Since ancient times, plasmonic structural coloring has inspired humanity; glassmakers achieved vibrant colors by doping glass with metal nanoparticles to craft beautiful objects such as the Roman Lycurgus cup and stained glass. These lovely color filtering effects are a consequence of the resonant coupling of light and free electrons in metal nanoparticles, known as surface plasmons. Thanks to the continuing improvement of nanofabrication technology, the dimensions of nanoparticles and structures can now be precisely engineered to form “optical nanoantennas,” allowing for control of optical response at an unprecedented level. Recently, the field of plasmonic structural coloring has seen extensive growth. In this review, we provide an up-to-date overview of various plasmonic color filtering approaches and highlight their uses in a broad palette of applications. Various surface plasmon resonance modes employed in the plasmonic color filtering effect are discussed. We first review the development of the pioneering static plasmonic colors achieved with invariant optical nanoantennas and ambient environment, then we address a variety of emerging approaches that enable dynamic color tuning, erasing, and restoring. These dynamic color filters are capable of actively changing the filtered colors and carrying more color information states than the static systems. Thus, they open an avenue to high-density data storage, information encryption, and plasmonic information processing. Finally, we discuss the challenges and future perspectives in this exciting research area.

1.
S.
Furukawa
,
T.
Masui
, and
N.
Imanaka
, “
Synthesis of new environment-friendly yellow pigments
,”
J. Alloys Compd.
418
(
1–2
),
255
258
(
2006
).
2.
A. V.
Whitney
,
R. P.
Van Duyne
, and
F.
Casadio
, “
An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs
,”
J. Raman Spectrosc.
37
(
10
),
993
1002
(
2006
).
3.
Y.
Huo
,
C. C.
Fesenmaier
, and
P. B.
Catrysse
, “
Microlens performance limits in sub-2μm pixel CMOS image sensors
,”
Opt. Express
18
(
6
),
5861
(
2010
).
4.
M. C.
Gather
,
A.
Köhnen
,
A.
Falcou
,
H.
Becker
, and
K.
Meerholz
, “
Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography
,”
Adv. Funct. Mater.
17
(
2
),
191
200
(
2007
).
5.
H.-S.
Koo
,
M.
Chen
, and
P.-C.
Pan
, “
LCD-based color filter films fabricated by a pigment-based colorant photo resist inks and printing technology
,”
Thin Solid Films
515
(
3
),
896
901
(
2006
).
6.
M.
Burresi
 et al., “
Bright-white beetle scales optimise multiple scattering of light
,”
Sci. Rep.
4
(
1
),
6075
(
2015
).
7.
P.
Vukusic
and
J. R.
Sambles
, “
Erratum: Photonic structures in biology
,”
Nat.
424
(
6950
),
852
855
(
2003
).
8.
S.
Kinoshita
and
S.
Yoshioka
, “
Structural colors in nature: The role of regularity and irregularity in the structure
,”
ChemPhysChem
6
(
8
),
1442
1459
(
2005
).
9.
R. O.
Prum
,
R. L.
Morrison
, and
G. R.
Ten Eyck
, “
Structural color production by constructive reflection from ordered collagen arrays in a bird (Philepitta castanea: Eurylaimidae)
,”
J. Morphol.
222
(
1
),
61
72
(
1994
).
10.
Y.
Zhao
,
Z.
Xie
,
H.
Gu
,
C.
Zhu
, and
Z.
Gu
, “
Bio-inspired variable structural color materials
,”
Chem. Soc. Rev.
41
(
8
),
3297
3317
(
2012
).
11.
Y.
Ding
,
S.
Xu
, and
Z. L.
Wang
, “
Structural colors from Morpho peleides butterfly wing scales
,”
J. Appl. Phys.
106
(
7
),
074702
(
2009
).
12.
H.
Ghiradella
, “
Light and color on the wing: Structural colors in butterflies and moths
,”
Appl. Opt.
30
(
24
),
3492
(
1991
).
13.
P.
Vukusic
,
R.
Sambles
,
C.
Lawrence
, and
G.
Wakely
, “
Sculpted-multilayer optical effects in two species of Papilio butterfly
,”
Appl. Opt.
40
(
7
),
1116
(
2001
).
14.
S.
Kinoshita
,
S.
Yoshioka
, and
J.
Miyazaki
, “
Physics of structural colors
,”
Rep. Prog. Phys.
71
(
7
),
076401
(
2008
).
15.
P.
Sciau
, “
Nanoparticles in ancient materials: The metallic lustre decorations of medieval ceramics
,” in
The Delivery of Nanoparticles
(
InTech
,
Rijeka
,
2012
), Chap. 25.
16.
I.
Freestone
,
N.
Meeks
,
M.
Sax
, and
C.
Higgitt
, “
The Lycurgus cup—A roman nanotechnology
,”
Gold Bull.
40
(
4
),
270
277
(
2007
).
17.
S.
Pérez-Villar
,
J.
Rubio
, and
J. L.
Oteo
, “
Study of color and structural changes in silver painted medieval glasses
,”
J. Non-Cryst. Solids
354
(
17
),
1833
1844
(
2008
).
18.
I.
Angelini
 et al., “
Chemical analyses of Bronze Age glasses from Frattesina di Rovigo, Northern Italy
,”
J. Archaeol. Sci.
31
(
8
),
1175
1184
(
2004
).
