Solitons are stable localized wave packets that can propagate long distance in dispersive media without changing their shapes. As particle-like nonlinear localized waves, solitons have been investigated in different physical systems. Owing to potential applications in optical communication and optical signal processing systems, optical solitons have attracted intense interest in the past three decades. To experimentally study the formation and dynamics of temporal optical solitons, fiber lasers are considered as a wonderful nonlinear system. During the last decade, several kinds of theoretically predicted solitons were observed experimentally in fiber lasers. In this review, we present a detailed overview of the experimentally verified optical solitons in fiber lasers, including bright solitons, dark solitons, vector solitons, dissipative solitons, dispersion-managed solitons, polarization domain wall solitons, and so on. An outlook for the development on the solitons in fiber lasers is also provided and discussed.

1.
R. F.
Gwyther
, “
The general motion of long waves, with an examination of the direct reflexion of the solitary wave
,”
Philos. Mag.
50
(
304
),
349
352
(
1900
).
2.
A.
Boulanger
, “
Theory of the solitary wave which propagates itself the length of a horizontal flexible tube
,”
C. R. Hebd. Seances Acad. Sci.
141
,
1001
1004
(
1905
).
3.
J. D.
Gibbon
and
J. C.
Eilbeck
, “
Possible N soliton solution for a nonlinear optics equation
,”
J. Phys. A: Gen. Phys.
5
(
11
),
L122
(
1972
).
4.
P. J.
Caudrey
 et al., “
Multiple soliton and bisoliton bound-state solutions of sine-Gordon equation and related equations in nonlinear optics
,”
J. Phys. A: Math. Gen.
6
(
8
),
L112
L115
(
1973
).
5.
J. C.
Eilbeck
 et al., “
Solitons in nonlinear optics.1. More accurate description of 2pi pulse in self-induced transparency
,”
J. Phys. A: Math. Gen.
6
(
9
),
1337
1347
(
1973
).
6.
A. E.
Kaplan
, “
Bistable solitons of highly-nonlinear Schrodinger-equations in nonlinear optics
,”
Math. Comput. Modell.
11
,
106
111
(
1988
).
7.
Y. S.
Kivshar
, “
Dark solitons in nonlinear optics
,”
IEEE J. Quantum Electron.
29
(
1
),
250
264
(
1993
).
8.
A.
Boardman
, “
Nonlinear optics - Solitons light the way
,”
Nature
387
(
6636
),
854
855
(
1997
).
9.
K.
Porsezian
, “
Soliton propagation in nonlinear optics with higher-order effects
,”
J. Mod. Opt.
44
(
2
),
387
394
(
1997
).
10.
U.
Brinkmann
, “
Nonlinear optics - Spatial solitons of moderate power interact
,”
Laser Focus World
40
(
4
),
32
(
2004
).
11.
A. I.
Maimistov
, “
Solitons in nonlinear optics
,”
Quantum Electron.
40
(
9
),
756
781
(
2010
).
12.
X. G.
Lin
,
W. J.
Liu
, and
M.
Lei
, “
Oscillating solitons in nonlinear optics
,”
Pramana
86
(
3
),
575
580
(
2016
).
13.
M.
Inc
 et al., “
Optical solitons for complex Ginzburg-Landau model in nonlinear optics
,”
Optik
158
,
368
375
(
2018
).
14.
N. J.
Zabusky
and
M. D.
Kruskal
, “
Interaction of solitons in a collisionless plasma and recurrence of initial states
,”
Phys. Rev. Lett.
15
(
6
),
240
(
1965
).
15.
C. S.
Gardner
 et al., “
Method for solving Korteweg-Devries equation
,”
Phys. Rev. Lett.
19
(
19
),
1095
(
1967
).
16.
T.
Maxworthy
, “
Experiments on collisions between solitary waves
,”
J. Fluid Mech.
76
,
177
185
(
1976
).
17.
G. P.
Agrawal
, “
Nonlinear fiber optics
,” in
Quantum Electronics–Principles and Applications
, 4th ed. (
Elsevier/Academic Press
,
Amsterdam, Boston
,
2007
), Vol. xvi, p.
529
.
18.
A.
Hasegawa
and
F.
Tappert
, “
Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.1. Anomalous dispersion
,”
Appl. Phys. Lett.
23
(
3
),
142
144
(
1973
).
19.
A.
Hasegawa
and
F.
Tappert
, “
Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.2. Normal dispersion
,”
Appl. Phys. Lett.
23
(
4
),
171
172
(
1973
).
20.
C. R.
Menyuk
, “
Stability of solitons in birefringent optical fibers.1. Equal propagation amplitudes
,”
Opt. Lett.
12
(
8
),
614
616
(
1987
).
21.
M.
Sheikbahae
,
A. A.
Said
, and
E. W.
Vanstryland
, “
High-sensitivity, single-beam N2 measurements
,”
Opt. Lett.
14
(
17
),
955
957
(
1989
).
22.
V. E.
Zakharov
and
A. B.
Shabat
, “
Exact theory of 2-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media
,”
J. Exp. Theor. Phys.
34
(
1
),
62
(
1972
).
23.
H. A.
Haus
, “
Mode-locking of lasers
,”
IEEE J. Sel. Top. Quantum Electron.
6
(
6
),
1173
1185
(
2000
).
24.
L. E.
Hargrove
,
R. L.
Fork
, and
M. A.
Pollack
, “
Locking of He-Ne laser modes induced by synchronous intracavity modulation
,”
Appl. Phys. Lett.
5
(
1
),
4
(
1964
).
25.
M.
