layer deposition of titanium carbonitride films
,”
Dalton Trans.
47
,
10897
10905
(
2018
).
337.
T. E.
Hong
,
S.-K.
Choi
,
S.-H.
Kim
, and
T.
Cheon
, “
Growth of highly conformal TiCx films using atomic layer deposition technique
,”
J. Am. Ceram. Soc.
96
,
1060
1062
(
2013
).
338.
R.
Arteaga-Müller
,
H.
Tsurugi
,
T.
Saito
,
M.
Yanagawa
,
S.
Oda
, and
K.
Mashima
, “
New tantalum ligand-free catalyst system for highly selective trimerization of ethylene affording 1-hexene: New evidence of a metallacycle mechanism
,”
J. Am. Chem. Soc.
131
,
5370
5371
(
2009
).
339.
H.
Tsurugi
,
H.
Tanahashi
,
H.
Nishiyama
,
W.
Fegler
,
T.
Saito
,
A.
Sauer
,
J.
Okuda
, and
K.
Mashima
, “
Salt-free reducing reagent of bis(trimethylsilyl)cyclohexadiene mediates multielectron reduction of chloride complexes of W(VI) and W(IV)
,”
J. Am. Chem. Soc.
135
,
5986
5989
(
2013
).
340.
T.
Saito
,
H.
Nishiyama
,
H.
Tanahashi
,
K.
Kawakita
,
H.
Tsurugi
, and
K.
Mashima
, “
1,4-bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadienes as strong salt-free reductants for generating low-valent early transition metals with electron-donating ligands
,”
J. Am. Chem. Soc.
136
,
5161
5170
(
2014
).
341.
R. K.
Ramachandran
,
J.
Dendooven
,
M.
Filez
,
V. V.
Galvita
,
H.
Poelman
,
E.
Solano
,
M. M.
Minjauw
,
K.
Devloo-Casier
,
E.
Fonda
,
D.
Hermida-Merino
,
W.
Bras
,
G. B.
Marin
, and
C.
Detavernier
, “
Atomic layer deposition route to tailor nanoalloys of noble and non-noble metals
,”
ACS Nano
10
,
8770
8777
sep (
2016
).
342.
J.
Hämäläinen
,
K.
Mizohata
,
K.
Meinander
,
M.
Mattinen
,
M.
Vehkamäki
,
J.
Räisänen
,
M.
Ritala
, and
M.
Leskelä
, “
Rhenium metal and rhenium nitride thin films grown by atomic layer deposition
,”
Angew. Chem.
57
,
14538
14542
(
2018
).
343.
F.
Niu
and
P.
Chow
, “
Method of forming very reactive metal layers by a high vacuum plasma enhanced atomic layer deposition system,” U.S. patent US9828673b2
(28 November
2017
).
344.
International roadmap for devices and systems,
2018
update, more Moor.
345.
U.
Helmersson
,
M.
Lattemann
,
J.
Bohlmark
,
A. P.
Ehiasarian
, and
J. T.
Gudmundsson
, “
Ionized physical vapor deposition (IPVD): A review of technology and applications
,”
Thin Solid Films
513
,
1
24
(
2006
).
346.
J.
Hopwood
, “
Ionized physical vapor deposition of integrated circuit interconnects
,”
Phys. Plasmas
5
,
1624
1631
(
1998
).
347.
R.
Shaviv
,
A.
Pradhan
,
M.
Marshall
,
T.
Mountsier
, and
G.
Dixit
, “
A comprehensive look at PVD scaling to meet the reliability requirements of advanced technology
,” in
2009 IEEE International Reliability Physics Symposium
(
2009
), pp.
855
860
.
348.
S.
Wickramanayaka
,
H.
Nagahama
,
E.
Watanabe
,
M.
Sato
, and
S.
Mizuno
, “
Using I-PVD for copper-based interconnects
,”
Solid State Technol.
45
,
67
(
2002
).
349.
L.
Arnaud
,
D.
Galpin
,
S.
Chhun
,
C.
Monget
,
E.
Richard
,
D.
Roy
,
C.
Besset
,
M.
Vilmay
,
L.
Doyen
,
P.
Waltz
,
E.
Petitprez
,
F.
Terrier
,
G.
Imbert
, and
Y.
Le Friec
, “
Reliability failure modes in interconnects for the 45 nm technology node and beyond
,” in
IEEE International Interconnect Technology Conference,
2009, IITC 2009 (
2009
).
350.
K.
Motoyama
,
O.
van der Straten
,
H.
Tomizawa
,
J.
Maniscalco
, and
S.