19.
G.
Artioli
,
I.
Angelini
, and
A.
Polla
, “
Crystals and phase transitions in protohistoric glass materials
,”
Phase Transitions
81
(
2–3
),
233
252
(
2008
).
20.
N.
Brun
,
L.
Mazerolles
, and
M.
Pernot
, “
Microstructure of opaque red glass containing copper
,”
J. Mater. Sci. Lett.
10
(
23
),
1418
1420
(
1991
).
21.
J.
Pérez-Arantegui
 et al., “
Luster pottery from the thirteenth century to the sixteenth century: A nanostructured thin metallic film
,”
J. Am. Ceram. Soc.
84
(
2
),
442
446
(
2004
).
22.
T. W.
Ebbesen
,
H. J.
Lezec
,
H. F.
Ghaemi
,
T.
Thio
, and
P. A.
Wolff
, “
Extraordinary optical transmission through sub-wavelength hole arrays
,”
Nature
391
(
6668
),
667
669
(
1998
).
23.
M.
Song
 et al., “
Conversion of broadband energy to narrowband emission through double-sided metamaterials
,”
Opt. Express
21
(
26
),
32207
(
2013
).
24.
M.
Song
 et al., “
Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance
,”
Nanoscale
8
(
3
),
1635
1641
(
2016
).
25.
E.
Hutter
and
J. H.
Fendler
, “
Exploitation of localized surface plasmon resonance
,”
Adv. Mater.
16
(
19
),
1685
1706
(
2004
).
26.
K.
Kumar
,
H.
Duan
,
R. S.
Hegde
,
S. C. W.
Koh
,
J. N.
Wei
, and
J. K. W.
Yang
, “
Printing colour at the optical diffraction limit
,”
Nat. Nanotechnol.
7
(
9
),
557
561
(
2012
).
27.
M. K.
Hedayati
and
M.
Elbahri
, “
Review of metasurface plasmonic structural color
,”
Plasmonics
12
(
5
),
1463
1479
(
2017
).
28.
A.
Kristensen
 et al., “
Plasmonic colour generation
,”
Nat. Rev. Mater.
2
(
1
),
16088
(
2017
).
29.
L.
Shao
,
X.
Zhuo
, and
J.
Wang
, “
Advanced plasmonic materials for dynamic color display
,”
Adv. Mater.
30
(
16
),
1704338
(
2018
).
30.
T.
Xu
,
H.
Shi
,
Y.-K.
Wu
,
A. F.
Kaplan
,
J. G.
Ok
, and
L. J.
Guo
, “
Structural colors: From plasmonic to carbon nanostructures
,”
Small
7
(
22
),
3128
3136
(
2011
).
31.
Y.
Gu
,
L.
Zhang
,
J. K. W.
Yang
,
S. P.
Yeo
, and
C.-W.
Qiu
, “
Color generation via subwavelength plasmonic nanostructures
,”
Nanoscale
7
(
15
),
6409
6419
(
2015
).
32.
G.
Wyszecki
and
W. S.
Stiles
,
Color Science: Concepts and Methods, Quantitative Data and Formulae
, 2nd ed. (
Wiley
,
New York, NY
,
1982
).
33.
C.
Abraham
, https://medium.com/hipster-color-science/a-beginners-guide-to-colorimetry-401f1830b65a for “
A Beginner's guide to (CIE) Colorimetry
,”
2017
.
34.
C. A.
Poynton
,
Digital Video and HDTV Algorithms and Interfaces
(
Elsevier
,
San Francisco
,
2003
).
35.
RP 431-2:2011—SMPTE Recommended Practice—D-Cinema Quality—Reference Projector and Environment
(
The Society of Motion Picture and Television Engineers
,
New York
,
2011
).
36.
M.
Wuerthele
, https://appleinsider.com/articles/16/09/09/apples-wide-color-screen-on-the-iphone-7-will-lead-to-more-faithful-color-reproduction for “
Apple's Wide Color screen on the iPhone 7 will lead to more faithful color reproduction
,”
2016
.
37.
R. M.
Soneira
, http://www.displaymate.com/Galaxy_Note7_ShootOut_1.htm for “
Galaxy Note7 OLED Display Technology Shoot-Out
.”
38.
W.
Sabra
,
S. I.
Azzam
,
M.
Song
,
M.
Povolotskyi
,
A. H.
Aly
, and
A. V.
Kildishev
, “
Plasmonic metasurfaces for subtractive color filtering: Optimized nonlinear regression models
,”
Opt. Lett.
43
(
19
),
4815
(
2018
).
39.
M.
Song
 et al., “
Color display and encryption with a plasmonic polarizing metamirror
,”
Nanophotonics
7
(
1
),
323
331
(
2018
).
40.
C.
Huang
 et al., “
Reconfigurable metasurface cloak for dynamical electromagnetic illusions
,”
ACS Photonics
5
(
5
),
1718
1725
(
2018
).
41.
X.-G.
Luo
,
M.-B.
Pu
,
X.
Li
, and
X.-L.
Ma
, “
Broadband spin Hall effect of light in single nanoapertures
,”
Light: Sci. Appl.
6
(
6
),
e16276
(
2017
).
42.
Y.
Wang
 et al., “
Staked graphene for tunable terahertz absorber with customized bandwidth
,”
Plasmonics
11
(
5
),
1201
1206
(
2016
).
