This review article aims to provide an overview and insight into the most relevant aspects of wind energy development and current state-of-the-art. The industry is in a very mature stage, so it seems to be the right time to take stock of the relevant areas of wind energy use for power generation. For this review, the authors considered the essential aspects of the development of wind energy technology: research, modeling, and prediction of wind speed as an energy source, the technology development of the plants divided into the mechanical and electrical systems and the plant control, and finally the optimal plant operation including the maintenance strategies. The focus is on the development in Europe, with a partial focus on Germany. The authors are employees of the Fraunhofer Institutes, Institute for Energy Economics and Energy Systems Technology and Institute for Wind Energy Systems, who have contributed to the development of this technology for decades.

1.
Wind Energy Technologies Office
, https://www.energy.gov/eere/wind/history-us-wind-energy for History of U.S. wind energy.
1978
President Signed Public Utility Regulatory Policies Act.
2.
See http://windsofchange.dk/WOC-grassroots.php
for “Winds of change
,”
Turbines USA
,
Denmark, Europe
.
3.
M. M.
Hand
, “
IEA Wind TCP Task 26–Wind technology, cost, and performance trends
in
Denmark
,
the European Union, Germany, Ireland, Norway, Sweden, and the United States: 2008–2016
,” Report No. NREL/TP-6A20.71844, 2015.
4.
R.
Wiser
,
K.
Jenni
,
J.
Seel
,
E.
Baker
,
M.
Hand
,
E.
Lantz
, and
A.
Smith
, “
Forecasting wind energy costs and cost drivers: The views of the world’s leading experts authors
,” Reference No. LBNL-1005717 (
2016
), p.
87
.
5.
International Renewable Energy Agency
,
Renewable Power Generation Costs in 2017
(IRENA,
2017
).
6.
R.
Wiser
and
M.
Bolinger
, https://www.energy.gov/sites/prod/files/2018/08/f54/2017_wind_technologies_market_report_8.15.18.v2.pdf for Wind Technology Market Report
2017
.
7.
F.
Ferioli
,
K.
Schoots
, and
B. C. C.
van der Zwaan
, “
Use and limitations of learning curves for energy technology policy: A component-learning hypothesis
,”
Energy Policy
37
(
7
),
2525
2535
(
2009
).
8.
V.
Dinica
, “
Renewable electricity production costs—A framework to assist policy-makers' decisions on price support
,”
Energy Policy
39
(
7
),
4153
4167
(
2011
).
9.
E. S.
Rubin
 et al, “
A review of learning rates for electricity supply technologies
,”
Energy Policy
86
,
198
218
(
2015
).
10.
DTU Wind Energy and World Bank Group
, https://globalwindatlas.info/ for Global Wind Atlas 2: A free, web-based application developed, owned and operated by the Technical University of Denmark (DTU) in partnership with the World Bank Group, utilizing data provided by Vortex, with funding provided by the Energy Sector Management Assistance Program (ESMAP) (
2017
).
11.
C. L.
Archer
and
M. Z.
Jacobson
, “
Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements
,”
J. Geophys. Res.
108
(
D9
),
4289
, (
2003
).
12.
I.
Troen
and
E. L.
Petersen
,
European Wind Atlas (Commission of the European Communities, Directorate-General for Science, Research, and Development/
Risø National Laboratory
,
Brussels
,
Belgium/Roskilde, Denmark
,
1989
).
13.
B. W.
Atkinson
,
Meso-Scale Atmospheric Circulations
(
Academic Press
,
London
,
1981
).
14.
B.
Grisogono
and
D.
Belusšić
, “
A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind
,”
Tellus A
61
(
1
),
1
16
(
2009
).
15.
M. Z.
Jacobson
and
C. L.
Archer
, “
Saturation wind power potential and its implications for wind energy
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
39
),
15679
15684
(
2012
).
16.
K.
Marvel
,
B.
Kravitz
, and
K.
Caldeira
, “
Geophysical limits to global wind power
,”
Nat. Clim. Change
3
(
2
),
118
121
(
2013
).
17.
L. M.
Miller
and
A.
Kleidon
, “
Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits
,”
Proc. Natl. Acad. Sci.
113
(
48
),
13570
13575
(
2016
).
18.
X.
Lu
,
M. B.
McElroy
, and
J.
Kiviluoma
, “
Global potential for wind-generated electricity
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
27
),
10933
10938
(
2009
).
19.
R. J.
Swart
,
C.
Coppens
,
H.
Gordijn
,
M.
Piek
,
P.
Ruyssenaars
,
J. J.
Schrander
,
P. d.
Smet
,
M.
Hoogwijk
,
M.
Papalexandrou
,
E. d.
Visser
,
J.
Horalek
,
P.
Kurfürst
,
F. P.
Jensen
,
B. S.
Petersen
,
M.
Harfoot
,
R.
Milego
,
N. E.
Clausen
, and
G.
Giebel
,
Europe's Onshore and Offshore Wind Energy Potential: An Assessment of Environmental and Economic Constraints
, EEA Techn. Report 6/2009, (
2009
).
20.
K.
Eurek
,
P.
Sullivan
,
M.
Gleason
,
D.
Hettinger
,
D.
Heimiller
, and
A.
Lopez
, “
An improved global wind resource estimate for integrated assessment models
,”
Energy Econ.
64
,
552
567
(
2017
).
21.
J.
Bosch
,
I.
Staffell
, and
A. D.
Hawkes
, “
Temporally explicit and spatially resolved global offshore wind energy potentials
,”
Energy
163
,
766
781
(
2018
).
22.
D.
Callies
, “Analyse des Potenzials der Onshore-Windenergie in Deutschland unter Berücksichtigung von technischen und planerischen Randbedingungen,” dissertation (
Kassel University Press
,
Kassel
,
2015
).
23.
European Environment Agency
, Europe's Onshore and Offshore Wind Energy Potential. An Assessment of Environmental and Economic Constraints, EEA Techn. Report 6/2009, (2009)
24.
M.
Hoogwijk
,
B.
de Vries
, and
W.
Turkenburg
, “
Assessment of the global and regional geographical, technical and economic potential of onshore wind energy
,”
Energy Econ.
26
(
5
),
889
919
(
2004
).
25.
C.
de Castro
,
M.
Mediavilla
,
L. J.
Miguel
, and
F.
Frechoso
, “
Global wind power potential: Physical and technological limits
,”
Energy Policy
39
(
10
),
6677
6682
(
2011
).
26.
E.
Dupont
,
R.
Koppelaar
, and
H.
Jeanmart
, “
Global available wind energy with physical and energy return on investment constraints
,”
Appl. Energy
209
,
322
338
(
2018
).
27.
K. S. R.
Murthy
and
O. P.
Rahi
, “
A comprehensive review of wind resource assessment
,”
Renewable Sustainable Energy Rev.
72
,
1320
1342
(
2017
).
28.
FGW
, TR6 Bestimmung von Windpotenzial und Energieerträgen: Revision 10—Fördergesellschaft Windenergie und andere Erneuerbare Energien e.V. (Technische Richtlinien für Windenergieanlagen,
2017
).
29.
Measnet
, MEASNET Procedure: Evaluation of Site-Specific Wind Conditions—Version. 2 (Measnet,
2016
).
30.
J. C.
Wyngaard
, “
Cup, propeller, vane, and sonic anemometers in turbulence research
,”
Annu. Rev. Fluid Mech.
13
(
1
),
399
423
(
1981
).
31.
L.
Kristensen
, “
The perennial cup anemometer
,”
Wind Energy
2
(
1
),
59
75
(
1999
).
32.
IEC 61400-12-1
, Wind Turbines—Part 12–1: Power Performance Measurements of Electricity Producing Wind Turbines Draft FDIS, 2nd ed. (International Electrotechnical Commission, Geneva, Switzerland,
2016
).
33.
M.
Courtney
,
R.
Wagner
, and
P.
Lindelöw
, “
Testing and comparison of lidars for profile and turbulence measurements in wind energy
,”
IOP Conf. Ser.: Earth Environ. Sci.
1
,
12021
(
2008
).
34.
M.
de Noord
,
A.
Curvers
,
P.
Eecen
,
I.
Antoniou
,
H. E.
Jørgensen
,
T. F.
Pedersen
,
S.
Bradley
,
S.
von Hünerbein
, and
D.
Kindler
, http://www.ecn.nl/docs/library/report/2005/c05041.pdf
for Sodar power performance measurements: WISE WP5
(
2005
).
35.
T. K.
Mikkelsen
, “
Remote sensing of wind
,” in
Remote Sensing for Wind Energy: E-Report: DTU Wind Energy-E-Report-0084 (EN)
DTU, Roskilde
,
Denmark
(
2015
).
36.
S.
Emeis
,
M.
Harris
, and
R. M.
Banta
, “
Boundary-layer anemometry by optical remote sensing for wind energy applications
,”
Meteorol. Z.
16
(
4
),
337
347
(
2007
).
37.
R.
Wagner
,
M.
Courtney
,
J.
Gottschall
, and
P.
Lindelöw-Marsden
, “
Accounting for the speed shear in wind turbine power performance measurement
,”
Wind Energy
14
(
8
),
993
1004
(
2011
).
38.
R.
Wagner
,
B.
Cañadillas
,
A.
Clifton
,
S.
Feeney
,
N.
Nygaard
,
M.
Poodt
,
C. S.
Martin
,
E.
Tüxen
, and
J. W.
Wagenaar
, “
Rotor equivalent wind speed for power curve measurement—Comparative exercise for IEA Wind Annex 32
,”
J. Phys.: Conf. Ser.
524
,
12108
(
2014
).
39.
D. A.
Smith
,
M.
Harris
,
A. S.
Coffey
,
T.
Mikkelsen
,
H. E.
Jørgensen
,
J.
Mann
, and
R.
Danielian
, “
Wind lidar evaluation at the Danish wind test site in Høvsøre
,”
Wind Energy
9
(
1‐2
),
87
93
(
2006
).
40.
D.
Kindler
,
A.
Oldroyd
,
A.
MacAskill
, and
D.
Finch
, “
An eight month test campaign of the Qinetiq ZephIR system: Preliminary results
,”
Meteorol. Z.
16
(
5
),
479
489
(
2007
).
41.
J.
Gottschall
,
M. S.
Courtney
,
R.
Wagner
,
H. E.
Jørgensen
, and
I.
Antoniou
, “
Lidar profilers in the context of wind energy—A verification procedure for traceable measurements
,”
Wind Energy
15
(
1
),
147
159
(
2012
).
42.
J. S.
Rodrigo
,
F.
Borbón Guillén
,
P.
Gómez Arranz
,
M. S.
Courtney
,
R.
Wagner
, and
E.
Dupont
, “
Multi-site testing and evaluation of remote sensing instruments for wind energy applications
,”
Renewable Energy
53
,
200
210
(
2013
).
43.
