The literature reviewed in this article shows that the evolution of vehicles is in line with the evolution of animal locomotion and that it is predictable from the constructal law of design and evolution in nature. The evolution of ships and airplanes illustrates the evolutionary design of the “human-and-machine species” as it moves and spreads on Earth: farther, faster, more efficiently, and with greater lasting power (sustainability). Every vehicle size has its design. The bigger vehicle is not a magnified facsimile of the smaller. The size fraction that the lifting organs occupy in the overall vehicle increases with the body size. Every vehicle size has its niche, the supporting territory, and population to which it belongs. All the designs of movement on the globe evolve. Vehicles do not evolve by themselves; they evolve hand in glove with the humans who design and use them. The result is hierarchy, and it is why hierarchy is natural and unavoidable. We see it in geophysical movement (river basins), animal movement (food chain), human social movement (global air and maritime traffic), and everywhere else. The appearance of a new hierarchical design of movement on earth does not eliminate the existing hierarchical designs of movement. The new hierarchy joins the old, and what works is kept. No evolving system deviates from the features dictated by the law of physics of evolution in nature.

1.
H.
Hoppeler
and
E. R.
Weibel
, “
Scaling functions to body size: Theories and facts
,”
J. Exp. Biol.
208
,
1573
1574
(
2005
).
2.
K.
Schmidt-Nielsen
,
Scaling: Why Is Animal Size So Important?
(
Cambridge University Press
,
Cambridge, UK
,
1984
).
3.
S.
Vogel
,
Life's Devices: The Physical World of Animals and Plants
(
Princeton University Press
,
Princeton, N.J
.,
1988
).
4.
K.
Schmidt-Nielsen
,
How Animals Work
(
Cambridge University Press
,
Cambridge, UK
,
1972
).
5.
A.
Bejan
,
Shape and Structure, from Engineering to Nature
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
6.
R. H.
Peters
,
The Ecological Implications of Body Size
(
Cambridge University Press
,
Cambridge
,
1983
).
7.
E. R.
Weibel
,
Symmorphosis: On Form and Function in Shaping Life
(
Harvard University Press
,
Cambridge, UK
,
2000
).
8.
B. K.
Ahlborn
,
Zoological Physics: Quantitative Models of Body Design, Actions, and Physical Limitations of Animals
(
Springer
,
Berlin
,
2004
).
9.
A.
Bejan
and
J. P.
Zane
,
Design in Nature: How the Constructal Law Governs Evolution in Biology, Physics, Technology, and Social Organization
(
Doubleday
,
New York
,
2012
).
10.
A.
Bejan
,
The Physics of Life: The Evolution of Everything
(
St. Martin's Press
,
New York
,
2016
).
11.
A.
Bejan
,
J. D.
Charles
,
S.
Lorente
, and
E. H.
Dowell
, “
Evolution of airplanes, and what price speed?
,”
AIAA J.
54
,
1120
1123
(
2016
).
12.
M. G.
Gabrielli
and
T.
von Kármán
, “
What price speed?
,”
Mech. Eng.
72
,
775
781
(
1950
).
13.
M.
Trancossi
, “
What price of speed? A critical revision through constructal optimization of transport modes
,”
Int. J. Energy Environ. Eng.
7
,
425
448
(
2016
).
14.
J.
Yong
,
R.
Smith
,
L.
Hatano
, and
S.
Hillmansen
, “
What price speed – Revisited
,”
Ingenia
22
,
46
51
(
2005
).
15.
S.
Teitler
and
R. E.
Proodian
, “
‘What price speed?’, revisited
,”
J. Energy
4
,
46
48
(
1980
).
16.
B. H.
Carson
, “
Fuel efficiency of small aircraft
,”
J. Aircr.
19
,
473
479
(
1982
).
17.
A.
Bejan
,
J. D.
Charles
, and
S.
Lorente
, “
The evolution of airplanes
,”
J. Appl. Phys.
116
,
044901
(
2014
).
18.
R.
Chen
,
C. Y.
Wen
,
S.
Lorente
, and
A.
Bejan
, “
The evolution of helicopters
,”
J. Appl. Phys.
120
,
014901
(
2016
).
19.
A.
Bejan
,
R.
Chen
,
S.
Lorente
, and
C. Y.
Wen
, “
Hierarchy in air travel: Few large and many small
,”
J. Appl. Phys.
122
,
024904
(
2017
).
20.
A. H.
Reis
, “
Constructal theory: From engineering to physics, and how flow systems develop shape and structure
,”
Appl. Mech. Rev.
59
,
269
(
2006
).
21.