43.
M.
Song
,
H.
Yu
,
J.
Luo
, and
Z.
Zhang
, “
Tailoring infrared refractory plasmonic material to broadband circularly polarized thermal emitter
,”
Plasmonics
12
(
3
),
649
654
(
2017
).
44.
M.
Pu
,
Y.
Guo
,
X.
Li
,
X.
Ma
, and
X.
Luo
, “
Revisitation of extraordinary Young's interference: From catenary optical fields to spin–orbit interaction in metasurfaces
,”
ACS Photonics
5
(
8
),
3198
3204
(
2018
).
45.
M.
Pu
 et al., “
Catenary optics for achromatic generation of perfect optical angular momentum
,”
Sci. Adv.
1
(
9
),
e1500396
(
2015
).
46.
W. T.
Chen
 et al., “
High-efficiency broadband meta-hologram with polarization-controlled dual images
,”
Nano Lett.
14
(
1
),
225
230
(
2014
).
47.
F.
Ding
,
Z.
Wang
,
S.
He
,
V. M.
Shalaev
, and
A. V.
Kildishev
, “
Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach
,”
ACS Nano
9
(
4
),
4111
4119
(
2015
).
48.
J.
Zhang
,
J.-Y.
Ou
,
K. F.
MacDonald
, and
N. I.
Zheludev
, “
Optical response of plasmonic relief meta-surfaces
,”
J. Opt.
14
(
11
),
114002
(
2012
).
49.
X.
Li
 et al., “
Multicolor 3D meta-holography by broadband plasmonic modulation
,”
Sci. Adv.
2
(
11
),
e1601102
(
2016
).
50.
N. I.
Zheludev
,
S. L.
Prosvirnin
,
N.
Papasimakis
, and
V. A.
Fedotov
, “
Lasing spaser
,”
Nat. Photonics
2
(
6
),
351
354
(
2008
).
51.
B.
Luk'yanchuk
 et al., “
The Fano resonance in plasmonic nanostructures and metamaterials
,”
Nat. Mater.
9
(
9
),
707
715
(
2010
).
52.
G.
Si
 et al., “
Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays
,”
Nanoscale
5
(
14
),
6243
(
2013
).
53.
T.
Xu
,
Y.-K.
Wu
,
X.
Luo
, and
L. J.
Guo
, “
Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging
,”
Nat. Commun
1
(
5
),
59
(
2010
).
54.
H.
Lochbihler
, “
Colored images generated by metallic sub-wavelength gratings
,”
Opt. Express
17
(
14
),
12189
(
2009
).
55.
W.
Cai
 et al., “
Metamagnetics with rainbow colors
,”
Opt. Express
15
(
6
),
3333
(
2007
).
56.
H.-S.
Lee
,
Y.-T.
Yoon
,
S.
Lee
,
S.-H.
Kim
, and
K.-D.
Lee
, “
Color filter based on a subwavelength patterned metal grating
,”
Opt. Express
15
(
23
),
15457
(
2007
).
57.
V. R.
Shrestha
,
C.-S.
Park
, and
S.-S.
Lee
, “
Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response
,”
Opt. Express
22
(
3
),
3691
(
2014
).
58.
V. A.
Fedotov
 et al., “
Spectral collapse in ensembles of metamolecules
,”
Phys. Rev. Lett.
104
(
22
),
223901
(
2010
).
59.
S. J.
Tan
 et al., “
Plasmonic color palettes for photorealistic printing with aluminum nanostructures
,”
Nano Lett.
14
(
7
),
4023
4029
(
2014
).
60.
N.
Nguyen-Huu
,
Y.-L.
Lo
, and
Y.-B.
Chen
, “
Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating
,”
Opt. Commun.
284
(
10–11
),
2473
2479
(
2011
).
61.
A. M.
Shaltout
,
J.
Kim
,
A.
Boltasseva
,
V. M.
Shalaev
, and
A. V.
Kildishev
, “
Ultrathin and multicolour optical cavities with embedded metasurfaces
,”
Nat. Commun.
9
(
1
),
2673
(
2018
).
62.
B.
Zeng
,
Y.
Gao
, and
F. J.
Bartoli
, “
Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters
,”
Sci. Rep.
3
(
1
),
2840
(
2013
).
63.
L.
Duempelmann
,
D.
Casari
,
A.
Luu-Dinh
,
B.
Gallinet
, and
L.
Novotny
, “
Color rendering plasmonic aluminum substrates with angular symmetry breaking
,”
ACS Nano
9
(
12
),
12383
12391
(
2015
).
64.
X. M.
Goh
,
R. J. H.
Ng
,
S.
Wang
,
S. J.
Tan
, and
J. K. W.
Yang
, “
Comparative study of plasmonic colors from all-metal structures of posts and pits
,”
ACS Photonics
3
(
6
),
1000
1009
(
2016
).
65.
V. R.
Shrestha
,
S.-S.
Lee
,
E.-S.
Kim
, and
D.-Y.
Choi
, “
Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array
,”
Nano Lett.
14
(
11
),
6672
6678
(
2014
).
66.
H.
Lochbihler
, “
Reflective colored image based on metal–dielectric–metal-coated gratings
,”
Opt. Lett.
38
(
9
),
1398
(
2013
).
67.
A. F.
Kaplan
,
T.