Y. L.
Pichugina
,
R. M.
Banta
,
W. A.
Brewer
,
S. P.
Sandberg
, and
R. M.
Hardesty
, “
Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications
,”
J. Appl. Meteorol. Climatol.
51
(
2
),
327
349
(
2012
).
44.
R. M.
Banta
,
Y. L.
Pichugina
,
N. D.
Kelley
,
R. M.
Hardesty
, and
W. A.
Brewer
, “
Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution doppler lidar
,”
Bull. Am. Meteorol. Soc.
94
(
6
),
883
902
(
2013
).
45.
F.
Bingöl
,
J.
Mann
, and
D.
Foussekis
, “
Conically scanning lidar error in complex terrain
,”
Meteorol. Z.
18
(
2
),
189
195
(
2009
).
46.
T.
Klaas
,
L.
Pauscher
, and
D.
Callies
, “
LiDAR-mast deviations in complex terrain and their simulation using CFD
,”
Meteorol. Z.
24
(
6
),
591
603
(
2015
).
47.
S.
Bradley
,
A.
Strehz
, and
S.
Emeis
, “
Remote sensing winds in complex terrain? A review
,”
Meteorol. Z.
24
(
6
),
547
555
(
2015
).
48.
A.
Clifton
,
M.
Boquet
,
E.
Des Burin Roziers
,
A.
Westerhellweg
,
M.
Hofsass
,
T.
Klaas
,
K.
Vogstad
,
P.
Clive
,
M.
Harris
,
S.
Wylie
,
E.
Osler
,
B.
Banta
,
A.
Choukulkar
,
J.
Lundquist
, and
M.
Aitken
, “
Remote sensing of complex flows by doppler wind lidar: Issues and preliminary recommendations
,”
Technical Report TP5000-64634
, NREL (
2015
).
49.
A.
Clifton
,
P.
Clive
,
J.
Gottschall
,
D.
Schlipf
,
E.
Simley
,
L.
Simmons
,
D.
Stein
,
D.
Trabucchi
,
N.
Vasiljevic
, and
I.
Würth
, “
IEA Wind Task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar
,”
Remote Sens.
10
(
3
),
406
(
2018
).
50.
L.
Pauscher
,
N.
Vasiljevic
,
D.
Callies
,
G.
Lea
,
J.
Mann
,
T.
Klaas
,
J.
Hieronimus
,
J.
Gottschall
,
A.
Schwesig
,
M.
Kühn
, and
M.
Courtney
, “
An inter-comparison study of multi- and DBS lidar measurements in complex terrain
,”
Remote Sens.
9
(
7
),
782
(
2016
).
51.
J. F.
Newman
,
T. A.
Bonin
,
P. M.
Klein
,
S.
Wharton
, and
R. K.
Newsom
, “
Testing and validation of multi-lidar scanning strategies for wind energy applications
,”
Wind Energy
19
(
12
),
2239
2254
(
2016
).
52.
H.
Mueller
,
M.
Eggert
,
C.
Gutsmuths
,
A.
Albers
,
K.
Franke
, and
A.-W.
Janssen
,
A Novel Lidar System–First Results of Highly Resolved Wind Vector Measurements
, WindEurope Summit 2016, Hamburg, 27.–29.09.2016 (
2016
)
53.
M. A.
Lackner
,
A. L.
Rogers
,
J. F.
Manwell
, and
J. G.
McGowan
, “
A new method for improved hub height mean wind speed estimates using short-term hub height data
,”
Renewable Energy
35
(
10
),
2340
2347
(
2010
).
54.
N.
Vasiljevic
,
G.
Lea
,
M.
Courtney
,
J.-P.
Cariou
,
J.
Mann
, and
T.
Mikkelsen
, “
Long-range wind scanner system
,”
Remote Sens.
8
(
11
),
896
(
2016
).
55.
R.
Floors
,
A.
Peña
,
G.
Lea
,
N.
Vasiljević
,
E.
Simon
, and
M.
Courtney
, “
The RUNE experiment—A database of remote-sensing observations of near-shore winds
,”
Remote Sens.
8
(
11
),
884
(
2016
).
56.
J.
Mann
,
N.
Angelou
,
J.
Arnqvist
,
D.
Callies
,
E.
Cantero
,
R. C.
Arroyo
,
M.
Courtney
,
J.
Cuxart
,
E.
Dellwik
,
J.
Gottschall
,
S.
Ivanell
,
P.
Kühn
,
G.
Lea
,
J. C.
Matos
,
Palma
,
J. M. L. M.
,
L.
Pauscher
,
A.
Peña
,
J. S.
Rodrigo
,
S.
Söderberg
,
N.
Vasiljevic
, and
C. V.
Rodrigues
, “
Complex terrain experiments in the New European Wind Atlas
,”
Philos. Trans. R. Soc. London, A
375
(
2091
),
20160101
(
2017
).
57.
J. K.
Lundquist
,
J. M.
Wilczak
,
R.
Ashton
,
L.
Bianco
,
W. A.
Brewer
,
A.
Choukulkar
,
A.
Clifton
,
M.
Debnath
,
R.
Delgado
,
K.
Friedrich
,
S.
Gunter
,
A.
Hamidi
,
G. V.
Iungo
,
A.
Kaushik
,
B.
Kosović
,
P.
Langan
,
A.
Lass
,
E.
Lavin
,
J. C.-Y.
Lee
,
K. L.
McCaffrey
,
R. K.
Newsom
,
D. C.
Noone
,
S. P.
Oncley
,
P. T.
Quelet
,
S. P.
Sandberg
,
J. L.
Schroeder
,
W. J.
Shaw
,
L.
Sparling
,
C.
St. Martin
,
A.
St. Pe
,
E.
Strobach
,
K.
Tay
,
B. J.
Vanderwende
,
A.
Weickmann
,
D.
Wolfe
, and
R.
Worsnop
, “
Assessing state-of-the-art capabilities for probing the atmospheric boundary layer: The XPIA field campaign
,”
Bull. Am. Meteorol. Soc.
98
(
2
),
289
314
(
2017
).
58.
B. D.
Hirth
,
J. L.
Schroeder
,
W. S.
Gunter
, and
J. G.
Guynes
, “
Measuring a utility-scale turbine wake using the TTUKa mobile research radars
,”
J. Atmos. Oceanic Technol.
29
(
6
),
765
771
(
2012
).
59.
B. D.
Hirth
,
J. L.
Schroeder
,
W. S.
Gunter
, and
J. G.
Guynes
, “
Coupling Doppler radar‐derived wind maps with operational turbine data to document wind farm complex flows
,”
Wind Energy
18
(
3
),
529
540
(
2015
).
60.
J.
Gottschall
,
B.
Gribben
,
D.
Stein
, and
I.
Würth
, “
Floating lidar as an advanced offshore wind speed measurement technique. Current technology status and gap analysis in regard to full maturity
,”
WIREs Energy Environ.
6
(
5
),
e250
(
2017
).
61.
Forschungs- und Entwicklungszentrum Fachhochschule Kiel GmbH
, https://www.fino-offshore.de/ for FINO 1, 2, 3 Forschungsplattformen in der Nord- und Ostsee 1, 2, 3.
62.
A.
Platis
,
S. K.
Siedersleben
,
J.
Bange
,
A.
Lampert
,
K.
Bärfuss
,
R.
Hankers
,
B.
Cañadillas
,
R.
Foreman
,
J.
Schulz-Stellenfleth
,
B.
Djath
,
T.
Neumann
, and
S.
Emeis
, “
First in situ evidence of wakes in the far field behind offshore wind farms
,”
Sci. Rep.
8
(
1
),
2163
(
2018
).
63.
B.
Jimenez
,
F.
Durante
,
B.
Lange
,
T.
Kreutzer
, and
J.
Tambke
, “
Offshore wind resource assessment with WAsP and MM5. Comparative study for the German Bight
,”
Wind Energy
10
(
2
),
121
134
(
2007
).
64.
M.
Durstewitz
and
B.
Lange
,
Meer–Wind–Strom
(
Springer Fachmedien Wiesbaden
,
Wiesbaden
,
2016
).
65.
K. E.
Mittendorf
, “
Joint description methods of wind and waves for the design of offshore wind turbines
,”
Mar. Technol. Soc. J.
43
(
3
),
23
33
(
2009
).
66.
A.
Morales
,
M.
Wächter
, and
J.
Peinke
, “
Characterization of wind turbulence by higher-order statistics
,”
Wind Energy
15
(
3
),
391
406
(
2012
).
67.
J. S.
Rodrigo
,
E.
Cantero
,
B.
García
,
F.
Borbón
,
U.
Irigoyen
,
S.
Lozano
,
P. M.
Fernande
, and
R. A.
Chávez
, “
Atmospheric stability assessment for the characterization of offshore wind conditions
,” in
Science of Making Torque from Wind 2014 (Torque 2014)
(
2015
), Vol.
625
, p.
12044
.
68.
K.
Christakos
,
I.
Cheliotis
,
G.
Varlas
, and
G.-J.
Steeneveld
, “
Offshore wind energy analysis of cyclone Xaver over North Europe
,” in
13th Deep Sea Offshore Wind R&D Conference, Eera Deepwind'2016
(
2016
)
Vol. 94
, pp.
37
44
.
69.
L.
Eliassen
and
C.
Obhrai
, “
Coherence of turbulent wind under neutral wind conditions at FINO1
,” in
13th Deep Sea Offshore Wind R&D Conference, Eera Deepwind'2016
(
2016
), Vol.
94
, pp.
388
398
.
70.
T. F.
Pedersen
,
N. N.
Soerensen
, and
P.
Enevoldsen
, “
Aerodynamics and characteristics of a spinner anemometer
,”
J. Phys.: Conf. Ser.
75
,
012018
(
2007
).
71.
G.
Demurtas
,
T.
Friis Pedersen
, and
R.
Wagner
, “
Nacelle power curve measurement with spinner anemometer and uncertainty evaluation
,”
Wind Energy Sci.
2
(
1
),
97
114
(
2017
).
72.
R.
Wagner
,
T. F.
Pedersen
,
M.
Courtney
,
I.
Antoniou
,
S.
Davoust
, and
R. L.
Rivera
, “
Power curve measurement with a nacelle mounted lidar
,”
Wind Energy
14
,
1
(
2013
).
73.
R.
Wagner
and
A.
Vignaroli
, http://sse.com/media/387114/Hunterston_WindEnergy_LidarStudyReport.pdf for “
Power curve measurement with a sector scanning lidar from the TP and a nacelle lidar at Greater Gabbard
,”
DTU Wind Energy GG I-0016 (EN).
Deliverable D5.3, Version 1.2.
74.
C.
Hasager
,
D.
Stein
,
M.
Courtney
,
A.
Peña
,
T.
Mikkelsen
,
M.
Stickland
, and
A.