V. A.
Tucker
, “
The energetic cost of moving about: Walking and running are extremely inefficient forms of locomotion. Much greater efficiency is achieved by birds, fish—and bicyclists
,”
Am. Sci.
63
,
413
419
(
1975
).
22.
A. S.
Lebedev
and
S. V.
Kostennikov
, “
Trends in increasing gas-turbine units efficiency
,”
Therm. Eng.
55
,
461
468
(
2008
).
23.
P. M.
Peeters
,
J.
Middel
, and
A.
Hoolhorst
,
Fuel efficiency of commercial aircraft: An overview of historical and future trends
(
National Aerospace Laboratory NLR
,
2005
).
24.
D.
Paul
,
L.
Kelly
,
V.
Venkayya
, and
T.
Hess
, “
Evolution of U.S. military aircraft structures technology
,”
J. Aircr.
39
,
18
29
(
2002
).
25.
P.
Jackson
,
Jane's All the Worlds Aircraft, 1995–96
(
Janes Information Group
,
London
,
1995
).
26.
J.
Brandt
and
M.
Selig
, “
Propeller performance data at low Reynolds numbers
,” in
Proceedings of 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(American Institute of Aeronautics and Astronautics, Orlando, Florida,
2011
).
27.
J.
Connors
and
N.
Allen
,
The Engines of Pratt & Whitney: A Technical History
(
American Institute of Aeronautics and Astronautics
,
2010
).
28.
The CF6 Engine
,” GE Aviation (
2018
), see https://www.geaviation.com/commercial/engines/cf6-engine (last accessed February 28, 2018).
29.
The GE90 Engine
,” GE Aviation (
2018
), see https://www.geaviation.com/commercial/engines/ge90-engine (last accessed February 28, 2018).
30.
Y. S.
Ong
,
P. B.
Nair
, and
A. J.
Keane
, “
Evolutionary optimization of computationally expensive problems via surrogate modeling
,”
AIAA J.
41
,
687
696
(
2003
).
31.
K.
Chiba
,
Y.
Makino
, and
T.
Takatoya
, “
Evolutionary-based multidisciplinary design exploration for silent supersonic technology demonstrator wing
,”
J. Aircr.
45
,
1481
1494
(
2008
).
32.
S. A.
Brandt
,
J. J.
Bertin
,
R. J.
Stiles
, and
R.
Whitford
,
Introduction to Aeronautics: A Design Perspective
(
American Institute of Aeronautics and Astronautics
,
Reston, VA
,
2004
).
33.
M. S.
Francis
, “
Unmanned air systems: Challenge and opportunity
,”
J. Aircr.
49
,
1652
1665
(
2012
).
34.
M.
Francis
, “
Design of next generation unmanned air systems - Issues and opportunities
,” in
Proceedings of the 26th Congress of ICAS and 8th AIAA ATIO
(American Institute of Aeronautics and Astronautics, Anchorage, Alaska,
2008
).
35.
K.
Nonami
, “
Prospect and recent research & development for civil use autonomous unmanned aircraft as UAV and MAV
,”
J. Syst. Des. Dyn.
1
,
120
128
(
2007
).
36.
W.
Johnson
,
Helicopter Theory
(
Dover Publications
,
New York
,
1994
).
37.
W.
Johnson
,
Rotorcraft Aeromechanics
(
Cambridge University Press
,
New York
,
2013
).
38.
Y.
Ozdemir
,
H.
Basligil
, and
M.
Karaca
, “
Aircraft selection using analytic network process: A case for Turkish airlines
,” in
Proceedings of World Congress on Engineering 2011
(
2011
), Vol.
2
, p.
5
.
39.
D. L.
Greene
, “
Energy-efficiency improvement potential of commercial aircraft
,”
Annu. Rev. Energy Environ.
17
,
537
573
(
1992
).
40.
F.-K.
Chang
,
Structural Health Monitoring 2000
(
CRC Press
,
1999
).
41.
A.
Bejan
and
S.
Lorente
, “
Constructal theory of generation of configuration in nature and engineering
,”
J. Appl. Phys.
100
,
041301
(
2006
).
42.
A.
Bejan
and
S.
Lorente
, “
The constructal law and the evolution of design in nature
,”
Phys. Life Rev.
8
,
209
240
(
2011
).
43.
A.
Bejan
and
S.
Lorente
, “
Constructal law of design and evolution: Physics, biology, technology, and society
,”
J. Appl. Phys.
113
,
151301
(
2013
).
44.
See https://www.marinetraffic.com/en/data/?asset_type=vessels for Marine traffic: Global ship tracking intelligence (
2018
) (last accessed October 22, 2018).
45.