Xu
, and
L. J.
Guo
, “
High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography
,”
Appl. Phys. Lett.
99
(
14
),
143111
(
2011
).
68.
Y.-T.
Yoon
,
C.-H.
Park
, and
S.-S.
Lee
, “
Highly efficient color filter incorporating a thin metal–dielectric resonant structure
,”
Appl. Phys. Express
5
(
2
),
022501
(
2012
).
69.
M. J.
Uddin
and
R.
Magnusson
, “
Highly efficient color filter array using resonant Si3N4 gratings
,”
Opt. Express
21
(
10
),
12495
(
2013
).
70.
J.
Olson
 et al., “
Vivid, full-color aluminum plasmonic pixels
,”
Proc. Natl. Acad. Sci.
111
(
40
),
14348
14353
(
2014
).
71.
N. S.
King
 et al., “
Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing
,”
ACS Nano
9
(
11
),
10628
10636
(
2015
).
72.
F.
Ding
,
Y.
Yang
,
R. A.
Deshpande
, and
S. I.
Bozhevolnyi
, “
A review of gap-surface plasmon metasurfaces: Fundamentals and applications
,”
Nanophotonics
7
(
6
),
1129
1156
(
2018
).
73.
J.
Xue
 et al., “
Scalable, full-colour and controllable chromotropic plasmonic printing
,”
Nat. Commun.
6
(
1
),
8906
(
2015
).
74.
W.
Li
 et al., “
Refractory plasmonics with titanium nitride: Broadband metamaterial absorber
,”
Adv. Mater.
26
(
47
),
7959
7965
(
2014
).
75.
K.
Diest
,
J. A.
Dionne
,
M.
Spain
, and
H. A.
Atwater
, “
Tunable color filters based on metal−insulator−metal resonators
,”
Nano Lett.
9
(
7
),
2579
2583
(
2009
).
76.
M.
Song
,
Z. A.
Kudyshev
,
H.
Yu
,
A.
Boltasseva
,
V. M.
Shalaev
, and
A. V.
Kildishev
, “
Achieving full-color generation with polarization-tunable perfect light absorption
,”
Opt. Mater. Express
9
(
2
),
779
(
2019
).
77.
D.
Wang
 et al., “
Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance
,”
Nano Lett.
19
(
6
),
3796
3803
(
2019
).
78.
M.
Miyata
,
H.
Hatada
, and
J.
Takahara
, “
Full-color subwavelength printing with gap-plasmonic optical antennas
,”
Nano Lett.
16
(
5
),
3166
3172
(
2016
).
79.
A. S.
Roberts
,
A.
Pors
,
O.
Albrektsen
, and
S. I.
Bozhevolnyi
, “
Subwavelength plasmonic color printing protected for ambient use
,”
Nano Lett.
14
(
2
),
783
787
(
2014
).
80.
H.
Wang
 et al., “
Full color generation using silver tandem nanodisks
,”
ACS Nano
11
(
5
),
4419
4427
(
2017
).
81.
T. D.
James
,
P.
Mulvaney
, and
A.
Roberts
, “
The plasmonic pixel: Large area, wide gamut color reproduction using aluminum nanostructures
,”
Nano Lett.
16
(
6
),
3817
3823
(
2016
).
82.
J. S.
Clausen
 et al., “
Plasmonic metasurfaces for coloration of plastic consumer products
,”
Nano Lett.
14
(
8
),
4499
4504
(
2014
).
83.
X.
Ni
,
S.
Ishii
,
A. V.
Kildishev
, and
V. M.
Shalaev
, “
Ultra-thin, planar, Babinet-inverted plasmonic metalenses
,”
Light: Sci. Appl.
2
(
4
),
e72
(
2013
).
84.
F.
Cheng
,
J.
Gao
,
T. S.
Luk
, and
X.
Yang
, “
Structural color printing based on plasmonic metasurfaces of perfect light absorption
,”
Sci. Rep
5
(
1
),
11045
(
2015
).
85.
L. B.
Sun
 et al., “
Influence of structural parameters to polarization-independent color-filter behavior in ultrathin Ag films
,”
Opt. Commun.
333
,
16
21
(
2014
).
86.
L. B.
Sun
 et al., “
Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters
,”
Nanotechnology
26
(
30
),
305204
(
2015
).
87.
S.
Yokogawa
,
S. P.
Burgos
, and
H. A.
Atwater
, “
Plasmonic color filters for CMOS image sensor applications
,”
Nano Lett.
12
(
8
),
4349
4354
(
2012
).
88.
S. P.
Burgos
,
S.
Yokogawa
, and
H. A.
Atwater
, “
Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor
,”
ACS Nano
7
(
11
),
10038
10047
(
2013
).
89.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
, “
Surface plasmon subwavelength optics
,”
Nature
424
(
6950
),
824
830
(
2003
).
90.
Q.
Chen
and
D. R. S.
Cumming
, “
High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films
,”
Opt. Express
18
(
13
),
14056
(
2010
).
91.
J.
Prikulis
,
P.
Hanarp
,
L.
Olofsson
,
D.
Sutherland
, and
M.
Käll
, “
Optical spectroscopy of nanometric holes in thin gold films
,”
Nano Lett.
4
(
6
),
1003
1007
(
2004
).
92.
L.
Lin
and
A.