Oldroyd
, “
Hub height ocean winds over the North Sea observed by the NORSEWInD lidar array. Measuring techniques, quality control and data management
,”
Remote Sens.
5
(
9
),
4280
4303
(
2013
).
75.
DNV GL
, Frazer-Nash Consultancy, Multiversum Consulting, Fraunhofer IWES, OWA Floating LiDAR Roadmap Update—What Does It Mean for the Industry?, The Carbon Trust, 10/2018 (
2018
).
76.
O.
Bischoff
,
I.
Würth
,
J.
Gottschall
,
B.
Gribben
,
J.
Hughes
,
D.
Stein
, and
H.
Verhoef
, https://community.ieawind.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=99ec44ff-4493-4bad-6510-d42d152ae963&forceDialog=0 for Recommended Practice 18: Floating Lidar Systems.
77.
J.
Gottschall
,
E.
Catalano
,
M.
Dörenkämper
, and
B.
Witha
, “
The NEWA ferry lidar experiment: measuring mesoscale winds in the Southern Baltic Sea
,”
Remote Sens.
10
(
10
),
1620
(
2018
).
78.
F.
Espin
and
L.
Garcia
,
Cost Effective Offshore Wind Measurement Campaigns Using Scanning LiDAR: 2 Offshore Campaigns in France
,
Helsinki, Finland
,
2015
.
79.
M.
Brower
and
B. H.
Bailey
,
Wind Resource Assessment: A Practical Guide to Developing a Wind Project
(
Wiley
,
Hoboken, NJ
,
2012
).
80.
S. C.
Pryor
,
T. J.
Shepherd
, and
R. J.
Barthelmie
, “
Interannual variability of wind climates and wind turbine annual energy production
,”
Wind Energy Sci.
3
(
2
),
651
665
(
2018
).
81.
S.
Liléo
,
E.
Berge
,
O.
Undheim
,
R.
Klinkert
, and
R. E.
Bredesen
, “
Long-term correction of wind measurements—State-of-the-art, Guidelines and Future Work: Technical Report
,”
Elforsk Report
13
(
18
) (
2013
).
82.
A.
Basse
,
D.
Callies
, and
A.
Groetzner
, “Ergebnisbericht zum Round Robin Test ‘Langzeitkorrektur von Kurzzeitwindmessungen’.” Vergleichstest der Universität Kassel im Projekt Optimierung von LiDAR-basierten Messstrategien zur Standortbewertung von Windparks (LiMeS),
2018
.
83.
A. L.
Rogers
,
J. W.
Rogers
, and
J. F.
Manwell
, “
Comparison of the performance of four measure‐correlate‐predict algorithms
,”
J. Wind Eng. Ind. Aerodyn.
93
(
3
),
243
264
(
2005
).
84.
J. A.
Carta
and
S.
Velázquez
, “
A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site
,”
Energy
36
(
5
),
2671
2685
(
2011
).
85.
S. C.
Pryor
and
R. J.
Barthelmie
, “
Climate change impacts on wind energy: A review
,”
Renewable Sustainable Energy Rev.
14
(
1
),
430
437
(
2010
).
86.
S. C.
Pryor
and
R. J.
Barthelmie
, “
Assessing climate change impacts on the near-term stability of the wind energy resource over the United States
,”
Proc. Natl. Acad. Sci.
108
(
20
),
8167
8171
(
2011
).
87.
H.
Hueging
,
R.
Haas
,
K.
Born
,
D.
Jacob
, and
J. G.
Pinto
, “
Regional changes in wind energy potential over europe using regional climate model ensemble projections
,”
J. Appl. Meteorol. Climatol.
52
(
4
),
903
917
(
2013
).
88.
I.
Tobin
,
R.
Vautard
,
I.
Balog
,
F.-M.
Bréon
,
S.
Jerez
,
P. M.
Ruti
,
F.
Thais
,
M.
Vrac
, and
P.
Yiou
, “
Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections
,”
Clim. Change
128
(
1
),
99
112
(
2015
).
89.
D. L.
Johnson
and
R. J.
Erhardt
, “
Projected impacts of climate change on wind energy density in the United States
,”
Renewable Energy
85
,
66
73
(
2016
).
90.
D.
Carvalho
,
A.
Rocha
,
M.
Gómez-Gesteira
, and
C.
Silva Santos
, “
Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections
,”
Renewable Energy
101
,
29
40
(
2017
).
91.
S.
Saha
,
S.
Moorthi
,
X.
Wu
,
J.
Wang
,
S.
Nadiga
,
P.
Tripp
,
D.
Behringer
,
Y.-T.
Hou
,
H—Y.
Chuang
, and
M.
Iredell
et al., “
The NCEP climate forecast system version 2
,”
J. Clim.
27
(
6
),
2185
2208
(
2014
).
92.
H.
Hersbach
and
D.
Dee
, “
ERA5 reanalysis is in production
,”
ECMWF Newsl.
147
(
7
) (
2016
).
93.
D. P.
Dee
,
S. M.
Uppala
,
A. J.
Simmons
,
P.
Berrisford
,
P.
Poli
,
S.
Kobayashi
,
U.
Andrae
,
M. A.
Balmaseda
,
G.
Balsamo
, and
d. P.
Bauer
, others, “
The ERA-Interim reanalysis: Configuration and performance of the data assimilation system
,”
Q. J. R. Meteorol. Soc.
137
(
656
),
553
597
(
2011
).
94.
R.
Gelaro
,
W.
McCarty
,
M. J.
Suárez
,
R.
Todling
,
A.
Molod
,
L.
Takacs
,
C. A.
Randles
,
A.
Darmenov
,
M. G.
Bosilovich
, and
R.
Reichle
et al., “
The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)
,”
J. Clim.
30
(
14
),
5419
5454
(
2017
).
95.
NCEP
, NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999 (Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder CO,
2000
).
96.
M. L.
Thøgersen
,
L.
Svenningsen
, and
T. G.
Sørensen
, http://www.emd.dk/files/windpro/20170829_ERA5_WindPRO_ReleaseNote.pdf for “ERA5–The (Not So) long term reference wind data—years 2010–2016” (EMD International A/S, Aalborg, Denmark, 2017).
97.
J.
Olauson
, “
ERA5: The new champion of wind power modelling?
,”
Renewable Energy
126
,
322
331
(
2018
).
98.
R. A.
Pielke
, Sr.
,
Mesoscale Meteorological Modeling
(
Academic Press
,
2013
).
99.
M.
Dörenkämper
,
M.
Optis
,
A.
Monahan
, and
G.
Steinfeld
, “
On the Offshore advection of boundary-layer structures and the influence on offshore wind conditions
,”
Boundary-Layer Meteorol.
155
(
3
),
459
482
(
2015
).
100.
P.
Baas
,
F. C.
Bosveld
, and
G.
Burgers
, “
The impact of atmospheric stability on the near-surface wind over sea in storm conditions
,”
Wind Energy
19
(
2
),
187
198
(
2016
).
101.
A. C.
Fitch
,
J. B.
Olson
,
J. K.
Lundquist
,
J.
Dudhia
,
A. K.
Gupta
,
J.
Michalakes
, and
I.
Barstad
, “
Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model
,”
Mon. Weather Rev.
140
(
9
),
3017
3038
(
2012
).
102.
P. H. J.
Volker
,
J.
Badger
,
A. N.
Hahmann
, and
S.
Ott
, “
The explicit wake parametrisation V1. 0: A wind farm parametrisation in the mesoscale model WRF
,”
Geosci. Model Dev.
8
,
3481
3522
(
2015
).
103.
A. M.
Foley
,
P. G.
Leahy
,
A.
Marvuglia
, and
E. J.
McKeogh
, “
Current methods and advances in forecasting of wind power generation
,”
Renewable Energy
37
(
1
),
1
8
(
2012
).
104.
M.
Baldauf
,
A.
Seifert
,
J.
Förstner
,
D.
Majewski
,
M.
Raschendorfer
, and
T.
Reinhardt
, “
Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities
,”
Mon. Weather Rev.
139
(
12
),
3887
3905
(
2011
).
105.
L.
Bengtsson
,
U.
Andrae
,
T.
Aspelien
,
Y.
Batrak
,
J.
Calvo
,
W.
de Rooy
,
E.
Gleeson
,
B.
Hansen-Sass
,
M.
Homleid
, and
M.
Hortal
, et al., “
The HARMONIE‐AROME model configuration in the ALADIN‐HIRLAM NWP system
,”
Mon. Weather Rev.
145
(
5
),
1919
1935
(
2017
).
106.
L.
Enger
, “
Simulation of dispersion in moderately complex terrain—Part A. The fluid dynamic model
,”
Atmos. Environ., Part A
24
(
9
),
2431
2446
(
1990
).
107.
W. C.
Skamarock
,
J. B.
Klemp
,
J.
Dudhia
,
D. O.
Gill
,
D. M.
Barker
,
M. G.
Duda
,
X. Y.
Huang
,
W.
Wang
, and
J. G.
Powers
, “
A description of the advanced research WRF version 3
,”
NCAR technical note NCAR/TN/u2013475+ STR (NCAR/TN–475+STR)
(
2008
).
108.
D.
Carvalho
,
A.
Rocha
,
M.
Gómez-Gesteira
, and
C. S.
Santos
, “
Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula
,”
Appl. Energy
135
,
234
246
(
2014
).
109.
C.
Draxl
,
A. N.
Hahmann
,
A.
Peña
, and
G.
Giebel
, “
Evaluating winds and vertical wind shear from weather research and forecasting model forecasts using seven planetary boundary layer schemes
,”
Wind Energy
17
,
39
55
(
2014
).
110.
O.
Krogsaeter
and
J.
Reuder
, “
Validation of boundary layer parameterization schemes in the weather research and forecasting model under the aspect of offshore wind energy applications—Part I: Average wind speed and wind shear
,”
Wind Energy
18
(
5
),
769
782
(
2015
).
111.
R. J.
Foreman
and
S.
Emeis
, “
A method for increasing the turbulent kinetic energy in the Mellor‐Yamada‐Janjić boundary-layer parametrization
,”
Boundary-Layer Meteorol.
145
(
2
),
329
349
(
2012
).
112.
J. C.
Hansen
,
N. G.
Mortensen
,
T.
Cronin
,
M.
Nielsen
,
A. N.
Hahmann
,
J.
Badger
, and
X. G.
Larsén
,
Wind Atlas for South Africa (WASA)–Best Practice Guide for Application of WASA E-0073
, DTU 2014, (
2014
).
113.
A.
Pena Diaz
,
A. N.
Hahmann
,
C. B.
Hasager
,
F.
Bingöl
,
I.
Karagali
,
J.
Badger
,
M.
Badger
, and
N.-E.
Clausen
,
South Baltic Wind Atlas Risoe-R-1775(EN)
, DTU 2011 (
2011
).
114.
S.
Drüke
,
G.