Horowitz
 et al., “
Pulse dropout in harmonically mode-locked fiber lasers
,”
IEEE Photonics Technol. Lett.
12
(
3
),
266
268
(
2000
).
26.
M.
Horowitz
and
C. R.
Menyuk
, “
Analysis of pulse dropout in harmonically mode-locked fiber lasers by use of the Lyapunov method
,”
Opt. Lett.
25
(
1
),
40
42
(
2000
).
27.
A. R.
Clobes
and
M. J.
Brienza
, “
Passive mode locking of a pulsed Nd-Yag laser
,”
Appl. Phys. Lett.
14
(
9
),
287
(
1969
).
28.
O. R.
Wood
and
S. E.
Schwarz
, “
Passive mode locking of a Co2 laser
,”
Appl. Phys. Lett.
12
(
8
),
263
(
1968
).
29.
A. G.
Bulushev
,
E. M.
Dianov
, and
O. G.
Okhotnikov
, “
Passive-mode locking of a laser with a nonlinear fiber reflector
,”
Opt. Lett.
15
(
17
),
968
970
(
1990
).
30.
T. L.
Paoli
, “
Saturable absorption effects in the self-pulsing (Alga)as junction laser
,”
Appl. Phys. Lett.
34
(
10
),
652
655
(
1979
).
31.
C. W.
Chang
and
S.
Chi
, “
Mode-locked erbium-doped fibre ring laser using nonlinear polarization rotation
,”
J. Mod. Opt.
45
(
2
),
355
362
(
1998
).
32.
E.
Yoshida
,
Y.
Kimura
, and
M.
Nakazawa
, “
Femtosecond erbium-doped fiber laser with nonlinear polarization rotation and its soliton compression
,”
Jpn. J. Appl. Phys., Part 1
33
(
10
),
5779
5783
(
1994
).
33.
N.
Pandit
,
D. U.
Noske
, and
J. R.
Taylor
, “
350-fs pulse generation from an erbium fiber ring laser mode-locked using nonlinear polarization rotation
,”
J. Mod. Opt.
41
(
1
),
11
14
(
1994
).
34.
V. J.
Matsas
 et al., “
Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation
,”
Electron. Lett.
28
(
15
),
1391
1393
(
1992
).
35.
A.
Komarov
,
H.
Leblond
, and
F.
Sanchez
, “
Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation
,”
Opt. Commun.
267
(
1
),
162
169
(
2006
).
36.
S. M. J.
Kelly
, “
Characteristic side-band instability of periodically amplified average soliton
,”
Electron. Lett.
28
(
8
),
806
807
(
1992
).
37.
A.
Komarov
,
H.
Leblond
, and
F.
Sanchez
, “
Modelling of multiple soliton operation of fiber lasers with anomalous frequency dispersion
,” in
Proceedings of 2007 Icton Mediterranean Winter Conference
(
2007
), pp.
316
319
.
38.
P.
Grelu
and
J. M.
Soto-Crespo
, “
Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser
,”
J. Opt. B: Quantum Semiclassical Opt.
6
(
5
),
S271
S278
(
2004
).
39.
D. Y.
Tang
 et al., “
Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers
,”
Phys. Rev. A
72
(
4
),
043816
(
2005
).
40.
L. R.
Wang
 et al., “
Energy quantisation for dissipative solitons
,”
Electron. Lett.
46
(
6
),
436
U80
(
2010
).
41.
W. H.
Renninger
,
A.
Chong
, and
F. W.
Wise
, “
Area theorem and energy quantization for dissipative optical solitons
,” in
Proceedings of 2009 Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference
(Cleo/Qels 2009), Vol.
1–5
, pp.
1899
1900
.
42.
R.
Weill
 et al., “
Long range soliton interaction related to sidebands generation in mode-locked lasers
,” in
Proceedings of 2007 Conference on Lasers & Electro-Optics/Quantum Electronics and Laser Science Conference
(Cleo/Qels 2007), Vol. 1–5, pp.
1265
1266
.
43.
D. Y.
Tang
 et al., “
Soliton interaction in a fiber ring laser
,”
Phys. Rev. E
72
(
1
),
016616
(
2005
).
44.
N.
Akhmediev
 et al., “
Dissipative soliton interactions inside a fiber laser cavity
,”
Opt. Fiber Technol.
11
(
3
),
209
228
(
2005
).
45.
U.
Keller
 et al., “
Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers
,”
IEEE J. Sel. Top. Quantum Electron.
2
(
3
),
435
453
(
1996
).
46.
S.
Yamashita
, “
Carbon nanotube based mode-locked fiber lasers
,” in Proceedings of
Aoe 2008: Asia Optical Fiber Communication and Optoelectronic Exposition and Conference
(
2009
).
47.
Z.
Sun
 et al., “
L-band ultrafast fiber laser mode locked by carbon nanotubes
,”
Appl. Phys. Lett.
93
(
6
),
061114
(
2008
).
48.
A. V.
Tausenev
 et al., “
177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes
,”
Appl. Phys. Lett.
92
(
17
),
171113
(
2008
).
49.
S.
Yamashita
 et al., “
Ultrafast saturable absorbers based on carbon nanotubes and their applications to passively mode-locked fiber lasers
,”
Electron. Commun. Jpn. Part II-Electron.
90
(
2
),
17
24
(
2007
).
50.
S.
Yamashita
 et al., “
Passively mode-locked short-cavity 10 GHz Er: Yb-codoped phosphate-fiber laser using carbon nanotubes
,” in Proceedings of
Fiber Lasers Iv: Technology, Systems, and Applications
(
2007
), Vol. 6453.