Roberts
, “
Angle-robust resonances in cross-shaped aperture arrays
,”
Appl. Phys. Lett.
97
(
6
),
061109
(
2010
).
93.
D.
Inoue
 et al., “
Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes
,”
Appl. Phys. Lett.
98
(
9
),
93113
(
2011
).
94.
G.
Si
 et al., “
Annular aperture array based color filter
,”
Appl. Phys. Lett.
99
(
3
),
033105
(
2011
).
95.
L.
Martín-Moreno
 et al., “
Theory of extraordinary optical transmission through subwavelength hole arrays
,”
Phys. Rev. Lett.
86
(
6
),
1114
1117
(
2001
).
96.
C.
Genet
and
T. W.
Ebbesen
, “
Light in tiny holes
,”
Nature
445
(
7123
),
39
46
(
2007
).
97.
J.
Hutchinson
, “
Culture, communication, and an information age Madonna
,”
IEEE Prof. Commun. Soc. Newsl.
45
(
3
),
5
7
(
2001
).
98.
T.
Zentgraf
 et al., “
Babinet's principle for optical frequency metamaterials and nanoantennas
,”
Phys. Rev. B
76
(
3
),
033407
(
2007
).
99.
W.
Yue
,
S.
Gao
,
S.-S.
Lee
,
E.-S.
Kim
, and
D.-Y.
Choi
, “
Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors
,”
Laser Photonics Rev.
11
(
3
),
1600285
(
2017
).
100.
E.
Højlund-Nielsen
 et al., “
Plasmonic colors: Toward mass production of metasurfaces
,”
Adv. Mater. Technol.
1
(
7
),
1600054
(
2016
).
101.
T.
Ellenbogen
,
K.
Seo
, and
K. B.
Crozier
, “
Chromatic plasmonic polarizers for active visible color filtering and polarimetry
,”
Nano Lett.
12
(
2
),
1026
1031
(
2012
).
102.
Z.
Li
,
A. W.
Clark
, and
J. M.
Cooper
, “
Dual color plasmonic pixels create a polarization controlled nano color palette
,”
ACS Nano
10
(
1
),
492
498
(
2016
).
103.
L.
Duempelmann
,
A.
Luu-Dinh
,
B.
Gallinet
, and
L.
Novotny
, “
Four-fold color filter based on plasmonic phase retarder
,”
ACS Photonics
3
(
2
),
190
196
(
2016
).
104.
E.
Heydari
 et al., “
Plasmonic color filters as dual-state nanopixels for high-density microimage encoding
,”
Adv. Funct. Mater.
27
(
35
),
1701866
(
2017
).
105.
X. M.
Goh
 et al., “
Three-dimensional plasmonic stereoscopic prints in full colour
,”
Nat. Commun.
5
,
5361
(
2014
).
106.
M.
Song
 et al., “
Wavelength-dependent optical-rotation manipulation for active color display and highly secure encryption
,” in
Conference on Lasers and Electro-Optics
(
2018
), p.
FTh4M.2
.
107.
P.
Zijlstra
,
J. W. M.
Chon
, and
M.
Gu
, “
Five-dimensional optical recording mediated by surface plasmons in gold nanorods
,”
Nature
459
(
7245
),
410
413
(
2009
).
108.
M.
Gu
,
X.
Li
, and
Y.
Cao
, “
Optical storage arrays: A perspective for future big data storage
,”
Light: Sci. Appl.
3
(
5
),
e177
(
2014
).
109.
J.
Strasswimmer
,
M. C.
Pierce
,
B. H.
Park
,
V.
Neel
, and
J. F.
de Boer
, “
Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma
,”
J. Biomed. Opt.
9
(
2
),
292
(
2004
).
110.
K.
Xiong
 et al., “
Plasmonic metasurfaces with conjugated polymers for flexible electronic paper in color
,”
Adv. Mater.
28
(
45
),
9956
9960
(
2016
).
111.
D.
Franklin
,
R.
Frank
,
S.-T.
Wu
, and
D.
Chanda
, “
Actively addressed single pixel full-colour plasmonic display
,”
Nat. Commun.
8
,
15209
(
2017
).
112.
E.
Feigenbaum
,
K.
Diest
, and
H. A.
Atwater
, “
Unity-order index change in transparent conducting oxides at visible frequencies
,”
Nano Lett.
10
(
6
),
2111
2116
(
2010
).
113.
Z.-W.
Xie
,
J.-H.
Yang
,
V.
Vashistha
,
W.
Lee
, and
K.-P.
Chen
, “
Liquid-crystal tunable color filters based on aluminum metasurfaces
,”
Opt. Express
25
(
24
),
30764
(
2017
).
114.
G. G.
Nair
 et al., “
Electrically tunable color by using mixtures of bent-core and rod-shaped molecules
,”
Adv. Mater.
20
(
16
),
3138
3142
(
2008
).
115.
S. S.
Mirshafieyan
and
D. A.
Gregory
, “
Electrically tunable perfect light absorbers as color filters and modulators
,”
Sci. Rep.
8
(
1
),
2635
(
2018
).
116.
Y.
Lee
 et al., “
Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator
,”
ACS Photonics
4
(
8
),
1954
1966
(
2017
).
117.
J.
Xiang
 et al., “
Electrically Tunable Selective Reflection of Light from Ultraviolet to Visible and Infrared by Heliconical Cholesterics
,”
Adv. Mater.