Steinfeld
,
D.
Heinemann
, and
R.
Günther
, “
Generation of a wind and stability atlas for the optimized utilization of offshore wind resources in the North Sea Region,”
Report No.
EGU2014
-
14375
(
2014
).
115.
M.
Boettcher
,
P.
Hoffmann
,
H.-J.
Lenhart
,
H.
Schlünzen
, and
R.
Schoetter
, “
Influence of large offshore wind farms on North German climate
,”
Meteorol. Z.
24
,
465
480
(
2015
).
116.
P. A.
Jiménez
,
J.
Navarro
,
A. M.
Palomares
, and
J.
Dudhia
, “
Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: A composite-based analysis with the weather research and forecasting model over Horns Rev
,”
Wind Energy
18
(
3
),
559
566
(
2015
).
117.
A. C.
Fitch
,
J. K.
Lundquist
, and
J. B.
Olson
, “
Mesoscale influences of wind farms throughout a diurnal cycle
,”
Mon. Weather Rev.
141
(
7
),
2173
2198
(
2013
).
118.
J.
Sanz Rodrigo
,
R. A.
Chávez Arroyo
,
P.
Moriarty
,
M.
Churchfield
,
B.
Kosović
,
P.-E.
Réthoré
,
K. S.
Hansen
,
A.
Hahmann
,
J. D.
Mirocha
, and
D.
Rife
, “
Mesoscale to microscale wind farm flow modeling and evaluation
,”
Wiley Interdisc. Rev.: Energy Environ.
6
(
2
),
e214
(
2016
).
119.
N. G.
Mortensen
and
E. L.
Petersen
, “
Influence of topographical input data on the accuracy of wind flow modelling in complex terrain
,” in
1997 European Wind Energy Conference
(
1998
).
120.
C. G.
Speziale
, “
Analytical methods for the development of Reynolds-stress closures in turbulence
,”
Annu. Rev. Fluid Mech.
23
(
1
),
107
157
(
1991
).
121.
B.
Maronga
,
M.
Gryschka
,
R.
Heinze
,
F.
Hoffmann
,
F.
Kanani-Sühring
,
M.
Keck
,
K.
Ketelsen
,
M. O.
Letzel
,
M.
Sühring
, and
S.
Raasch
, “
The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives
,”
Geosci. Model Dev.
8
(
8
),
2515
2551
(
2015
).
122.
A.
Sogachev
and
O.
Panferov
, “
Modification of two-equation models to account for plant drag
,”
Boundary-Layer Meteorol.
121
(
2
),
229
266
(
2006
).
123.
C.
Sanz
, “
A note on k-ε modelling of vegetation canopy air-flows
,”
Boundary-Layer Meteorol.
108
(
1
),
191
197
(
2003
).
124.
A. R.
Gravdahl
and
N.
Vargvei
, “Meso scale modeling with a Reynolds averaged Navier-Stokes solver: Assessment of wind resources along the Norwegian coast,” 31th IEA Experts Meeting, Risoe,
1998
.
125.
D. C.
Wilcox
,
Turbulence Modeling for CFD
(
DCW industries
,
La Canada, CA
,
1998
), Vol.
2
.
126.
A.
Sogachev
, “
A note on two-equation closure modelling of canopy flow
,”
Boundary-Layer Meteorol.
130
(
3
),
423
435
(
2009
).
127.
A. M.
Endalew
,
M.
Hertog
,
M. G.
Gebrehiwot
,
M.
Baelmans
,
H.
Ramon
,
B. M.
Nicolaï
, and
P.
Verboven
, “
Modelling airflow within model plant canopies using an integrated approach
,”
Comput. Electron. Agric.
66
(
1
),
9
24
(
2009
).
128.
J.
Schmidt
and
B.
Stoevesandt
, “
The impact of wake models on wind farm layout optimization
,”
J. Phys.: Conf. Ser.
625
(1
),
12040
(
2015
).
129.
A.
Sogachev
,
M.
Kelly
, and
M. Y.
Leclerc
, “
Consistent two-equation closure modelling for atmospheric research: Buoyancy and vegetation implementations
,”
Boundary-Layer Meteorol.
145
(
2
),
307
327
(
2012
).
130.
M.
Dörenkämper
,
B.
Witha
,
G.
Steinfeld
,
D.
Heinemann
, and
M.
Kühn
, “
The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms
,”
J. Wind Eng. Ind. Aerodyn.
144
,
146
153
(
2015
).
131.
J.
Sumner
and
C.
Masson
, “
The Apsley and Castro limited-length-scale 55k-66 model revisited for improved performance in the atmospheric surface layer
,”
Boundary-Layer Meteorol.
144
(
2
),
199
215
(
2012
).
132.
T.
Koblitz
,
A.
Bechmann
,
A.
Sogachev
,
N.
Sørensen
, and
P. E.
Réthoré
, “
Computational fluid dynamics model of stratified atmospheric boundary-layer flow
,”
Wind Energy
18
(
1
),
75
89
(
2013
).
133.
C.-Y.
Chang
,
J.
Schmidt
,
M.
Dörenkämper
, and
B.
Stoevesandt
, “
A consistent steady state CFD simulation method for stratified atmospheric boundary layer flows
,”
J. Wind Eng. Ind. Aerodyn.
172
,
55
67
(
2018
).
134.
B.
Kosović
and
J. A.
Curry
, “
A large Eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer
,”
J. Atmos. Sci.
57
(
8
),
1052
1068
(
2000
).
135.
J.
Sanz Rodrigo
,
M.
Churchfield
, and
B.
Kosovic
, “
A methodology for the design and testing of atmospheric boundary layer models for wind energy applications
,”
Wind Energy Sci.
2
(
1
),
35
54
(
2017
).
136.
IEC 61400-1:2005 (international standard),
Design Requirements. Exigences de Conception
,
Ed. 3.0, 2005–08
(IEC,
Geneva
,
2005
).
137.
A.
Sathe
,
J.
Mann
,
J.
Gottschall
, and
M. S.
Courtney
, “
Can wind lidars measure turbulence?
,”
J. Atmos. Oceanic Technol.
28
(
7
),
853
868
(
2011
).
138.
M. C.
Holtslag
,
W. A. A. M.
Bierbooms
, and
G. J. W.
van Bussel
, “
Definition of the equivalent atmospheric stability for wind turbine fatigue load assessment
,”
J. Phys.: Conf. Ser.
524
,
12110
(
2014
).
139.
K. O.
Ronold
,
J.
Wedel-Heinen
, and
C. J.
Christensen
, “
Reliability-based fatigue design of wind-turbine rotor blades
,”
Eng. Struct.
21
(
12
),
1101
1114
(
1999
).
140.
H. S.
Toft
and
J. D.
Sørensen
, “
Reliability-based design of wind turbine blades
,”
Struct. Safety
33
(
6
),
333
342
(
2011
).
141.
W.
Hu
,
K. K.
Choi
, and
H.
Cho
, “
Reliability-based design optimization of wind turbine blades for fatigue life under dynamic wind load uncertainty
,”
Struct. Multidisc. Optim.
54
(
4
),
953
970
(
2016
).
142.
H. S.
Toft
,
L.
Svenningsen
,
J. D.
Sørensen
,
W.
Moser
, and
M. L.
Thøgersen
, “
Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads
,”
Renewable Energy
90
,
352
361
(
2016
).
143.
R. I.
Harris
, “
Gumbel re-visited—A new look at extreme value statistics applied to wind speeds
,”
J. Wind Eng. Ind. Aerodyn.
59
(
1
),
1
22
(
1996
).
144.
R. I.
Harris
, “
The accuracy of design values predicted from extreme value analysis
,”
J. Wind Eng. Ind. Aerodyn.
89
(
2
),
153
164
(
2001
).
145.
D.
Bastine
,
X.
Larsén
,
B.
Witha
,
M.
Dörenkämper
, and
J.
Gottschall
, “
Extreme winds in the New European Wind Atlas
,”
J. Phys.: Conf. Ser.
1102
,
12006
(
2018
).
146.
X. G.
Larsén
and
J.
Mann
, “
Extreme winds from the NCEP/NCAR reanalysis data
,”
Wind Energy
12
(
6
),
556
573
(
2009
).
147.
X. G.
Larsén
,
J.
Mann
,
O.
Rathmann
, and
H. E.
Jørgensen
, “
Uncertainties of the 50-year wind from short time series using generalized extreme value distribution and generalized Pareto distribution
,”
Wind Energy
18
,
59
(
2013
).
148.
X. G.
Larsén
and
A.
Kruger
, “
Application of the spectral correction method to reanalysis data in south Africa
,”
J. Wind Eng. Ind. Aerodyn.
133
,
110
122
(
2014
).
149.
J. C.
Kaimal
,
J. C.
Wyngaard
,
Y.
Izumi
, and
O. R.
Coté
, “
Spectral characteristics of surface-layer turbulence
,”
Q. J. R. Meteorol. Soc.
98
(
417
),
563
589
(
1972
).
150.
J.
Mann
, “
The spatial structure of neutral atmospheric surface-layer turbulence
,”
J. Fluid Mech.
273
(
1
),
141
(
1994
).
151.
M.
Kelly
, “
From standard wind measurements to spectral characterization: Turbulence length scale and distribution
,”
Wind Energy Sci.
3
(
2
),
533
543
(
2018
).
152.
International Electrotechnical Commission
, https://www.iec.ch/dyn/www/f?p=103:38:9071024827291::FSP_ORG_ID,FSP_APEX_PAGE,FSP_PROJECT_ID:1282,23,22458 for “
Wind energy generation systems. Part 3–1: Design requirements for fixed offshore wind turbines
,”
Committee Draft.
153.
J.-T.
Horn
,
E.
Bitner-Gregersen
,
J. R.
Krokstad
,
B. J.
Leira
, and
J.
Amdahl
, “
A new combination of conditional environmental distributions
,”
Appl. Ocean Res.
73
,
17
26
(
2018
).
154.
A.
Costa
,
A.
Crespo
,
J.
Navarro
,
G.
Lizcano
,
H.
Madsen
, and
E.
Feitosa
, “
A review on the young history of the wind power short-term prediction
,”
Renewable Sustainable Energy Rev.
12
(
6
),
1725
1744
(
2008
).
155.
J.
Jung
and
R. P.
Broadwater
, “
Current status and future advances for wind speed and power forecasting
,”
Renewable Sustainable Energy Rev.
31
,
762
777
(
2014
).
156.
G.
Giebel
,
The State of the Art in Short-Term Prediction of Wind Power. A Literature Overview
, 2nd ed., DTU 2011 (
2011
).
157.
C.
Monteiro
,
R.
Bessa
,
V.
Miranda
,
A.
Botterud
,
J.
Wang
, and
G.
Conzelmann
,
Wind Power Forecasting: State-of-the-Art 2009
, ANL, Argonne, IL (United States) (
2009
).