51.
K.
Jiang
 et al., “
A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes
,”
IEEE Photonics Technol. Lett.
22
(
11
),
754
756
(
2010
).
52.
K.
Kieu
,
R. J.
Jones
, and
N.
Peyghambarian
, “
Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system
,”
IEEE Photonics Technol. Lett.
22
(
20
),
1521
1523
(
2010
).
53.
J. W.
Nicholson
and
D. J.
DiGiovanni
, “
High-repetition-frequency low-noise fiber ring lasers mode-locked with carbon nanotubes
,”
IEEE Photonics Technol. Lett.
20
(
21–24
),
2123
2125
(
2008
).
54.
Y. W.
Song
 et al., “
1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes
,”
IEEE Photonics Technol. Lett.
17
(
8
),
1623
1625
(
2005
).
55.
S.
Yamashita
 et al., “
5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes
,”
IEEE Photonics Technol. Lett.
17
(
4
),
750
752
(
2005
).
56.
S.
Yamashita
 et al., “
Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes
,”
Jpn. J. Appl. Phys., Part 2
45
(
1–3
),
L17
L19
(
2006
).
57.
E. J. R.
Kelleher
 et al., “
Bismuth fiber integrated laser mode-locked by carbon nanotubes
,”
Laser Phys. Lett.
7
(
11
),
790
794
(
2010
).
58.
G. S.
Qin
,
T.
Suzuki
, and
Y.
Ohishi
, “
Widely tunable passively mode-locked fiber laser with carbon nanotube films
,”
Opt. Rev.
17
(
3
),
97
99
(
2010
).
59.
S. Y.
Choi
 et al., “
Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber
,”
Opt. Express
17
(
24
),
21788
21793
(
2009
).
60.
C. M.
Ouyang
 et al., “
Observation of timing jitter reduction induced by spectral filtering in a fiber laser mode locked with a carbon nanotube-based saturable absorber
,”
Opt. Lett.
35
(
14
),
2320
2322
(
2010
).
61.
M. A.
Solodyankin
 et al., “
Mode-locked 1.93 mu m thulium fiber laser with a carbon nanotube absorber
,”
Opt. Lett.
33
(
12
),
1336
1338
(
2008
).
62.
Y. W.
Song
 et al., “
All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film
,”
Opt. Lett.
32
(
11
),
1399
1401
(
2007
).
63.
S.
Yamashita
 et al., “
Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers
,”
Opt. Lett.
29
(
14
),
1581
1583
(
2004
).
64.
F.
Wang
 et al., “
Soliton fiber laser mode-locked by a single-wall carbon nanotube-polymer composite
,”
Phys. Status Solidi B
245
(
10
),
2319
2322
(
2008
).
65.
A. V.
Tausenev
 et al., “
Self-mode-locking in erbium-doped fibre lasers with saturable polymer film absorbers containing single-wall carbon nanotubes synthesised by the arc discharge method
,”
Quantum Electron.
37
(
3
),
205
208
(
2007
).
66.
Q.
Wang
 et al., “
Mode-locked fiber/waveguide lasers based on a fiber taper embedded in carbon nanotubes/polymer composite
,” in Proceedings of
Silicon Photonics and Photonic Integrated Circuits
(
2008
), Vol. 6996.
67.
H.
Zhang
 et al., “
Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker
,”
Appl. Phys. Lett.
95
(
14
),
141103
(
2009
).
68.
H.
Zhang
 et al., “
Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser
,”
Appl. Phys. Lett.
96
(
11
),
111112
(
2010
).
69.
M. A.
Ismail
,
H.
Ahmad
, and
S. W.
Harun
, “
Soliton mode-locked erbium-doped fiber laser using non-conductive graphene oxide paper
,”
IEEE J. Quantum Electron.
50
(
2
),
85
87
(
2014
).
70.
L. L.
Gui
and
C. X.
Yang
, “
Soliton molecules with +/-pi/2, 0, and pi phase differences in a graphene-based mode-locked erbium-doped fiber laser
,”
IEEE Photonics J.
10
(
3
),
1502609
(
2018
).
71.
Y. F.
Song
 et al., “
Period-doubling and quadrupling bifurcation of vector soliton bunches in a graphene mode locked fiber laser
,”
IEEE Photonics J.
9
(
5
),
4502308
(
2017
).
72.
L. L.
Gui
 et al., “
Widely spaced bound states in a soliton fiber laser with graphene saturable absorber
,”
IEEE Photonics Technol. Lett.
25
(
12
),
1184
1187
(
2013
).
73.
Z. Q.
Luo
 et al., “
Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper
,”
IEEE Photonics Technol. Lett.
24
(
17
),
1539
1542
(
2012
).
74.
N.
Zhao
 et al., “
Trapping of soliton molecule in a graphene-based mode-locked ytterbium-doped fiber laser
,”
IEEE Photonics Technol. Lett.
26
(
24
),
2450
2453
(
2014
).
75.
H.
Haris
 et al., “
Generation of soliton and bound soliton pulses in mode-locked erbium-doped fiber laser using graphene film as saturable absorber
,”
J. Mod. Opt.
63
(
8
),
777
782
(
2016
).
76.
W. J.
Liu
 et al., “
Analytic study on soliton amplification in graphene oxide mode-locked Er-doped fiber lasers
,”
J. Mod. Opt.
61
(
9
),
773
777
(
2014
).
77.
L. Q.
Zhang
 et al., “
Wavelength tunable passively Q-switched Yb-doped double-clad fiber laser with graphene grown on SiC
,”
Chin. Opt. Lett.