27
(
19
),
3014
3018
(
2015
).
118.
C.-H.
Park
,
Y.-T.
Yoon
,
V. R.
Shrestha
,
C.-S.
Park
,
S.-S.
Lee
, and
E.-S.
Kim
, “
Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating
,”
Opt. Express
21
(
23
),
28783
28793
(
2013
).
119.
D.
Franklin
 et al., “
Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces
,”
Nat. Commun.
6
(
1
),
7337
(
2015
).
120.
N. J.
Greybush
 et al., “
Dynamic plasmonic pixels
,”
ACS Nano
13
(
4
),
3875
3883
(
2019
).
121.
N.
Li
 et al., “
Dynamically switchable multicolor electrochromic films
,”
Small
15
(
7
),
1804974
(
2019
).
122.
M.
Wang
and
Y.
Yin
, “
Magnetically responsive nanostructures with tunable optical properties
,”
J. Am. Chem. Soc.
138
(
20
),
6315
6323
(
2016
).
123.
X.
Wang
 et al., “
Anisotropically shaped magnetic/plasmonic nanocomposites for information encryption and magnetic-field-direction sensing
,”
Research
2018
,
7527825
.
124.
M.
Wang
 et al., “
Magnetic tuning of plasmonic excitation of gold nanorods
,”
J. Am. Chem. Soc.
135
(
41
),
15302
15305
(
2013
).
125.
O. L.
Muskens
 et al., “
Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide
,”
Light: Sci. Appl.
5
(
10
),
e16173
(
2016
).
126.
M. A.
Kats
 et al., “
Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance
,”
Phys. Rev. X
3
(
4
),
041004
(
2013
).
127.
M. A.
Kats
 et al., “
Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material
,”
Opt. Lett.
38
(
3
),
368
(
2013
).
128.
F.-Z.
Shu
 et al., “
Dynamic plasmonic color generation based on phase transition of vanadium dioxide
,”
Adv. Opt. Mater
6
(
7
),
1700939
(
2018
).
129.
B.
Gholipour
,
A.
Karvounis
,
J.
Yin
,
C.
Soci
,
K. F.
MacDonald
, and
N. I.
Zheludev
, “
Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces
,”
NPG Asia Mater.
10
(
6
),
533
539
(
2018
).
130.
R.
Yu
 et al., “
Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals
,”
ACS Photonics
3
(
7
),
1194
1201
(
2016
).
131.
X.
Chen
 et al., “
Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing
,”
Nanoscale
6
(
3
),
1756
1762
(
2014
).
132.
X.
Zhu
,
C.
Vannahme
,
E.
Højlund-Nielsen
,
N. A.
Mortensen
, and
A.
Kristensen
, “
Plasmonic colour laser printing
,”
Nat. Nanotechnol.
11
(
4
),
325
329
(
2016
).
133.
M. S.
Carstensen
,
X.
Zhu
,
O. E.
Iyore
,
N. A.
Mortensen
,
U.
Levy
, and
A.
Kristensen
, “
Holographic resonant laser printing of metasurfaces using plasmonic template
,”
ACS Photonics
5
(
5
),
1665
1670
(
2018
).
134.
Y.
Zhang
 et al., “
Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing
,”
Nanoscale Horiz.
4
(
3
),
601
609
(
2019
).
135.
S.
Raza
,
C.
Lavieja
,
X.
Zhu
, and
A.
Kristensen
, “
Resonant laser printing of bi-material metasurfaces: From plasmonic to photonic optical response
,”
Opt. Express
26
(
16
),
20203
(
2018
).
136.
P.
Gadenne
,
Y.
Yagil
, and
G.
Deutscher
, “
Transmittance and reflectance in situ measurements of semicontinuous gold films during deposition
,”
J. Appl. Phys.
66
(
7
),
3019
3025
(
1989
).
137.
P.
Nyga
,
V. P.
Drachev
,
M. D.
Thoreson
, and
V. M.
Shalaev
, “
Mid-IR plasmonics and photomodification with Ag films
,”
Appl. Phys. B
93
(
1
),
59
68
(
2008
).
138.
A. S.
Roberts
 et al., “
Laser writing of bright colors on near-percolation plasmonic reflector arrays
,”
ACS Nano
13
(
1
),
71
77
(
2019
).
139.
P.
Nyga
 et al., “
Laser-induced color printing on semicontinuous silver films: Red, green and blue
,”
Opt. Mater. Express
9
(
3
),
1528
(
2019
).
140.
M. D.
Ooms
,
Y.
Jeyaram
, and
D.
Sinton
, “
Disposable plasmonics: rapid and inexpensive large area patterning of plasmonic structures with CO2 laser annealing
,”
Langmuir
31
(
18
),
5252
5258
(
2015
).
141.
K. J.
Berean
 et al., “
Laser-induced dewetting for precise local generation of au nanostructures for tunable solar absorption
,”
Adv. Opt. Mater.
4
(
8
),
1247
1254
(
2016
).
142.
K.
Toyoda
,
K.
Miyamoto
,
N.
Aoki
,
R.
Morita
, and
T.
Omatsu
, “
Using optical vortex to control the chirality of twisted metal nanostructures
,”
Nano Lett.
12
(
7
),
3645
3649
(
2012
).
143.
A. Y.
Vorobyev
and
C.