Chen
, “
Novel Cu reflow seed process for Cu low-k 64 nm pitch dual damascene interconnects and beyond
,” in
IITC
(
2012
).
351.
B.
Havemann
, “
Cu/low k interconnect technologies for 32 nm and beyond
,” in
Fudan University International Interconnect Symposium
, May
2008
.
352.
L. J.
Friedrich
,
S. K.
Dew
,
M. J.
Brett
, and
T.
Smy
, “
A simulation study of copper reflow characteristics in vias
,”
IEEE Trans. Semicond. Manuf.
12
,
353
365
(
1999
).
353.
L. J.
Friedrich
,
D. S.
Gardner
,
S. K.
Dew
,
M. J.
Brett
, and
T.
Smy
, “
Study of the copper reflow process using the grofilms simulator
,”
J. Vac. Sci. Technol. B
15
,
1780
1787
(
1997
).
354.
C.-C.
Yang
,
F. R.
McFeely
,
B.
Li
,
R.
Rosenberg
, and
D.
Edelstein
, “
Low-temperature reflow anneals of Cu on Ru
,”
IEEE Electron Device Lett.
32
,
806
808
(
2011
).
355.
C.-C.
Yang
,
P.
Flaitz
, and
D.
Edelstein
, “
Characterization of Cu reflows on Ru
,”
IEEE Electron Device Lett.
32
,
1430
1432
(
2011
).
356.
T. P.
Moffat
,
M.
Walker
,
P. J.
Chen
,
J. E.
Bonevich
,
W. F.
Egelhoff
,
L.
Richter
,
C.
Witt
,
T.
Aaltonen
,
M.
Ritala
,
M.
Leskelä
, and
D.
Josella
, “
Electrodeposition of Cu on Ru barrier layers for damascene processing
,”
J. Electrochem. Soc.
153
,
C37
C50
(
2006
).
357.
C.
Bjelkevig
and
J.
Kelber
, “
Stability of iodine on ruthenium during copper electrodeposition and its effects on the nucleation behavior of electrodeposited copper
,”
Electrochim. Acta
54
,
3892
3898
(
2009
).
358.
L.
D'Urzo
,
S.
Schaltin
,
A.
Shkurankov
,
H.
Plank
,
G.
Kothleitner
,
C.
Gspan
,
K.
Binnemans
, and
J.
Fransaer
, “
Direct-on-barrier copper electroplating on ruthenium from the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide
,”
J. Mater. Sci.: Mater. Electron.
23
,
945
951
(
2012
).
359.
J. J.
Kelly
,
T.
Vo
,
O.
van der Staten
,
Q.
Huang
,
B.
Baker
,
X.
Shao
,
S.
Chiang
, and
J. O.
Dukovic
, “
Morphology of electrodeposited Cu on 300 mm PEALD Ru substrates
,”
Electrochem. Soc. Trans.
16
,
201
207
(
2008
).
360.
R.
Akolkar
,
T.
Indukuri
,
J.
Clarke
,
T.
Ponnuswamy
,
J.
Reid
,
A. J.
McKerrow
, and
S.
Varadarajan
, “
Direct seed electroplating of copper on ruthenium liners
,” in
2011 IEEE International Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM)
(
2011
).
361.
B.
Han
,
J.
Wu
,
C.
Zhou
,
B.
Chen
,
R.
Gordon
,
X.
Lei
,
D. A.
Roberts
, and
H.
Cheng
, “
First-principles simulations of conditions of enhanced adhesion between copper and TaN(111) surfaces using a variety of metallic glue materials
,”
Angew. Chem. Int. Ed.
49
,
148
152
(
2010
).
362.
E. S.
Hwang
and
J.
Lee
, “
Surfactant-catalyzed chemical vapor deposition of copper thin films
,”
Chem. Mater.
12
,
2076
2081
(
2000
).
363.
K.-C.
Shim
,
H.-B.
Lee
,
O.-K.
Kwon
,
H.-S.
Park
,
W.
Koh
, and
S.-W.
Kang
, “
Bottom-up filling of submicrometer features in catalyst-enhanced chemical vapor deposition of copper
,”
J. Electrochem. Soc.
149
,
G109
G113
(
2002
).
364.
D.
Josell
,
D.
Wheeler
, and
T. P.
Moffat
, “
Superconformal deposition by surfactant-catalyzed chemical vapor deposition
,”
Electrochem. Solid State Lett.
5
,
C44
C47
(
2002
).
365.
S. G.
Pyo
,
S.
Kim
,
D.
Wheeler
,
T. P.
Moffat
, and
D.
Josella
, “
Seam-free fabrication of submicrometer copper interconnects by iodine-catalyzed chemical vapor deposition
,”
J. Appl. Phys.
93
,
1257
1261
(
2003
).