158.
P.
Bauer
,
A.
Thorpe
, and
G.
Brunet
, “
The quiet revolution of numerical weather prediction
,”
Nature
525
(
7567
),
47
(
2015
).
159.
M.
Siefert
,
R.
Hagedorn
,
A.
Braun
,
J.
Dobschinski
,
R.
Fritz
, and
G.
Good
,
Abschlussbericht EWELINE.
Erstellung Innovativer Wetter- und Leistungsprognosemodelle für die Netzintegration Wetterabhängiger Energieträger
, IWES (
2017
).
160.
J.
Wilczak
,
C.
Finley
,
J.
Freedman
,
J.
Cline
,
L.
Bianco
,
J.
Olson
,
I.
Djalalova
,
L.
Sheridan
,
M.
Ahlstrom
, and
J.
Manobianco
, “
The Wind Forecast Improvement Project (WFIP). A public–private partnership addressing wind energy forecast needs
,”
Bull. Am. Meteorol. Soc.
96
(
10
),
1699
1718
(
2015
).
161.
See gridcast.iee.fraunhofer.de for Gridcast. Erhöhung der Netzsicherheit durch flexibilisierte Wetter- und Leistungsprognosemodelle auf Basis stochastischer und physikalischer Hybridmethoden.
162.
T.
Heppelmann
,
A.
Steiner
, and
S.
Vogt
, “
Application of numerical weather prediction in wind power forecasting. Assessment of the diurnal cycle
,”
Meteorol. Z.
26
,
319
331
(
2017
).
163.
A. A. M.
Holtslag
,
G.
Svensson
,
P.
Baas
,
S.
Basu
,
B.
Beare
,
A. C. M.
Beljaars
,
F. C.
Bosveld
,
J.
Cuxart
,
J.
Lindvall
, and
G. J.
Steeneveld
, “
Stable atmospheric boundary layers and diurnal cycles. Challenges for weather and climate models
,”
Bull. Am. Meteorol. Soc.
94
(
11
),
1691
1706
(
2013
).
164.
M.
Lange
and
U.
Focken
,
Physical Approach to Short-Term Wind Power Prediction
, 1 ed. (
Springer
,
Berlin
,
2010
).
165.
U.
Focken
, “
Short-term prediction of the aggregated power output of wind farms—A statistical analysis of the reduction of the prediction error by spatial smoothing effects
,”
J. Wind Eng. Ind. Aerodyn.
90
(
3
),
231
246
(
2002
).
166.
U.
Focken
,
M.
Lange
, and
H. P.
Waldl
, “
Previento-a wind power prediction system with an innovative upscaling algorithm,” in Proceedings of the European Wind Energy Conference
,
Copenhagen, Denmark (2001
).
167.
A.
Lenzi
,
I.
Steinsland
, and
P.
Pinson
, “
Benefits of spatiotemporal modeling for short‐term wind power forecasting at both individual and aggregated levels
,”
Environmetrics
29
(
3
),
e2493
(
2018
).
168.
C.
Möhrlen
and
J. U.
Jørgensen
, “
A new algorithm for upscaling and Short-term forecasting of wind power using Ensemble forecasts,” in Proceedings of the 8th International Workshop on Large Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms
Bremen (DE) (2009
), Vol.
14
, p.
15
.
169.
A.
Tascikaraoglu
and
M.
Uzunoglu
, “
A review of combined approaches for prediction of short-term wind speed and power
,”
Renewable Sustainable Energy Rev.
34
,
243
254
(
2014
).
170.
T.
Hong
,
P.
Pinson
, and
S.
Fan
,
Global Energy Forecasting Competition 2012
(
Elsevier
,
2014
).
171.
L.
Silva
, “
A feature engineering approach to wind power forecasting
,” in GEFCom 2012 [
Int. J. Forecasting
30
(
2
),
395
401
(
2014
)].
172.
R. J.
Bessa
,
C.
Möhrlen
,
V.
Fundel
,
M.
Siefert
,
J.
Browell
,
S.
Haglund El Gaidi
,
B.-M.
Hodge
,
U.
Cali
, and
G.
Kariniotakis
, “
Towards improved understanding of the applicability of uncertainty forecasts in the electric power industry
,”
Energies
10
(
9
),
1402
(
2017
).
173.
Y.
Zhang
,
J.
Wang
, and
X.
Wang
, “
Review on probabilistic forecasting of wind power generation
,”
Renewable Sustainable Energy Rev.
32
,
255
270
(
2014
).
174.
J.
Dobschinski
,
R.
Bessa
,
P.
Du
,
K.
Geisler
,
S. E.
Haupt
,
M.
Lange
,
C.
Möhrlen
,
D.
Nakafuji
, and
M.
de La Torre Rodriguez
, “
Uncertainty forecasting in a nutshell. Prediction models designed to prevent significant errors
,”
IEEE Power Energy Mag.
15
(
6
),
40
49
(
2017
).
175.
T. N.
Palmer
, “
The economic value of ensemble forecasts as a tool for risk assessment. From days to decades
,”
Q. J. R. Meteorol. Soc.
128
(
581
),
747
774
(
2002
).
176.
M. A.
Matos
and
R. J.
Bessa
, “
Setting the operating reserve using probabilistic wind power forecasts
,”
IEEE Trans. Power Syst.
26
(2),
1
(
2011
).
177.
R. J.
Bessa
,
M. A.
Matos
,
I. C.
Costa
,
L.
Bremermann
,
I. G.
Franchin
,
R.
Pestana
,
N.
Machado
,
H.
Waldl
, and
C.
Wichmann
, “
Reserve setting and steady-state security assessment using wind power uncertainty forecast: A case study
,”
IEEE Trans. Sustainable Energy
3
(
4
),
827
836
(
2012
).
178.
J.
Wang
,
A.
Botterud
,
R.
Bessa
,
H.
Keko
,
L.
Carvalho
,
D.
Issicaba
,
J.
Sumaili
, and
V.
Miranda
, “
Wind power forecasting uncertainty and unit commitment
,”
Appl. Energy
88
(
11
),
4014
4023
(
2011
).
179.
P.
Pinson
,
C.
Chevallier
, and
G. N.
Kariniotakis
, “
Trading wind generation from short-term probabilistic forecasts of wind power
,”
IEEE Trans. Power Syst.
22
(
3
),
1148
1156
(
2007
).
180.
Umbrella Project
. Deliverable D2.2 “Report on methods for system state forecasting,”
2015
.
181.
J.
Garcia-Gonzalez
,
R. M. R.
de La Muela
,
L. M.
Santos
, and
A. M.
Gonzalez
, “
Stochastic joint optimization of wind generation and pumped-storage units in an electricity market
,”
IEEE Trans. Power Syst.
23
(
2
),
460
468
(
2008
).
182.
M.
Black
and
G.
Strbac
, “
Value of bulk energy storage for managing wind power fluctuations
,”
IEEE Trans. Energy Convers.
22
(
1
),
197
205
(
2007
).
183.
J. W.
Taylor
and
J.
Jeon
, “
Probabilistic forecasting of wave height for offshore wind turbine maintenance
,”
Eur. J. Oper. Res.
267
(
3
),
877
890
(
2018
).
184.
H. A.
Nielsen
,
H.
Madsen
, and
T. S.
Nielsen
,
Using Quantile Regression to Extend an Existing Wind Power Forecasting System with Probabilistic Forecasts
(
Wiley Online Library
,
2006
).
185.
J. B.
Bremnes
, “
Probabilistic wind power forecasts using local quantile regression
,”
Wind Energy
7
(
1
),
47
54
(
2004
).
186.
T.
Gneiting
and
A. E.
Raftery
, “
Weather forecasting with ensemble methods
,”
Science
310
(
5746
),
248
249
(
2005
).
187.
Y.
Ren
,
P. N.
Suganthan
, and
N.
Srikanth
, “
Ensemble methods for wind and solar power forecasting—A state-of-the-art review
,”
Renewable Sustainable Energy Rev.
50
,
82
91
(
2015
).
188.
J. W.
Taylor
,
P. E.
McSharry
, and
R.
Buizza
, “
Wind power density forecasting using ensemble predictions and time series models
,”
IEEE Trans. Energy Convers.
24
(
3
),
775
782
(
2009
).
189.
H. A.
Nielsen
,
T. S.
Nielsen
,
H.
Madsen
,
G.
Giebel
,
J.
Badger
,
L.
Landbergt
,
K.
Sattler
,
L.
Voulund
, and
J.
Tofting
,
“From wind ensembles to probabilistic information about future wind power production–results from an actual application,” in International Conference on Probabilistic Methods Applied to Power Systems, 2006. PMAPS 2006 (IEEE, 2006
), pp.
1
8
.
190.
R.
Koenker
and
G.
Bassett
, Jr.
, “
Regression quantiles
,”
Econometrica
46
,
33
50
(
1978
).
191.
R.
Koenker
,
S.
Leorato
, and
F.
Peracchi
,
Distributional vs. Quantile Regression
, Tor Vergata University CEIS (2013), see http://www.ceistorvergata.it.
192.
J.
Jeon
and
J. W.
Taylor
, “
Using conditional kernel density estimation for wind power density forecasting
,”
J. Am. Stat. Assoc.
107
(
497
),
66
79
(
2012
).
193.
J.
Juban
,
L.
Fugon
, and
G.
Kariniotakis
, “
Probabilistic short-term wind power forecasting based on kernel density estimators
,” European Wind Energy Conference, Milan, 2007 (
2007
).
194.
T. N.
Krishnamurti
,
C. M.
Kishtawal
,
Z.
Zhang
,
T.
LaRow
,
D.
Bachiochi
,
E.
Williford
,
S.
Gadgil
, and
S.
Surendran
, “
Multimodel ensemble forecasts for weather and seasonal climate
,”
J. Clim.
13
(
23
),
4196
4216
(
2000
).
195.
R.
Buizza
,
M.
Milleer
, and
T. N.
Palmer
, “
Stochastic representation of model uncertainties in the ECMWF ensemble prediction system
,”
Q. J. R. Meteorol. Soc.
125
(
560
),
2887
2908
(
1999
).
196.
F.
Molteni
,
R.
Buizza
,
T. N.
Palmer
, and
T.
Petroliagis
, “
The ECMWF ensemble prediction system. Methodology and validation
,”
Q. J. R. Meteorol. Soc.
122
(
529
),
73
119
(
1996
).
197.
R.
Schefzik
,
T. L.
Thorarinsdottir
, and
T.
Gneiting
, “
Uncertainty quantification in complex simulation models using ensemble copula coupling
,”
Stat. Sci.
28
(
4
),
616
640
(
2013
).
198.
P.
Pinson
and
J. W.
Messner
, “
Application of postprocessing for renewable energy
,” in
Statistical Postprocessing of Ensemble Forecasts
(
Elsevier
,
2019
), pp.
241
266
.
199.