Guo
, “
Enhanced absorptance of gold following multipulse femtosecond laser ablation
,”
Phys. Rev. B
72
(
19
),
195422
(
2005
).
144.
A. Y.
Vorobyev
and
C.
Guo
, “
Colorizing metals with femtosecond laser pulses
,”
Appl. Phys. Lett.
92
(
4
),
041914
(
2008
).
145.
J.-M.
Guay
 et al., “
Laser-induced plasmonic colours on metals
,”
Nat. Commun.
8
,
16095
(
2017
).
146.
G. V.
Odintsova
,
E. A.
Vlasova
,
Y. M.
Andreeva
,
M. K.
Moskvin
,
A. S.
Krivonosov
,
E. V.
Gorbunova
,
D. V.
Pankin
,
O. S.
Medvedev
,
M. M.
Sergeev
,
N. N.
Shchedrina
,
D. S.
Lutoshina
, and
V. P.
Veiko
, “
High-resolution large-scale plasmonic laser color printing for jewelry applications
,”
Opt. Express
27
(
3
),
3672
(
2019
).
147.
X.
Duan
,
S.
Kamin
, and
N.
Liu
, “
Dynamic plasmonic colour display
,”
Nat. Commun.
8
,
14606
(
2017
).
148.
J.
Li
,
S.
Kamin
,
G.
Zheng
,
F.
Neubrech
,
S.
Zhang
, and
N.
Liu
, “
Addressable metasurfaces for dynamic holography and optical information encryption
,”
Sci. Adv.
4
(
6
),
eaar6768
(
2018
).
149.
Y.
Chen
 et al., “
Dynamic color displays using stepwise cavity resonators
,”
Nano Lett.
17
(
9
),
5555
5560
(
2017
).
150.
Y.
Gao
 et al., “
Lead halide perovskite nanostructures for dynamic color display
,”
ACS Nano
12
(
9
),
8847
8854
(
2018
).
151.
S.
Malynych
and
G.
Chumanov
, “
Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays
,”
J. Am. Chem. Soc.
125
(
10
),
2896
2898
(
2003
).
152.
Y.-L.
Chiang
 et al., “
Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite
,”
Appl. Phys. Lett.
96
(
4
),
041904
(
2010
).
153.
M. G.
Millyard
,
F. M.
Huang
,
R.
White
,
E.
Spigone
,
J.
Kivioja
, and
J. J.
Baumberg
, “
Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats
,”
Appl. Phys. Lett.
100
(
7
),
073101
(
2012
).
154.
R.
Caputo
,
U.
Cataldi
,
T.
Bürgi
, and
C.
Umeton
, “
Plasmomechanics: A colour-changing device based on the plasmonic coupling of gold nanoparticles
,”
Mol. Cryst. Liq. Cryst.
614
(
1
),
20
29
(
2015
).
155.
S.
Rehwald
 et al., “
Tunable nanowires: An additional degree of freedom in plasmonics
,”
Phys. Rev. B.
76
(
8
),
085420
(
2007
).
156.
F.
Lütolf
,
D.
Casari
, and
B.
Gallinet
, “
Low-cost and large-area strain sensors based on plasmonic Fano resonances
,”
Adv. Opt. Mater.
4
(
5
),
715
721
(
2016
).
157.
S.
Olcum
,
A.
Kocabas
,
G.
Ertas
,
A.
Atalar
, and
A.
Aydinli
, “
Tunable surface plasmon resonance on an elastomeric substrate
,”
Opt. Express
17
(
10
),
8542
(
2009
).
158.
M. L.
Tseng
,
J.
Yang
,
M.
Semmlinger
,
C.
Zhang
,
P.
Nordlander
, and
N. J.
Halas
, “
Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response
,”
Nano Lett.
17
(
10
),
6034
6039
(
2017
).
159.
S.
Song
 et al., “
Actively tunable structural color rendering with tensile substrate
,”
Adv. Opt. Mater.
5
(
9
),
1600829
(
2017
).
160.
S.
Aksu
 et al., “
Flexible plasmonics on unconventional and nonplanar substrates
,”
Adv. Mater.
23
(
38
),
4422
4430
(
2011
).
161.
A.
Yang
 et al., “
Programmable and reversible plasmon mode engineering
,”
Proc. Natl. Acad. Sci.
113
(
50
),
14201
14206
(
2016
).
162.
R. M.
Cole
,
S.
Mahajan
, and
J. J.
Baumberg
, “
Stretchable metal-elastomer nanovoids for tunable plasmons
,”
Appl. Phys. Lett.
95
(
15
),
154103
(
2009
).
163.
X.
Zhu
,
L.
Shi
,
X.
Liu
,
J.
Zi
, and
Z.
Wang
, “
A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate
,”
Nano Res.
3
(
11
),
807
812
(
2010
).
164.
L.
Gao
 et al., “
Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures
,”
ACS Nano
9
(
6
),
5968
5975
(
2015
).
165.
D.
Yoo
,
T. W.
Johnson
,
S.
Cherukulappurath
,
D. J.
Norris
, and
S.-H.
Oh
, “
Template-stripped tunable plasmonic devices on stretchable and rollable substrates
,”
ACS Nano
9
(
11
),
10647
10654
(
2015
).
166.
D.
Feng
,
H.
Zhang
,
S.
Xu
,
L.
Tian
, and
N.