12
(
2
),
021405
(
2014
).
78.
B.
Gao
 et al., “
Soliton molecules in a fiber laser mode-locked by a graphene-based saturable absorber
,”
Laser Phys.
25
(
7
),
075103
(
2015
).
79.
X. Y.
He
,
T.
Chen
, and
D. N.
Wang
, “
Ultra-fast solitons in a long cavity multi-mode-fiber-based graphene mode-locked fiber laser with high slope efficiency
,”
Laser Phys.
24
(
8
),
085109
(
2014
).
80.
X. L.
Li
 et al., “
Observation of soliton bound states in a graphene mode locked erbium-doped fiber laser
,”
Laser Phys.
22
(
4
),
774
777
(
2012
).
81.
S. Y.
Choi
 et al., “
All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber
,”
Laser Phys. Lett.
11
(
1
),
015101
(
2014
).
82.
Y. D.
Cui
,
X. M.
Liu
, and
C.
Zeng
, “
Conventional and dissipative solitons in a CFBG-based fiber laser mode-locked with a graphene-nanotube mixture
,”
Laser Phys. Lett.
11
(
5
),
055106
(
2014
).
83.
S. S.
Huang
 et al., “
Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion
,”
Laser Phys. Lett.
11
(
2
),
025102
(
2014
).
84.
Y. F.
Song
 et al., “
Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser
,”
Laser Phys. Lett.
10
(
12
),
125103
(
2013
).
85.
Z. H.
Wang
 et al., “
The simultaneous generation of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a graphene saturable absorber
,”
Laser Phys. Lett.
15
(
5
),
055101
(
2018
).
86.
J.
Boguslawski
 et al., “
Bound soliton state in all-polarization maintaining fiber laser mode-locked by graphene
,” in
Proceedings of Laser Technology 2016: Progress and Applications of Lasers
(
2016
), p.
10159
.
87.
W. B.
Wang
 et al., “
Delivering dispersion-managed soliton and Q-switched pulse in fiber laser based on graphene and nonlinear optical loop mirror
,”
Opt. Laser Technol.
85
,
41
47
(
2016
).
88.
G.
Yang
 et al., “
Dual-wavelength mode-locked Tm3+-doped fiber laser at 2 gm region with soliton pulse number by employing graphene on microfiber
,”
Optics Laser Technol.
105
,
76
79
(
2018
).
89.
H.
Zhang
 et al., “
Vector dissipative solitons in graphene mode locked fiber lasers
,”
Opt. Commun.
283
(
17
),
3334
3338
(
2010
).
90.
Z. C.
Cheng
 et al., “
Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser
,”
Opt. Express
23
(
6
),
7000
7006
(
2015
).
91.
S. Y.
Choi
 et al., “
Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking
,”
Opt. Express
20
(
5
),
5652
5657
(
2012
).
92.
Y. D.
Cui
and
X. M.
Liu
, “
Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons
,”
Opt. Express
21
(
16
),
18969
18974
(
2013
).
93.
M. M.
Han
 et al., “
Polarization dynamic patterns of vector solitons in a graphene mode-locked fiber laser
,”
Opt. Express
23
(
3
),
2424
2435
(
2015
).
94.
S. S.
Huang
 et al., “
Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser
,”
Opt. Express
22
(
10
),
11417
11426
(
2014
).
95.
H.
Jeong
 et al., “
All-fiber Tm-doped soliton laser oscillator with 6 nJ pulse energy based on evanescent field interaction with monoloayer graphene saturable absorber
,”
Opt. Express
24
(
13
),
14152
14158
(
2016
).
96.
A. P.
Luo
 et al., “
Microfiber-based, highly nonlinear graphene saturable absorber for formation of versatile structural soliton molecules in a fiber laser
,”
Opt. Express
22
(
22
),
27019
27025
(
2014
).
97.
Y. C.
Meng
 et al., “
Multiple-soliton dynamic patterns in a graphene mode-locked fiber laser
,”
Opt. Express
20
(
6
),
6685
6692
(
2012
).
98.
Y. F.
Song
 et al., “
Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser
,”
Opt. Express
21
(
8
),
10010
10018
(
2013
).
99.
Y. F.
Song
 et al., “
Polarization rotation vector solitons in a graphene mode-locked fiber laser
,”
Opt. Express
20
(
24
),
27283
27289
(
2012
).
100.
Y. F.
Song
 et al., “
Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene
,”
Opt. Express
24
(
2
),
1814
1822
(
2016
).
101.
W.
Xin
 et al., “
Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser
,”
Opt. Express
22
(
9
),
10239
10247
(
2014
).
102.
J.
Xu
 et al., “
Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser
,”
Opt. Express
20
(
21
),
23653
23658
(
2012
).
103.
J.
Sotor
,
G.
Sobon
, and
K. M.
Abramski
, “
Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser
,”
Opt. Lett.
37
(
11
),
2166
2168
(
2012
).
104.
L. M.
Zhao
 et al., “
Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene
,”
Opt. Lett.
35
(
21
),
3622
3624
(
2010
).
105.
L.
Yun
, “
Switchable dual-wavelength conventional soliton delivered from a graphene-mode-locked fiber laser
,”
Optik
145
,
549–554
(
2017
).
106.
Y.
Chen
 et al., “
Sub-300 femtosecond soliton tunable fiber laser with all-anomalous dispersion passively mode locked by black phosphorus
,”
Opt. Express
24
(
12
),
13316
13324
(
2016
).
107.
B.