T.
Gneiting
,
F.
Balabdaoui
, and
A. E.
Raftery
, “
Probabilistic forecasts, calibration and sharpness
,”
J. R. Stat. Soc.: Ser. B
69
(
2
),
243
268
(
2007
).
200.
P.
Pinson
and
H.
Madsen
, “
Ensemble-based probabilistic forecasting at Horns Rev
,”
Wind Energy
12
(
2
),
137
155
(
2009
).
201.
G.
Papaefthymiou
and
P.
Pinson
, “
Modeling of spatial dependence in wind power forecast uncertainty
,” Proceedings of the 10th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS'08 (
2008
), pp.
1
9
.
202.
A. H.
Murphy
and
E. S.
Epstein
, “
Verification of probabilistic predictions: A brief review
,”
J. Appl. Meteorol.
6
,
748
755
(
1967
).
203.
I. T.
Jolliffe
and
D. B.
Stephenson
,
Forecast Verification: A Practitioner's Guide in Atmospheric Science
(
John Wiley & Sons
,
2012
).
204.
H.
Hersbach
, “
Decomposition of the continuous ranked probability score for ensemble prediction systems
,”
Weather Forecasting
15
(
5
) (
2000
).
205.
S.
Bentzien
and
P.
Friederichs
, “
Decomposition and graphical portrayal of the quantile score
,”
Q. J. R. Meteorol. Soc.
140
(683),
1924
1934
(
2014
).
206.
J. H.
Friedman
, “
Greedy function approximation. A gradient boosting machine
,”
Ann. Stat.
29
,
1189
1232
(
2001
).
207.
N.
Meinshausen
, “
Quantile regression forests
,”
J. Mach. Learn. Res.
7
,
983
999
(
2006
).
208.
M.
Landry
,
T. P.
Erlinger
,
D.
Patschke
, and
C.
Varrichio
, “
Probabilistic gradient boosting machines for GEFCom2014 wind forecasting
,”
Int. J. Forecasting
32
(
3
),
1061
1066
(
2016
).
209.
GE Renewable Energy
, “
HALIADE-X Offshore Wind Turbine Platform.
210.
M.
Peeters
,
G.
Santo
,
J.
Degroote
, and
W.
Paepegem
, “
The concept of segmented wind turbine blades: A review
,”
Energies
10
(
8
),
1112
(
2017
).
211.
D.
White
, “New method for dual-axis fatigue testing of large wind turbine blades using resonance excitation and spectral loading
,”
Technical Report No. NREL/TP-500-35268
(
2004
).
212.
N.
Post
,
Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade
(
National Renewable Energy Laboratory
,
2016
).
213.
P. R.
Greaves
,
R. G.
Dominy
,
G. L.
Ingram
,
H.
Long
, and
R.
Court
, “
Evaluation of dual-axis fatigue testing of large wind turbine blades
,”
Proc. Inst. Mech. Eng., Part C
226
(
7
),
1693
1704
(
2012
).
214.
F.
Sayer
,
A.
Antoniou
, and
A.
van Wingerde
, “
Investigation of structural bond lines in wind turbine blades by sub-component tests
,”
Int. J. Adhes. Adhes.
37
,
129
135
(
2012
).
215.
K.
Branner
and
A.
Ghadirian
, “
Database about blade faults
,” DTU Wind Energy E, No. 0067,
2014
.
216.
M.
Rosemeier
,
G.
Basters
, and
A.
Antoniou
, “
Benefits of subcomponent over full-scale blade testing elaborated on a trailing-edge bond line design validation
,”
Wind Energy Sci.
3
(
1
),
163
172
(
2018
).
217.
P.
Poozesh
,
J.
Baqersad
,
C.
Niezrecki
,
P.
Avitabile
,
E.
Harvey
, and
R.
Yarala
, “
Large-area photogrammetry based testing of wind turbine blades
,”
Mech. Syst. Signal Process.
86
,
98
115
(
2017
).
218.
H.
Sanati
,
D.
Wood
, and
Q.
Sun
, “
Condition monitoring of wind turbine blades using active and passive thermography
,”
Appl. Sci.
8
(
10
),
2004
(
2018
).
219.
A.
Downey
,
F.
Ubertini
, and
S.
Laflamme
, “
Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion
,”
J. Wind Eng. Ind. Aerodyn.
168
,
288
296
(
2017
).
220.
J.
Sierra-Pérez
,
M. A.
Torres-Arredondo
, and
A.
Güemes
, “
Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison
,”
Compos. Struct.
135
,
156
166
(
2016
).
221.
M. D.
Ulriksen
,
D.
Tcherniak
,
P. H.
Kirkegaard
, and
L.
Damkilde
, “
Operational modal analysis and wavelet transformation for damage identification in wind turbine blades
,”
Struct. Health Monit.
15
(
4
),
381
388
(
2016
).
222.
F. P.
García Márquez
,
A. M.
Tobias
,
J. M.
Pinar Pérez
, and
M.
Papaelias
, “
Condition monitoring of wind turbines. Techniques and methods
,”
Renewable Energy
46
,
169
178
(
2012
).
223.
G.
Marsh
, “
What's to be done with ‘spent’ wind turbine blades?
,”
Renewable Energy Focus
22–23
,
20
23
(
2017
).
224.
O.
Agafonova
,
A.
Koivuniemi
,
A.
Chaudhari
, and
J.
Hämäläinen
, “
Limits of wasp modelling in comparison with сfd for wind flow over two-dimensional hills
,”
Atmos. Environ.
31
,
839
850
(
2014
).
225.
J.
Wenske
,
Direct Drives and Drive-Train Development Trends
(
2012
).
226.
E.
Hau
and
H.
von Renouard
,
Wind Turbines. Fundamentals, Technologies, Application, Economics
, 2nd ed. (
Springer
,
Berlin
,
2006
).
227.
R.
Gasch
and
J.
Twele
,
Wind Power Plants. Fundamentals, Design, Construction and Operation
(
Springer-Verlag, Berlin/Heidelberg
,
2012
).
228.
J.
Gallego-Calderon
and
A.
Natarajan
, “
Assessment of wind turbine drive-train fatigue loads under torsional excitation
,”
Eng. Struct.
103
,
189
202
(
2015
).
229.
T.
Schulze
,
Ganzheitliche Dynamische Antriebsstrangbetrachtung Von Windenergieanlagen Unter Verwendung Modularer Simulationsmodelle
(
Sierke
,
Göttingen
,
2008
).
230.
Tagungsband zur konferenz
,”
in Conference for Wind Power Drives 2017, edited by
G.
Jacobs
,
C.
Brecher
,
R. W.
Doncker
,
K.
Hameyer
,
G.
Jacobs
,
A.
Monti
, and
W.
Schröder
(
Books on Demand
,
Norderstedt
,
2017
).
231.
J.
Wenske
and
U.
Beckert
, “
Sensorless control for active damping of torsional vibrations in wind turbine drivetrains with doubly-fed induction generator
,”
REPQJ
No. 14,
242
248
(
2016
).
232.
P.
Srikanth
and
A. S.
Sekhar
, “
Wind turbine drive train dynamic characterization using vibration and torque signals
,”
Mech. Mach. Theory
98
,
2
20
(
2016
).
233.
Proceedings of the 12th International Modelica Conference
,
Clarion Congress Hotel Prague, Czech Republic
, 15–17 May, 2017, edited by
J.
Kofránek
and
F.
Casella
(
Modelica Association/Linköping University Electronic Press
,
Linköping
,
2017
).
234.
DNV GL
, “GL Rules & Guidelines 2017” (
2017
)
235.
International Electrotechnical Commission
, IEC 61400-1,
International Standard: Wind Turbines—Part 1: Design Requirements, 3rd ed.
(IEC, 
2005
).
236.
MAKE Consulting A/S, Make Consulting Report 2011 (2011).
237.
J.
Helsen
,
Y.
Guo
, and
J.
Keller
, “
Gearbox high-speed-stage bearing slip induced by electric excitation in a test facility
,”
Wind Energy
21
(
11
),
1191
1201
(
2018
).
238.
S. S.
Yi Guo
, “
Probability of failure for gearbox high-speed-stage bearings in wind turbines
,” Drivetrain Reliability Collaborative Meeting at NREL 2018 (
2018
).
239.
Y.
Guo
and
J.
Keller
, “
Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing
,”
Wind Energy
21
(
2
),
139
150
(
2018
).
240.
Y.
Guo
,
R.
Bergua
,
J.
van Dam
,
J.
Jove
, and
J.
Campbell
, “
Improving wind turbine drivetrain designs to minimize the impacts of non-torque loads
,”
Wind Energy
18
(
12
),
2199
2222
(
2015
).
241.
S.
Latha
,
G.
Yi
, and
S.
Sheng
,
Main Bearing Dynamics in Three-Point Suspension Drivetrains for Wind Turbines (Presentation)
(
National Renewable Energy Laboratory
,
2015
).
242.
B.
Radowitz
, http://offshorewind2017.com/files/media-and-press/Offshore-Wind-Energy-2017-day-one.pdf for “Will 13–15 MW turbines be ready in time for zero-subsidy projects?.”
243.
Netherlands Enterprise Agency (RVO.nl)
, https://english.rvo.nl/hollandse-kust-zuid-wind-farm-zone for “Hollandse Kust (Zuid) Wind Farm Zone.”
244.
B.
Roger
, “
Pure torque drivetrain design
,” paper presented at the
2014 Gearbox Reliability Collaborative All Members Meeting, 10–12 February
(
2014
).
245.
M.
Grebe
,
False-Brinelling und Stillstandsmarkierungen bei Wälzlagern.
Schäden bei Vibrationsbelastung oder kleinen Schwenkwinkeln
(
Expert Verlag
,
Renningen
,
2017
).
246.
F.
Schwack
,
M.
Stammler
,
G.
Poll
, and
A.
Reuter
, “
Comparison of life calculations for oscillating bearings considering individual pitch control in wind turbines
,”
J. Phys.: Conf. Ser.
753
,
112013
(
2016
).
247.
S.
Heier
,
Grid Integration of Wind Energy. Onshore and Offshore Conversion Systems
, 3rd ed. (
Wiley
,
Chichester
,
2014
).
248.
Y.
Guo
,
J.
Keller
, and
W.
LaCava
, “
Combined effects of gravity, bending moment, bearing clearance and input torque on wind turbine planetary gear load sharing
,” American Gear Manufacturers Association Fall Technical Meeting 2012, AGMA, 53–68.
249.
J. S.
Nam
,
Y. J.
Park
,
J. K.
Kim
,
J. W.
Han
,
Y. Y.
Nam
, and
G. H.
Lee
, “
Application of similarity theory to load capacity of gearboxes
,”
J. Mech. Sci. Technol.
28
(
8
),
3033
3040
(
2014
).
250.
Y.
Guo
,
T.
Parsons
,
K.