Song
, “
Fabrication of plasmonic nanoparticles on a wave shape PDMS substrate
,”
Plasmonics
12
(
5
),
1627
1631
(
2017
).
167.
D.
Feng
,
H.
Zhang
,
S.
Xu
,
L.
Tian
, and
N.
Song
, “
Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics
,”
Nanotechnology
28
(
11
),
115703
(
2017
).
168.
U.
Cataldi
 et al., “
Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling
,”
J. Mater. Chem. C
2
(
37
),
7927
7933
(
2014
).
169.
H.
Honma
,
K.
Takahashi
,
M.
Ishida
, and
K.
Sawada
, “
Continuous control of surface-plasmon excitation wavelengths using nanomechanically stretched subwavelength grating
,”
Appl. Phys. Express
9
(
2
),
027201
(
2016
).
170.
K.
Yamaguchi
,
M.
Fujii
,
T.
Okamoto
, and
M.
Haraguchi
, “
Electrically driven plasmon chip: Active plasmon filter
,”
Appl. Phys. Express
7
(
1
),
012201
(
2014
).
171.
N. I.
Zheludev
and
E.
Plum
, “
Reconfigurable nanomechanical photonic metamaterials
,”
Nat. Nanotechnol.
11
(
1
),
16
22
(
2016
).
172.
H.
Honma
,
K.
Takahashi
,
M.
Ishida
, and
K.
Sawada
, “
Fabrication of tunable plasmonic color filter using al subwavelength grating integrated with electrostatic comb-drive actuator
,” in
2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)
(
2015
), pp.
2053
2056
.
173.
H.
Honma
,
M.
Mitsudome
,
M.
Ishida
,
K.
Sawada
, and
K.
Takahashi
, “
Nano-optomechanical characterization of surface-plasmon-based tunable filter integrated with comb-drive actuator
,”
J. Micromech. Microeng.
27
(
3
),
034001
(
2017
).
174.
M.
Swillam
,
Y.
Ismail
, and
R.
Kotb
, “
Tunable nanoplasmonics
,”
Adv. Electromagn.
2
(
2
),
1
(
2013
).
175.
T.
Lee
,
A.
Higo
,
H.
Fujita
,
Y.
Nakano
, and
H.
Toshiyoshi
, “
A study on color-tunable MEMS device based on plasmon photonics
,”
in 2010 International Conference on Optical MEMS and Nanophotonics (
2010
), pp.
107
108
.
176.
T.
Lee
,
A.
Higo
,
H.
Fujita
,
Y.
Nakano
, and
H.
Toshiyoshi
, “
Transmissive color shift through layered sub-wavelength gratings based on plasmon enhanced coupling
,” in
2011 16th International Solid-State Sensors, Actuators and Microsystems Conference
(
2011
), pp.
1542
1545
.
177.
Y.
Nagasaki
 et al., “
Optical bistability in shape-memory nanowire metamaterial array
,”
Appl. Phys. Lett.
113
(
2
),
021105
(
2018
).
178.
M.
Miyata
,
A.
Kaijima
,
Y.
Nagasaki
, and
J.
Takahara
, “
Electromechanically tunable plasmonic nanowires operating in visible wavelengths
,”
ACS Photonics
3
(
12
),
2268
2274
(
2016
).
179.
A. Q.
Liu
,
W. M.
Zhu
,
D. P.
Tsai
, and
N. I.
Zheludev
, “
Micromachined tunable metamaterials: A review
,”
J. Opt.
14
(
11
),
114009
(
2012
).
180.
Q.
Chen
 et al., “
A CMOS image sensor integrated with plasmonic colour filters
,”
Plasmonics
7
(
4
),
695
699
(
2012
).
181.
B. Y.
Zheng
,
Y.
Wang
,
P.
Nordlander
, and
N. J.
Halas
, “
Color-selective and CMOS-compatible photodetection based on aluminum plasmonics
,”
Adv. Mater.
26
(
36
),
6318
6323
(
2014
).
182.
T.
Maurer
 et al., “
The beginnings of plasmomechanics: Towards plasmonic strain sensors
,”
Front. Mater. Sci.
9
(
2
),
170
177
(
2015
).
183.
J.
Liu
and
Y.
Lu
, “
Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles
,”
Angew. Chem. Int. Ed.
45
(
1
),
90
94
(
2006
).
184.
N. L.
Rosi
and
C. A.
Mirkin
, “
Nanostructures in biodiagnostics
,”
Chem. Rev.
105
(
4
),
1547
1562
(
2005
).
185.
L.
Guo
,
L.
Chen
,
S.
Hong
, and
D.-H.
Kim
, “
Single plasmonic nanoparticles for ultrasensitive DNA sensing: From invisible to visible
,”
Biosens. Bioelectron.
79
,
266
272
(
2016
).
186.
C. M.
Niemeyer
, “
Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science
,”
Angew. Chem. Int. Ed.
40
(
22
),
4128
4158
(
2001
).
187.
A.
Tittl
,
P.
Mai
,
R.
Taubert
,
D.
Dregely
,
N.
Liu
, and
H.
Giessen
, “
Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing
,”
Nano Lett.
11
(
10
),
4366
4369
(
2011
).
188.
S.
Wang
 et al., “
Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array
,”
Nano Lett.
11
(
8
),
3431
3434
(
2011
).
You do not currently have access to this content.