Gao
 et al., “
Dissipative solitons characteristics in passively mode-locked Er-doped fiber laser based on black phosphorus as a new saturable absorber
,”
Opt. Commun.
406
,
192
198
(
2018
).
108.
C. Y.
Ma
 et al., “
Dynamic evolution of the dissipative soliton in passively mode-locked fiber laser based on black phosphorus as a new saturable absorber
,”
Opt. Commun.
406
,
177
182
(
2018
).
109.
Y. F.
Song
 et al., “
Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber
,”
Opt. Express
24
(
23
),
25933
25942
(
2016
).
110.
Z. T.
Wang
 et al., “
Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser
,”
IEEE Photonics J.
8
(
5
),
1503310
(
2016
).
111.
J.
Sotor
 et al., “
Ultrafast thulium-doped fiber laser mode locked with black phosphorus
,”
Opt. Lett.
40
(
16
),
3885
3888
(
2015
).
112.
H.
Yu
 et al., “
Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber
,”
Appl. Opt.
54
(
34
),
10290
10294
(
2015
).
113.
M. H. M.
Ahmed
 et al., “
Ultrafast erbium-doped fiber laser mode-locked with a black phosphorus saturable absorber
,”
Laser Phys. Lett.
13
(
9
),
095104
(
2016
).
114.
J.
Du
 et al., “
Microfiber-based few-layer black phosphorus quantum dots saturable absorber for mode-locked fiber laser
,” in
Proceedings of 2016 Conference on Lasers and Electro-Optics (Cleo)
(
2016
).
115.
E. I.
Ismail
 et al., “
Black phosphorus crystal as a saturable absorber for both a Q-switched and mode-locked erbium-doped fiber laser
,”
RSC Adv.
6
(
76
),
72692
72697
(
2016
).
116.
A. A.
Latiff
 et al., “
Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime
,” in
Proceedings of Second International Seminar on Photonics, Optics, and Its Applications
(Isphoa 2016) (
2016
), p.
10150
.
117.
J. F.
Li
 et al., “
Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers
,”
Sci. Rep.
6
,
30361
(
2016
).
118.
Z. T.
Wang
 et al., “
Black phosphorus quantum dots (BPQDs) saturable absorber for the passive mode-locking of an Er-doped fiber laser
,” in
Proceedings of 2016 Conference on Lasers and Electro-Optics (Cleo)
(
2016
).
119.
R. W.
Zhao
 et al., “
Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus
,”
Appl. Phys. Express
9
(
9
),
092701
(
2016
).
120.
A. H. H.
Al-Masoodi
 et al., “
Mode-locked ytterbium-doped fiber laser using mechanically exfoliated black phosphorus as saturable absorber
,”
Optik
147
,
52
58
(
2017
).
121.
M. B.
Hisyam
 et al., “
Generation of mode-locked ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber
,”
IEEE J. Sel. Top. Quantum Electron.
23
(
1
),
1100205
(
2017
).
122.
X.
Jin
 et al., “
Long term stable black phosphorus saturable absorber for mode-locked fiber laser
,” in Proceedings of
2017 Conference on Lasers and Electro-Optics (Cleo)
(
2017
).
123.
X. X.
Jin
 et al., “
Observation of tunable dual-wavelength in a fiber laser mode-locked by black phosphorus
,” in
Proceedings of 2017 Opto-Electronics and Communications Conference (Oecc) and Photonics Global Conference (Pgc)
(
2017
).
124.
H. Q.
Song
 et al., “
Mode-locked ytterbium-doped all-fiber lasers based on few-layer black phosphorus saturable absorbers
,”
Opt. Commun.
394
,
157
160
(
2017
).
125.
B.
Gao
 et al., “
Influence of gain fiber on dissipative soliton pairs in passively mode-locked fiber laser based on BP as a saturable absorber
,”
Opt. Commun.
410
,
191
196
(
2018
).
126.
X. X.
Jin
 et al., “
102 fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser
,”
Opt. Express
26
(
10
),
12506
12513
(
2018
).
127.
K.
Wu
 et al., “
High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: Review and perspective (invited)
,”
Opt. Commun.
406
,
214
229
(
2018
).
128.
Z. K.
Jiang
 et al., “
256 fs, 2 nJ soliton pulse generation from MoS2 mode-locked fiber laser
,”
Appl. Phys. Express
10
(
12
),
122702
(
2017
).
129.
Z. H.
Wang
 et al., “
Generation of trapezoidal envelope pulses and soliton rains from passively mode-locked fiber laser with MoS2 saturable absorber on microfiber
,”
Appl. Phys. Express
11
(
7
),
072504
(
2018
).
130.
M.
Liu
 et al., “
Coexistence of bound soliton and harmonic mode-locking soliton in an ultrafast fiber laser based on MoS2-deposited microfiber photonic device
,”
Chin. Opt. Lett.
16
(
2
),
020008
(
2018
).
131.
P.
Wang
 et al., “
Self-organized structures of soliton molecules in 2-mu m fiber laser based on MoS2 saturable absorber
,”
IEEE Photonics Technol. Lett.
30
(
13
),
1210
1213
(
2018
).
132.
T. H.
Chen
 et al., “
MoS2 nano-flake doped polyvinyl alcohol enabling polarized soliton mode-locking of a fiber laser
,”
J. Mater. Chem. C
4
(
40
),
9454
9459
(
2016
).
133.
F. F.
Lu
, “
MoS2-wrapped microfiber-based multi-wavelength soliton fiber laser
,”
Mod. Phys. Lett. B
31
(
32
),
1750303
(
2017
).
134.