Dykes
, and
R. N.
King
, “
A systems engineering analysis of three-point and four-point wind turbine drivetrain configurations
,”
Wind Energy
20
(
3
),
537
550
(
2017
).
251.
G.
Yi
,
P.
Taylor
,
K.
Ryan
,
D.
Katherine
, and
V.
Paul
, “An analytical formulation for sizing and estimating the dimensions and weight of wind turbine hub and drivetrain components.”
252.
G. A. M.
van Kuik
,
J.
Peinke
,
R.
Nijssen
,
D.
Lekou
,
J.
Mann
,
J. N.
Sørensen
,
C.
Ferreira
,
J. W.
van Wingerden
,
D.
Schlipf
,
P.
Gebraad
,
H.
Polinder
,
A.
Abrahamsen
,
G. J. W.
van Bussel
,
J. D.
Sørensen
,
P.
Tavner
,
C. L.
Bottasso
,
M.
Muskulus
,
D.
Matha
,
H. J.
Lindeboom
,
S.
Degraer
,
O.
Kramer
,
S.
Lehnhoff
,
M.
Sonnenschein
,
P. E.
Sørensen
,
R. W.
Künneke
,
P. E.
Morthorst
, and
K.
Skytte
, “
Long-term research challenges in wind energy—A research agenda by the European Academy of Wind Energy
,”
Wind Energy Sci.
1
(
1
),
1
39
(
2016
).
253.
A.
Vandenberghe
and
D.
Fraile
, European Technology & Innovation Platform on Wind Energy, “Strategic Research and Innovation Agenda 2018,” (
2018
).
254.
F.
Blaabjerg
,
Z.
Chen
, and
S. B.
Kjaer
, “
Power electronics as efficient interface in dispersed power generation systems
,”
IEEE Trans. Power Electron.
19
(
5
),
1184
1194
(
2004
).
255.
F.
Blaabjerg
and
K.
Ma
, “
Wind energy systems
,”
Proc. IEEE
105
(
11
),
2116
2131
(
2017
).
256.
E. H.
Camm
,
M. R.
Behnke
,
O.
Bolado
,
M.
Bollen
,
M.
Bradt
,
C.
Brooks
,
W.
Dilling
,
M.
Edds
,
W. J.
Hejdak
,
D.
Houseman
,
S.
Klein
,
F.
Li
,
J.
Li
,
P.
Maibach
,
T.
Nicolai
,
J.
Patiño
,
S. V.
Pasupulati
,
N.
Samaan
,
S.
Saylors
,
T.
Siebert
,
T.
Smith
,
M.
Starke
, and
R.
Walling
, “
Characteristics of wind turbine generators for wind power plants,” in IEEE PES Wind Plant Collector System Design Working Group
(IEEE,
Piscataway, NJ
,
2009
).
257.
Z.
Chen
and
H.
Li
, “
Overview of different wind generator systems and their comparisons
,”
IET Renewable Power Gener.
2
(
2
),
123
138
(
2008
).
258.
A. D.
Hansen
,
F.
Iov
,
F.
Blaabjerg
, and
L. H.
Hansen
, “
Review of contemporary wind turbine concepts and their market penetration
,”
Wind Eng.
28
(
3
),
247
263
(
2004
).
259.
V.
Yaramasu
,
B.
Wu
,
P. C.
Sen
,
S.
Kouro
, and
M.
Narimani
, “
High-power wind energy conversion systems: State-of-the-art and emerging technologies
,”
Proc. IEEE
103
(
5
),
740
788
(
2015
).
260.
Z. Q.
Zhu
and
J.
Hu
, “
Electrical machines and power‐electronic systems for high‐power wind energy generation applications. Part I—Market penetration, current technology and advanced machine systems
,”
COMPEL
32
(
1
),
7
33
(
2012
).
261.
L.
Lin
,
L.
Sun
,
Y.
Yang
, and
Q.
Li
, “
Comparison of reactive power compensation strategy of wind farm based on optislip wind turbines
,”
in International Conference on Sustainable Power Generation and Supply
(
2009
).
262.
M.
Mohseni
,
S. M.
Islam
, and
M. A. S.
Masoum
, “
Impacts of symmetrical and asymmetrical voltage sags on DFIG-based wind turbines considering phase-angle jump, voltage recovery, and sag parameters
,”
IEEE Trans. Power Electron.
26
(
5
),
1587
1598
(
2011
).
263.
R.
Cardenas
,
R.
Pena
,
S.
Alepuz
, and
G.
Asher
, “
Overview of control systems for the operation of DFIGs in wind energy applications
,”
IEEE Trans. Ind. Electron.
60
(
7
),
2776
2798
(
2013
).
264.
M.
Liserre
,
R.
Cardenas
,
M.
Molinas
, and
J.
Rodriguez
, “
Overview of multi-MW wind turbines and wind parks
,”
IEEE Trans. Ind. Electron.
58
(
4
),
1081
1095
(
2011
).
265.
C.
Stuebig
,
A.
Seibel
,
K.
Schleicher
,
L.
Haberjan
,
M.
Kloepzig
, and
B.
Ponick
, “
Electromagnetic design of a 10 MW permanent magnet synchronous generator for wind turbine application
,” in 2015
IEEE International Electric Machines & Drives Conference (IEMDC) (IEEE, 2015)
, pp.
1202
1208
.
266.

Future Cost of Onshore Wind. Recent auction results, long-term outlook and implications for upcoming German auctions, April/2017.

267.

LCOE reduction for the next generation offshore wind turbines. Outcomes from the innwind.EU Project (2017).

268.
European Technology and Innovation Platform on Wind Energy
, Strategic Research and Innovation Agenda 2016 (
European Technology and Innovation Platform on Wind Energy,
2016
).
269.
I.
Marino
(Tecnalia) with contributions from all the project partners Columbus, IEE, Suprapower. Superconducting, reliable, lightweight, and more powerful offshore wind turbine. D7.7 Suprapower Final Report,
2017
.
270.
PM: Fraunhofer-IEE
, https://www.windkraft-journal.de/2018/05/29/netzstuetzende-regelung-von-windrad-generatoren/122393 for Netzstützende Regelung von Windrad-Generatoren. GridLoads: Methoden und Werkzeuge für die netzstützende Regelung von Windrad-Generatoren.
271.
IWR
, https://www.iwr.de/news.php?id=34091 for Windkraftanlagen müssen Überspannungen aushalten.
272.
See https://www.dnvgl.de/services/ovrt-zertifizierung-erfolgreich-zum-netzanschluss–90722 for OVRT-Zertifizierung-Erfolgreich zum Netzanschluss.
273.
C.
Stuebig
,
L.
Haberjan
,
J.
Steffen
,
M.
Shan
, and
F.
Thalemann
, MagnetRing II–Aufbau eines Ringgenerators mit aktiver Luftspaltregelung unter Laborverhältnissen: Abschlussbericht des Konsortiums (2014–2016).
274.
G.
Shrestha
,
H.
Polinder
,
D.-J.
Bang
, and
J. A.
Ferreira
, “
Structural flexibility: A solution for weight reduction of large direct-drive wind-turbine generators
,”
IEEE Trans. Energy Convers.
25
(
3
),
732
740
(
2010
).
275.
A.
Seibel
,
C.
Stübig
,
M.
Wecker
,
J.
Steffen
,
S.
Nielebock
,
K.
Kandasamy
, and
A.
Mertens
, “
Distributed control of a multi-pole permanent magnet synchronous generator for wind turbine application
,” in
18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe
) (
2016
), p. 18.
276.
IEA Wind TCP, “
Long-term research and development needs for wind energy. For the time frame 2012 to 2030
” (
2012
).
277.
R. E.
Melchers
and
A. T.
Beck
,
Structural Reliability Analysis and Prediction
, 3rd ed. (
Wiley
,
Hoboken, NJ
,
2018
).
278.
BMWi
, “
Expertenempfehlungen aus den Arbeitsgruppen für den Konsultationsprozess zum 7. Energieforschungsprogramm
,” Federal Ministry of Economics and Technology, Juelich,
2017
.
279.
P.
Kleineidam
, “Zur Bemessung der Tragstrukturen von Offshore-Windenergieanlagen gegen Ermüdung,” dissertation (
Shaker
,
Aachen
,
2005
).
280.
International Electrotechnical Commission,
IEC 61400-3,
Wind Turbines. Part 3: Design Requirements for Offshore Wind Turbines
, 1st ed. (
IEC
,
2009
).
281.
M. J.
Kühn
, “
Dynamics and design optimisation of offshore wind energy conversion systems
,” dissertation (
Delft Technical University
,
2001
).
282.
J.
van der Tempel
, “
Design of support structures for offshore wind turbines
,” dissertation (
Delft Technical University
,
2006
).
283.
C.
Böker
, “Load simulation and local dynamics of support structures for offshore wind turbines,” dissertation (
Shaker
,
Aachen
,
2010
).
284.
F. R.
Vorpahl
, “Modeling of offshore wind turbines with braced support structures,” dissertation (
2015
).
285.
J.
Jonkman
and
W.
Musial
, Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment (
NREL
,
2010
).
286.
J.
Jonkman
,
A.
Robertson
,
W.
Popko
,
F.
Vorpahl
,
A.
Zuga
,
M.
Kohlmeier
,
T. J.
Larsen
,
A.
Yde
,
K.
Saetertro
,
K. M.
Okstad
,
A. S. J.
Nichols
,
T. A.
Nygaard
,
Z.
Gao
,
D.
Manolas
,
K.
Kim
,
Q.
Yu
,
W.
Shi
,
H.
Park
,
A.
Vasquez-Rojas
,
J.
Dubois
,
D.
Kaufer
,
P.
Thomassen
,
M. J.
de Ruiter
,
J. M.
Peeringa
,
H.
Zhiwen
, and
H.
von Waaden
, “Offshore code comparison collaboration continuation (OC4), phase I—Results of coupled simulations of an offshore wind turbine with jacket support structure,” in
Proceedings of the Twenty-Second International Offshore and Polar Engineering Conference (ISOPE-2012)
,
Rhodes, Greece
, 17–22 June (
2012
), pp.
337
346
.
287.
D.
Kallehave
,
B. W.
Byrne
,
C.
LeBlanc Thilsted
, and
K. K.
Mikkelsen
, “
Optimization of monopiles for offshore wind turbines
,”
Philos. Trans. Ser. A
373
(
2035
) (
2015
).
288.
L.
Arany
,
S.
Bhattacharya
,
J.
Macdonald
, and
S. J.
Hogan
, “
Design of monopiles for offshore wind turbines in 10 steps
,”
Soil Dyn. Earthquake Eng.
92
,
126
152
(
2017
).
289.
M.
Seidel
,
S.
Voormeeren
, and
J.-B.
van der Steen
, “
State-of-the-art design processes for offshore wind turbine support structures
,”
Stahlbau
85
(
9
),
583
590
(
2016
).