See https://www.veristar.com/portal/veristarinfo/generalinfo/registers/seaGoingShips for Bureau Veritas VeriSTAR - Sea-going ships (
2018
) (last accessed October 2, 2018).
46.
E.
Turan
,
Deniz taşımacılığının çok modlu taşımacılıktaki optimal yerinin türkiye koşulları için araştırılması
(
Yıldız Technical University
,
Istanbul
,
2014
).
47.
N.-G.
Lundgren
, “
Bulk trade and maritime transport costs: The evolution of global markets
,”
Resour. Policy
22
,
5
32
(
1996
).
48.
D. S.
Jacks
and
K.
Pendakur
, “
Global trade and the maritime transport revolution
,”
Rev. Econ. Stat.
92
,
745
755
(
2010
).
49.
S.
Esmer
,
O.
Duru
, and
G. T.
Yeo
, “
Maritime transport quality in the evolving world trade
,”
Asian J. Shipp. Logist.
34
,
51
52
(
2018
).
50.
M.
Shinohara
, “
Paradigm shift in maritime transport
,”
Asian J. Shipp. Logist.
25
,
57
67
(
2009
).
51.
G.
Wilmsmeier
,
J.
Hoffmann
, and
R. J.
Sanchez
, “
The impact of port characteristics on international maritime transport costs
,”
Res. Transp. Econ.
16
,
117
140
(
2006
).
52.
D.
Mitsatsos
, “
The sustainability of Maritime transport
,” in
Ports as Nodal Points in a Gobal Transport System
, edited by
A. J.
Dolman
and
J.
Van Ettinger
(
Pergamon
,
Amsterdam
,
1992
), pp.
251
257
.
53.
Ó.
Álvarez-SanJaime
,
P.
Cantos-Sánchez
,
R.
Moner-Colonques
, and
J. J.
Sempere-Monerris
, “
Vertical integration and exclusivities in maritime freight transport
,”
Transp. Res. Part E: Logist. Transp. Rev.
51
,
50
61
(
2013
).
54.
A.
Bejan
, “
Why the bigger live longer and travel farther: Animals, vehicles, rivers and the winds
,”
Sci. Rep.
2
,
594
(
2012
).
55.
MAN Diesel & Turbo.
Marine Engine IMO Tier ll and Tier lll Programme
(
2015
).
56.
A.
Bejan
,
U.
Gunes
,
J. D.
Charles
, and
B.
Sahin
, “
The fastest animals and vehicles are neither the biggest nor the fastest over lifetime
,”
Sci. Rep.
8
,
12925
(
2018
).
57.
Boeing 777-300ER
,” GE Aviation (
2018
), see https://www.swiss.com/CMSContent/web/SiteCollectionDocuments/777/SWISS_Factsheet_B777-300ER_EN.pdf (last accessed February 28, 2018).
59.
B-52 Stratofortress
,” U.S. Air Force (
2015
), see http://www.af.mil/About-Us/Fact-Sheets/Display/Article/104465/b-52-stratofortress/ (last accessed February 28, 2018).
60.
F/A-18 Hornet strike fighter
,” The US Navy Fact File (
2009
), see http://www.navy.mil/navydata/fact_display.asp?cid=1100&tid=1200&ct=1 (last accessed February 28, 2018).
61.
See http://www.airliners.net/aircraft-data/boeing-737-800900/96 for Boeing 737–800 (
2018
) (last accessed February 28, 2018).
62.
Airbus A320-200
,” GE Aviation (
2018
), see http://www.airbus.com/aircraft/passenger-aircraft/a320-family/a320neo.html (last accessed February 28, 2018).
63.
Airbus A330-300
,” GE Aviation (
2018
), see http://www.airbus.com/aircraft/passenger-aircraft/a330-family/a330-300.html (last accessed February 28, 2018).
64.
C.
Cooper
, “
Bridging the gap: Extending the life of the F18 hornet
” (
Master of Military Studies United States Marine Corps Command and Staff College Marine Corps University
,
2011
).
65.
Aircraft and related datasets
,” MIT Global Airline Industry Program – Airline Data Project (
2018
), see http://web.mit.edu/airlinedata/www/Aircraft&Related.html (last accessed May 21, 2018).
66.
H.
Jiang
, “
Key findings on airplane economic life
,” Boeing White Pap.(
2013
), p.
9
.
67.
T. T.
Soong
,
Fundamentals of Probability and Statistics for Engineers
(
John Wiley & Sons
,
Hoboken, NJ
,
2004
).
68.
W. P.
Vogt
and
B.
Johnson
,
Dictionary of Statistics & Methodology: A Nontechnical Guide for the Social Sciences
(
SAGE Publications
,
2011
).
69.