Y. D.
Wang
 et al., “
Harmonic mode locking of bound-state solitons fiber laser based on MoS2 saturable absorber
,”
Opt. Express
23
(
1
),
205
210
(
2015
).
135.
Y. F.
Song
 et al., “
Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability
,”
2D Mater.
4
(
4
),
045010
(
2017
).
136.
V. E.
Zakharov
and
A. B.
Shabat
, “
Interaction between solutions in a stable medium
,”
Zh. Eksp. Teor. Fiz.
64
(
5
),
1627
1639
(
1973
).
137.
L.
Di Menza
and
C.
Gallo
, “
The black solitons of one-dimensional NLS equations
,”
Nonlinearity
20
(
2
),
461
496
(
2007
).
138.
L.
Faddeev
and
L.
Takhtajan
,
Hamiltonian Methods in the Theory of Solitons
(
Springer Science & Business Media
,
2007
).
139.
S. A.
Gredeskul
and
Y. S.
Kivshar
, “
Generation of dark solitons in optical fibers
,”
Phys. Rev. Lett.
62
(
8
),
977–977
(
1989
).
140.
Y. S.
Kivshar
and
B.
Luther-Davies
, “
Dark optical solitons: Physics and applications
,”
Phys. Rep.
298
(
2–3
),
81
197
(
1998
).
141.
D. X.
Huang
and
H.
Li
, “
Dark soliton transmission twin-core fiber,” Int. J. Infrared Millimeter Waves
22
(
1
),
93
100
(
2001
).
142.
M.
Stratmann
and
F.
Mitschke
, “
Chains of temporal dark solitons in dispersion-managed fiber
,”
Phys. Rev. E
72
(
6
),
066616
(
2005
).
143.
S. M.
Ao
and
J. R.
Yan
, “
Effect of higher-order terms on nonlinear Schrodinger dark solitons in optical fibres
,”
Chin. Phys. Lett.
23
(
10
),
2774
2777
(
2006
).
144.
J.
Guo
 et al., “
Formation and energy exchange of vector dark solitons in fiber lasers
,”
IEEE Photonics J.
7
(
1
),
1500509
(
2015
).
145.
J.
Guo
 et al., “
Controlled generation of bright or dark solitons in a fiber laser by intracavity nonlinear absorber
,”
IEEE Photonics J.
8
(
3
),
1502112
(
2016
).
146.
Y. Q.
Ge
 et al., “
Characterization of dark soliton sidebands in all-normal-dispersion fiber lasers
,”
IEEE J. Sel. Top. Quantum Electron.
24
(
3
),
0903407
(
2018
).
147.
A. M.
Weiner
 et al., “
Experimental-observation of the fundamental dark soliton in optical fibers
,”
Phys. Rev. Lett.
61
(
21
),
2445
2448
(
1988
).
148.
H.
Zhang
 et al., “
Dark pulse emission of a fiber laser
,”
Phys. Rev. A
80
(
4
),
045803
(
2009
).
149.
S.
Coen
and
T.
Sylvestre
, “
Comment on “Dark pulse emission of a fiber laser”
,”
Phys. Rev. A
82
(
4
),
047801
(
2010
).
150.
D. Y.
Tang
 et al., “
Evidence of dark solitons in all-normal-dispersion-fiber lasers
,”
Phys. Rev. A
88
(
1
),
013849
(
2013
).
151.
D. Y.
Tang
 et al., “
Dark soliton fiber lasers
,”
Optics Express
22
(
16
),
19831
(
2014
).
152.
Y. F.
Song
 et al., “
280 GHz dark soliton fiber laser
,”
Opt. Lett.
39
(
12
),
3484
3487
(
2014
).
153.
S. V.
Manakov
, “
On the theory of two-dimensional stationary self-focusing of electromagnetic waves
,”
Sov. Phys. - JETP
38
(
2
),
248
253
(
1974
).
154.
A. P.
Sheppard
and
Y. S.
Kivshar
, “
Polarized dark solitons in isotropic Kerr media
,”
Phys. Rev. E
55
(
4
),
4773
4782
(
1997
).
155.
R.
Radhakrishnan
and
M.
Lakshmanan
, “
Bright and dark soliton-solutions to coupled nonlinear Schrodinger-equations
,”
J. Phys. A: Math. Gen.
28
(
9
),
2683
2692
(
1995
).
156.
B.
Prinari
,
M. J.
Ablowitz
, and
G.
Biondini
, “
Inverse scattering transform for the vector nonlinear Schrodinger equation with nonvanishing boundary conditions
,”
J. Math. Phys.
47
(
6
),
063508
(
2006
).
157.
D. S.
Wang
,
D. J.
Zhang
, and
J. K.
Yang
, “
Integrable properties of the general coupled nonlinear Schrodinger equations
,”
J. Math. Phys.
51
(
2
),
023510
(
2010
).
158.
T.
Kanna
 et al., “
Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrodinger equations
,”
Phys. Rev. E
73
(
2
),
026604
(
2006
).
159.
M.
Vijayajayanthi
,
T.
Kanna
, and
M.
Lakshmanan
, “
Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrodinger equations
,”
Phys. Rev. A
77
(
1
),
013820
(
2008
).
160.
Y.
Ohta
,
D. S.
Wang
, and
J. K.
Yang
, “
General N-dark-dark solitons in the coupled nonlinear Schrodinger equations
,”
Stud. Appl. Math.
127
(
4
),
345
371
(
2011
).
161.
H.