290.
Fatigue Handbook. Offshore Steel Structures, edited
A.
Almar-Næss
(
Tapir
,
Trondheim
,
1985
).
291.
Offshore Structures. Design, Construction and Maintenance, edited by
M. A.
El-Reedy
(
Gulf Professional Publication
,
Boston
,
2012
).
292.
R.
Rolfes
and
K.
Abdel-Rahman
, Verbundprojekt: Ganzheitliches Dimensionierungskonzept für OWEA-Tragstrukturen anhand von Messungen im Offshore-Testfeld alpha ventus: GIGAWIND alpha ventus; Abschlussbericht 2008–2012; 1. Forschungsprojekt: Ganzheitliches Dimensionierungskonzept für OWEA-Tragstrukturen hinsichtlich Lasten, Langlebigkeit, Gründung und Gesamtstrukturmodellen; Berichtszeitraum: 01.03.2008–30.04.2012; 2. Forschungsprojekt: Technische Zuverlässigkeit von OWEA-Tragstrukturen; Berichtszeitraum: 01.05.2008–30.04.2012.
293.
R.
Rolfes
,
M.
Achmus
,
J.
Albiker
,
J.
Dubois
,
R.
Eichstädt
, and
J.
Häfele
, Verbundvorhaben Lebensdauer-Forschung an den OWEA-Tragstrukturen im Offshore-Testfeld alpha ventus—GIGAWIND life. Teilvorhaben: Validierte Methoden und Strukturmodelle für ein integrales und wirtschaftliches Design von OWEA-Tragstrukturen: Schlussbericht (Leibniz Universität Hannover Institut für Statik und Dynamik, Hannover,
2018
).
294.
M.
Kohlmeier
,
P.
Plagemann
,
J.
Palm
,
J.
Rabe
,
M.
Collmann
, and
W.
Popko
, Verbundvorhaben GIGAWIND life—Lebensdauer-Forschung an OWEA-Tragstrukturen im Testfeld alpha ventus. Teilvorhaben: Messdatenbasierte Zustandsbewertung und -prognose für OWEA-Tragstrukturen: Schlussbericht (Fraunhofer-Institut für Windenergiesysteme (IWES), Bremen,
2018
).
295.
H.
Lange
and
C.
Elberg
, “
Entwicklung von weichen Türmen für Windenergieanlagen—Softtower
,”
Stahlbau
86
(
4
),
351
356
(
2017
).
296.
J.
Dehm
, “
160-m-Fachwerkturm für eine Windenergieanlage–Die höchste Windenergieanlage der Welt
,”
Stahlbau
76
(
4
),
213
221
(
2007
).
297.
M.
Kühn
and
K.
Argyriadis
, “
Anlagendynamik, Belastungen und Entwurfanforderungen von Offshore-Windenergieanlagen und deren Tragstruktur
,”
Stahlbau
76
(
9
),
606
612
(
2007
).
298.
P. P.
Milella
,
Fatigue and Corrosion in Metals
(
Springer
,
Milano
,
2013
).
299.
K.
Lesny
, “
Gründung von Offshore-Windenergieanlagen-Entscheidungshilfen für Entwurf und Bemessung
,”
Bautechnik
85
(
8
),
503
511
(
2008
).
300.
F.
Wilke
, “Logistic Implementation of Large Offshore Wind Projects,” in Festschrift Peter Schaumann: Gewidmet Univ.-Prof. Dr.-Ing. Peter Schaumann zur Vollendung seines 60. Lebensjahres (Technische Informationsbibliothek u. Universitätsbibliothek, 2014), pp.
369
376
.
301.
M.
Seidel
, “
Substructures for offshore wind turbines. Current trends and developments
,” in
Festschrift Peter Schaumann: Gewidmet Univ.-Prof. Dr.-Ing. Peter Schaumann Zur Vollendung Seines 60. Lebensjahres
(
Technische Informationsbibliothek u. Universitätsbibliothek
), pp.
363
368
.
302.
Design Guide for Circular and Rectangular Hollow Section Welded Joints under Fatigue Loading
, edited by
X.-L.
Zhao
(
TÜV-Verl
.,
Köln
,
2001
).
303.
W.
Musial
,
S.
Butterfield
, and
A.
Boone
, “
Feasibility of floating platform systems for wind turbines
,” in
42nd AIAA Aerospace Sciences Meeting and Exhibit
(
American Institute of Aeronautics and Astronautics
,
Reston, Virigina
,
2004
), p.
1098
.
304.
D. J.
Willis
,
C.
Niezrecki
,
D.
Kuchma
,
E.
Hines
,
S. R.
Arwade
,
R. J.
Barthelmie
,
M.
DiPaola
,
P. J.
Drane
,
C. J.
Hansen
,
M.
Inalpolat
,
J. H.
Mack
,
A. T.
Myers
, and
M.
Rotea
, “
Wind energy research. State-of-the-art and future research directions
,”
Renewable Energy
125
,
133
154
(
2018
).
305.
M.
Leimeister
,
A.
Kolios
, and
M.
Collu
, “
Critical review of floating support structures for offshore wind farm deployment
,”
J. Phys.: Conf. Ser.
1104
,
12007
(
2018
).
306.
J.
Jonkman
, “
Dynamics modeling and loads analysis of an offshore floating winid turbine
,” Ph.D. thesis, Technical Report No. NREL/TP-500-41958 (
NREL
,
2007
).
307.
American Petroleum Institute
,
Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design
, 22nd ed. (2A-WSD) (
American Petroleum Institute
,
2014
).
308.
DNV GL.
DNVGL-ST-0126: Support structures for wind turbines (DNVGL-ST-0126) (
2016
).
309.
B. W.
Byrne
,
R.
Mcadam
,
H.
Burd
,
G. T.
Houlsby
, and
C.
Martin
, “
PISA: New design methods for offshore wind turbine monopiles
,” in
Offshore Site Investigation and Geotechnics. Smarter Solutions for Future Offshore Developments: Proceedings of the 8th International Conference, Royal Geographical Society, London, UK, 12–14 September 2017 (Society for Underwater Technology, London, UK
,
2017
).
310.
S.
Spill
,
M.
Kohlmeier
,
M.
Wefer
,
S.
Maretzki
, and
J.
Dührkop
, “
Design of large-scale tests investigating the lateral load-bearing behavior of monopiles
,” in
Proceedings of the Twenty-Seventh (2017) International Ocean and Polar Engineering Conference
,
San Francisco, California
, 25–30 June (International Society of Ocean and Polar Engineers (ISOPE), Cupertino, California, USA,
2017
), pp.
579
586
.
311.
B. W.
Byrne
, “
Investigations of suction caissons in dense sand
,” Ph.D. dissertation (
University of Oxford, 2000)
.
312.
M.
Liinegaard
, “
Dynamic behaviour of suction caissons
,” Ph.D. thesis (
Aalborg University
,
2006
).
313.
M.
Achmus
and
C.
Schröder
, “
Installation und tragverhalten von bucketgründungen für offshorebauwerke
,”
Bautechnik
91
(
9
),
597
608
(
2014
).
314.
A.
Foglia
,
S.
Spill
, and
M.
Wefer
, “
Optimization of foundations by large-scale testing,” paper presented at Offshore Wind Energy
2017
,
London
6
8
June (2017).
315.
DNV GL
, DNVGL-RP-C203: Fatigue design of offshore steel structures (DNVGL-RP-0005:2014-06).
316.
CEN—European Committee for Standardization,
EN 1993-1-9:2005, Eurocode 3: Design of Steel Structures. Part 1–9: Fatigue (
CEN—European Committee for Standardization,
2005
).
317.
I.
Lotsberg
, “
Assessment of the size effect for use in design standards for fatigue analysis
,”
Int. J. Fatigue
66
,
86
100
(
2014
).
318.
P.
Schaumann
and
S.
Steppeler
, “
Fatigue tests of axially loaded butt welds up to very high cycles
,”
Procedia Eng.
66
,
88
97
(
2013
).
319.
D.
Radaj
,
C. M.
Sonsino
, and
W.
Fricke
,
Fatigue Assessment of Welded Joints by Local Approaches
, 2nd ed. (
Woodhead Publ
.,
Cambridge
,
2006
).
320.
M.
Collmann
and
M.
Wefer
, “
Aging and fatigue. Combined testing of welded joints under offshore conditions
,” in
Proceedings of the Twenty-Seventh (2017) International Ocean and Polar Engineering Conference
, San Francisco, California, 25–30 June, 2017 (
International Society of Ocean and Polar Engineers (ISOPE)
, Cupertino, California, USA,
2017
), pp.
369
375
.
321.
Z.
Chen
,
J. M.
Guerrero
, and
F.
Blaabjerg
, “
A review of the state of the art of power electronics for wind turbines
,”
IEEE Trans. Power Electron.
24
(
8
),
1859
1875
(
2009
).
322.
S. M.
Alagab
,
S.
Tennakoon
, and
C.
Gould
, “
Review of wind farm power collection schemes
,” in
2015 50th International Universities Power Engineering Conference (UPEC)
, Stroke-on-Trent, United Kingdom, 1–4 September 2015 (
IEEE
, Piscataway, NJ,
2015
), pp.
1
5
.
323.
S.
Faulstich
,
J.
Giebhardt
,
L.
Dang Hung
,
M.
Jung
,
T.
Krone
,
J.
Lingner
,
M.
Poech
, and
F.
Springmeyer
,
Hochzuverlässige leistungshalbleiter für stromrichter in windenergieanlagen “HiReS
,”
Beitrag Zum Abschlussbericht Des Verbundvorhabens
(
Fraunhofer IWES
,
Kassel
, 2015).
324.
T.
Krone
,
L.
Dang Hung
,
M.
Jung
, and
A.
Mertens
, “
Advanced condition monitoring system based on on-line semiconductor loss measurements
,” in
Proceedings of the IEEE Energy Conversion Congress & Expo, ECCE 2016,
Milwaukee, WI, 18–22 September (IEEE,
Piscataway, New Jersey
,
2016
), pp.
1
8
.
325.
T.
Krone
,
L.
Dang Hung
,
M.
Jung
, and
A.
Mertens
, “
On-line semiconductor switching loss measurement system for an advanced condition monitoring concept
,” in
2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe)
, 5–9 September 2016 (IEEE,
Piscataway, NJ
,
2016
), pp.
1
10
.
326.
T. S.
Abuaisha
, “
General study of the control principles and dynamic fault behaviour of variable-speed wind turbine and wind farm generic models
,”
Renewable Energy
68
,
245
254
(
2014
).
327.
H.
Shariatpanah
,
R.
Fadaeinedjad
, and
M.
Rashidinejad
, “
A new model for PMSG-based wind turbine with yaw control
,”
IEEE Trans. Energy Convers.
28
(
4
),
929
937
(
2013
).