366.
D.
Josell
,
S.
Kim
,
D.
Wheeler
,
T. P.
Moffat
, and
S. G.
Pyo
, “
Interconnect fabrication by superconformal iodine-catalyzed chemical vapor deposition of copper
,”
J. Electrochem. Soc.
150
,
C368
C373
(
2003
).
367.
Y.
Au
,
Y.
Lin
, and
R. G.
Gordon
, “
Filling narrow trenches by iodine-catalyzed CVD of copper and manganese on manganese nitride barrier/adhesion layers
,”
J. Electrochem. Soc.
158
,
D248
D253
(
2011
).
368.
International technology roadmap for semiconductors,
2011
edition, front end processes.
369.
C. C.
Hobbs
,
L. R. C.
Fonseca
,
A.
Knizhnik
,
V.
Dhandapani
,
S. B.
Samavedam
,
W. J.
Taylor
,
J. M.
Grant
,
L. G.
Dip
,
D. H.
Triyoso
,
R. I.
Hegde
,
D. C.
Gilmer
,
R.
Garcia
,
D.
Roan
,
M. L.
Lovejoy
,
R. S.
Rai
,
E. A.
Hebert
,
H.-H.
Tseng
,
S. G. H.
Anderson
,
B. E.
White
, and
P. J.
Tobin
, “
Fermi-level pinning at the polysilicon/metal oxide interface-part I
,”
IEEE Trans. Electron Devices
51
,
971
977
(
2004
).
370.
M. V.
Fischetti
,
D. A.
Neumayer
, and
E. A.
Cartier
, “
Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-k insulator: The role of remote phonon scattering
,”
J. Appl. Phys.
90
,
4587
4608
(
2001
).
371.
J.-P.
Colinge
,
C.-W.
Lee
,
A.
Afzalian
,
N. D.
Akhavan
,
R.
Yan
,
I.
Ferain
,
P.
Razavi
,
B.
O'Neill
,
A.
Blake
,
M.
White
,
A.-M.
Kelleher
,
B.
McCarthy
, and
R.
Murphy
, “
Nanowire transistors without junctions
,”
Nat. Nanotechnol.
5
,
225
229
(
2010
).
372.
J.
Moon
,
H. J.
Ahn
,
Y.
Seo
,
T. I.
Lee
,
C.-K.
Kim
,
I. C.
Rho
,
C. H.
Kim
,
W. S.
Hwang
, and
B. J.
Cho
, “
The work function behavior of aluminum-doped titanium carbide grown by atomic layer deposition
,”
IEEE Trans. Electron Devices
63
,
1423
1427
(
2016
).
373.
H.
Kim
,
J.
Yoon
, and
H.-B.-R.
Lee
, “
Atomic layer deposition for nanoscale contact applications
,” in
2011 IEEE International Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM)
(
2011
).
374.
H.-B.-R.
Lee
,
J. Y.
Son
, and
H.
Kim
, “
Nitride mediated epitaxy of CoSi2 through self-interlayer-formation of plasma-enhanced atomic layer deposition Co
,”
Appl. Phys. Lett.
90
,
213509
(
2007
).
375.
H.
Mistry
,
F.
Behafarid
,
R.
Reske
,
A. S.
Varela
,
P.
Strasser
, and
B. R.
Cuenya
, “
Tuning catalytic selectivity at the mesoscale via interparticle interactions
,”
ACS Catal.
6
,
1075
1080
(
2016
).
376.
M.
Nesselberger
,
M.
Roefzaad
,
R. F.
Hamou
,
P. U.
Biedermann
,
F. F.
Schweinberger
,
S.
Kunz
,
K.
Schloegl
,
G. K. H.
Wiberg
,
S.
Ashton
,
U.
Heiz
,
K. J. J.
Mayrhofer
, and
M.
Arenz
, “
The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters
,”
Nat. Mater.
12
,
919
924
(
2013
).
377.
M.
Filez
,
H.
Poelman
,
E. A.
Redekop
,
V. V.
Galvita
,
K.
Alexopoulos
,
M.
Meledina
,
R. K.
Ramachandran
,
J.
Dendooven
,
C.
Detavernier
,
G. V.
Tendeloo
,
O. V.
Safonova
,
M.
Nachtegaal
,
B. M.
Weckhuysen
, and
G. B.
Marin
, “
Kinetics of lifetime changes in bimetallic nanocatalysts revealed by quick x-ray absorption spectroscopy
,”
Angew. Chem.
57
,
12430
12434
(
2018
).
You do not currently have access to this content.