Cai
,
F. M.
Liu
, and
N. N.
Huang
, “
Dark multi-soliton solution of the nonlinear Schrodinger equation with non-vanishing boundary
,”
Int. J. Theor. Phys.
44
(
2
),
255
265
(
2005
).
162.
L. M.
Ling
,
L. C.
Zhao
, and
B. L.
Guo
, “
Darboux transformation and multi-dark soliton for N-component nonlinear Schrodinger equations
,”
Nonlinearity
28
(
9
),
3243
3261
(
2015
).
163.
H. Q.
Zhang
and
Y.
Wang
, “
Multi-dark soliton solutions for the higher-order nonlinear Schrodinger equation in optical fibers
,”
Nonlinear Dyn.
91
(
3
),
1921
1930
(
2018
).
164.
V. V.
Bryksin
,
M. P.
Petrov
, and
R. V.
Kiyan
, “
Generation of vector solitons in fiber laser
,”
Pis'ma Zh. Tekh. Fiz.
20
(
10
),
6
10
(
1994
).
165.
C.
Deangelis
,
M.
Santagiustina
, and
S.
Wabnitz
, “
Stability of vector solitons in fiber laser and transmission-systems
,”
Opt. Commun.
122
(
1–3
),
23
27
(
1995
).
166.
J. W.
Haus
 et al., “
Vector soliton fiber lasers
,”
Opt. Lett.
24
(
6
),
376
378
(
1999
).
167.
B. C.
Collings
 et al., “
Polarization-locked temporal vector solitons in a fiber laser: Experiment
,”
J. Opt. Soc. Am. B
17
(
3
),
354
365
(
2000
).
168.
J. M.
Soto-Crespo
 et al., “
Polarization-locked temporal vector solitons in a fiber laser: Theory
,”
J. Opt. Soc. Am. B
17
(
3
),
366
372
(
2000
).
169.
W. C.
Chen
 et al., “
Multiple polarization states of vector soliton in fiber laser
,” in
Proceedings of Passive Components and Fiber-Based Devices Iv, Pts 1 and 2
(
2007
), p.
6781
.
170.
W. C.
Chen
 et al., “
Vector solitons in femtosecond fibre lasers (vol 48, pg 255, 2008)
,”
Eur. Phys. J. D
50
(
1
),
123
123
(
2008
).
171.
W. C.
Chen
 et al., “
Vector solitons in femtosecond fibre lasers
,”
Eur. Phys. J. D
48
(
2
),
255
260
(
2008
).
172.
D. Y.
Tang
 et al., “
Observation of high-order polarization-locked vector solitons in a fiber laser
,”
Phys. Rev. Lett.
101
(
15
),
0153904
(
2008
).
173.
H.
Zhang
 et al., “
Coherent energy exchange between components of a vector soliton in fiber lasers
,”
Opt. Express
16
(
17
),
12618
12623
(
2008
).
174.
L. M.
Zhao
 et al., “
Polarization rotation locking of vector solitons in a fiber ring laser
,”
Opt. Express
16
(
14
),
10053
10058
(
2008
).
175.
L. M.
Zhao
 et al., “
Period-doubling of vector solitons in a ring fiber laser
,”
Opt. Commun.
281
(
22
),
5614
5617
(
2008
).
176.
D. Y.
Tang
 et al., “
Vector soliton fiber lasers
,” in
Proceedings of 14th Optoelectronics and Communications Conference
(Oecc 2009) (
2009
), pp.
84
85
.
177.
H.
Zhang
 et al., “
Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion
,”
Opt. Express
17
(
2
),
455
460
(
2009
).
178.
L. M.
Zhao
 et al., “
Coexistence of polarization-locked and polarization-rotating vector solitons in a fiber laser with SESAM
,”
Opt. Lett.
34
(
20
),
3059
3061
(
2009
).
179.
L. M.
Zhao
 et al., “
Bunch of restless vector solitons in a fiber laser with SESAM
,”
Opt. Express
17
(
10
),
8103
8108
(
2009
).
180.
H.
Zhang
 et al., “
Vector dark domain wall solitons in a fiber ring laser
,”
Opt. Express
18
(
5
),
4428
4433
(
2010
).
181.
C.
Mou
 et al., “
All-fiber polarization locked vector soliton laser using carbon nanotubes
,”
Opt. Lett.
36
(
19
),
3831
3833
(
2011
).
182.
C. M.
Ouyang
 et al., “
Properties of a vector soliton laser passively mode-locked by a fiber-based semiconductor saturable absorber operating in transmission
,”
Opt. Commun.
284
(
2
),
619
624
(
2011
).
183.
R.
Gumenyuk
 et al., “
Vector soliton bunching in thulium-holmium fiber laser mode-locked with PbS quantum-dot-doped glass absorber
,”
IEEE J. Quantum Electron.
48
(
7
),
903
907
(
2012
).
184.
D. K.
Tang
,
J. G.
Zhang
, and
Y. S.
Liu
, “
Vector solitons with polarization instability and locked polarization in a fiber laser
,”
Opt. Eng.
51
(
7
),
074202
(
2012
).
185.
D. B.
Zeng
 et al., “
Numerical investigation of polarization rotation locking of vector solitons in a fiber ring laser
,” in
Proceedings of 2012 Asia Communications and Photonics Conference (Acp)
(
2012
).
186.
W. C.
Chen
 et al., “
Vector solitons with a uniform polarisation state induced by polarisation filtering in a fibre laser
,”
Quantum Electron.
43
(
6
),
526
530
(
2013
).
187.
Z.