Y. S.
Kim
,
S.
Lorente
, and
A.
Bejan
, “
Distribution of size in steam turbine power plants
,”
Int. J. Energy Res.
33
,
989
998
(
2009
).
70.
A.
Bejan
,
A.
Almerbati
, and
S.
Lorente
, “
Economies of scale: The physics basis
,”
J. Appl. Phys.
121
,
044907
(
2017
).
71.
R. N.
Rosa
, “
River basins: Geomorphology and dynamics
,” in
Bejan's Constructal Theory of Shape and Structure
, edited by
R. N.
Rosa
,
A. H.
Reis
, and
A. F.
Miguel
(
Évora Geophysics Center, University of Évora
,
Portugal
,
2004
), p.
33
.
72.
A.
Bejan
,
S.
Lorente
,
A. F.
Miguel
, and
A. H.
Reis
, “
Constructal theory of distribution of river sizes, section 13.5
,” in
Advanced Engineering Thermodynamics
(
Wiley
,
Hoboken
,
2006
).
73.
See http://www.boeing.com/commercial/#/orders-deliveries for Boeing Commercial Orders & Deliveries (
2018
) (last accessed January 18, 2019).
74.
See https://www.airbus.com/aircraft/market/orders-deliveries.html for Airbus Orders and Deliveries (
2018
) (last accessed January 18, 2019).
75.
P. A.
Jackson
,
Jane's All the World's Aircraft 2011–2012
(
Jane's Information Group
,
2011
).
76.
D.
Thisdell
and
A.
Fafard
, “
Flight International World Airliner Census
,” Flight Glob. Pioneering Aviat. Insight (
2016
), pp.
9
15
.
77.
D. A.
Irwin
and
N.
Pavcnik
, “
Airbus versus Boeing revisited: International competition in the aircraft market
,”
J. Int. Econ.
64
,
223
245
(
2004
).
78.
A.
Goldstein
, “
EMBRAER: From national champion to global player
,”
Cepal Rev.
77
,
97
115
(
2002
).
79.
L.
MacDonald
, “
The Bombardier story
,”
Aircr. Eng. Aerosp. Technol.
75
,
215
(
2003
).
80.
G.
Warwick
, “
Boeing 777 The inside story
,”
Flight Int.
140
(4299),
33
(
1991
).
81.
D. J.
Ingells
,
747: Story of the Boeing Super Jet
(
Aero Publishers
,
1970
).
82.
M.
Wagner
and
G.
Norris
,
Boeing 787 Dreamliner
(
Voyageur Press
,
2009
).
83.
See http://pif.birdconservancy.org/ACAD/Database.aspx for
Partners in flight avian conservation assessment database
(
2018
) (last accessed July 3, 2018).
84.
J. B.
Dunning
, Jr.
,
CRC Handbook of Avian Body Masses
(
CRC Press
,
2008
).
85.
C. W.
Sabrosky
, “
How many insects are there?
,”
Syst. Zool.
2
,
31
(
1953
).
86.
P.
Berthold
,
E.
Gwinner
, and
E.
Sonnenschein
,
Avian Migration
(
Springer Science & Business Media
,
2003
).
87.
M. C.
Chambers
 et al, “
Analytical fuselage and wing weight estimation of transport aircraft
,” NASA Tech. Memo. 110392 (
1996
).
88.
A.
Bejan
, “
Rolling stones and turbulent eddies: Why the bigger live longer and travel farther
,”
Sci. Rep.
6
,
21445
(
2016
).
89.
A.
Bejan
and
J. H.
Marden
, “
Unifying constructal theory for scale effects in running, swimming and flying
,”
J. Exp. Biol.
209
,
238
248
(
2006
).
90.
Y. Y.
Watanabe
,
K. J.
Goldman
,
J. E.
Caselle
,
D. D.
Chapman
, and
Y. P.
Papastamatiou
, “
Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
6104
6109
(
2015
).
91.
See http://fishbase.org/search.php for FishBase (
2018
) (last accessed December 30, 2018).
92.
U.S. Standard Atmosphere Supplements 292 (NASA,
1966
).
93.
M. R.
Hirt
,
W.
Jetz
,
B. C.
Rall
, and
U.
Brose
, “
A general scaling law reveals why the largest animals are not the fastest
,”
Nat. Ecol. Evol.
1
,
1116
1122
(
2017
).
94.
A.
Bejan
and
S.
Devos
, “
Sa vitesse cache une théorie de la masse
,” Sci. Vie
75
77
(
2017
).
95.
See https://www.fighter-planes.com/ for Fighter Planes (
2011
) (last accessed May 21, 2018).
You do not currently have access to this content.