Gong
 et al., “
Observation of stable, polarization-locked, vector bound states of solitons from a carbon-nanotube mode-locked fiber laser
,” in
Proceedings of 2013 Ieee Photonics Conference (Ipc)
(
2013
), pp.
386
387
.
188.
Z. C.
Luo
 et al., “
Vector dissipative soliton resonance in a fiber laser
,”
Opt. Express
21
(
8
),
10199
10204
(
2013
).
189.
V.
Tsatourian
 et al., “
Polarisation dynamics of vector soliton molecules in mode locked fibre laser
,”
Sci. Rep.
3
,
3154
(
2013
).
190.
X. Z.
Yuan
 et al., “
Experimental observation of vector solitons in a highly birefringent cavity of ytterbium-doped fiber laser
,”
Opt. Express
21
(
20
),
23866
23872
(
2013
).
191.
T.
Chen
 et al., “
Polarization-locked vector solitons in a mode-locked fiber laser using polarization-sensitive few-layer graphene deposited D-shaped fiber saturable absorber
,”
J. Opt. Soc. Am. B
31
(
6
),
1377
1382
(
2014
).
192.
T.
Habruseva
 et al., “
Vector solitons in harmonic mode-locked erbium-doped fiber lasers
,” in
Proceedings of Nonlinear Optics and Its Applications Viii; and Quantum Optics Iii
(
2014
), p.
9136
.
193.
Q. Y.
Ning
 et al., “
Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser
,”
Opt. Express
22
(
10
),
11900
11911
(
2014
).
194.
S. V.
Sergeyev
, “
Fast and slowly evolving vector solitons in mode-locked fibre lasers
,”
Philos. Trans. R. Soc., A
372
(
2027
),
20140006
(
2014
).
195.
S. V.
Sergeyev
 et al., “
Vector solitons in mode locked fibre lasers
,” in
Proceedings of 16th International Conference on Transparent Optical Networks (Icton)
(
2014
).
196.
S. M.
Wang
 et al., “
Dissipative vector soliton in a dispersion-managed fiber laser with normal dispersion
,”
Appl. Opt.
53
(
35
),
8216
8221
(
2014
).
197.
Y.
Wang
 et al., “
Vector soliton generation in a Tm fiber laser
,”
IEEE Photonics Technol. Lett.
26
(
8
),
769
772
(
2014
).
198.
N.
Zhao
 et al., “
Multiple vector solitons in an ytterbium-doped fiber laser based on evanescent field interaction with graphene saturable absorber
,”
in Proceedings of Opto-Electronics and Communications Conference (Oecc)
(
2015
).
199.
X. X.
Jin
 et al., “
Manipulation of group-velocity-locked vector solitons from fiber lasers
,”
IEEE Photonics J.
8
(
2
),
1501206
(
2016
).
200.
Y. Y.
Luo
 et al., “
Group velocity locked vector dissipative solitons in a high repetition rate fiber laser
,”
Opt. Express
24
(
16
),
18718
18726
(
2016
).
201.
G. D.
Shao
 et al., “
Vector gain-guided dissipative solitons in a net normal dispersive fiber laser
,”
IEEE Photonics Technol. Lett.
28
(
9
),
975
978
(
2016
).
202.
G. D.
Shao
 et al., “
Temporal vector cavity solitons in a net anomalous dispersion fiber laser
,”
Laser Phys. Lett.
13
(
2
),
025103
(
2016
).
203.
G. D.
Shao
 et al., “
Black-white vector solitons in a fiber ring laser
,” in Proceedings of
2016 Conference on Lasers and Electro-Optics (Cleo)
(
2016
).
204.
P.
Wang
,
C. Y.
Bao
, and
C. X.
Yang
, “
Vector solitons in a mode-locked Tm-doped fiber laser
,” in Proceedings of
2016 Conference on Lasers and Electro-Optics (Cleo)
(
2016
).
205.
Z. C.
Wu
 et al., “
Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton
,”
Sci. Rep.
6
,
34844
(
2016
).
206.
Z. C.
Wu
 et al., “
Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation
,”
Opt. Express
24
(
16
),
18764
18771
(
2016
).
207.
A. E.
Akosman
and
M. Y.
Sander
, “
Frequency-halved orthogonally polarized vector soliton states from a single fiber laser source
,” in
Proceedings of 2017 Conference on Lasers and Electro-Optics (Cleo)
(
2017
).
208.
A. E.
Akosman
 et al., “
Vector solitons in harmonically mode-locked Tm/Ho doped fiber laser
,” in
Proceedings of 2017 Conference on Lasers and Electro-Optics (Cleo)
(
2017
).
209.
Y. Q.
Du
and
X. W.
Shu
, “
Molecular and vectorial properties of the vector soliton molecules in anomalous-dispersion fiber lasers
,”
Opt. Express
25
(
23
),
28035
28052
(
2017
).
210.
Y. Q.
Du
,
X. W.
Shu
, and
P. Y.
Cheng
, “
Numerical simulations of fast-axis instability of vector solitons in mode-locked fiber lasers
,”
Opt. Express
25
(
2
),
1131
1141
(
2017
).
211.
Y. Q.
Du
,
X. W.
Shu
, and
P. Y.
Cheng
, “
Vector solitons in mode-locked fiber lasers by fast-axis instability
,” in
Proceedings of 2017 Conference on Lasers and Electro-Optics Pacific Rim (Cleo-Pr)
(
2017
).
212.
M. M.
Han
and
S. M.
Zhang
, “
Polarization domains and polarization locked vector solitons in a fiber laser
,”
IEEE Photonics Technol. Lett.
29
(
24
),
2230
2233
(
2017
).
213.
M.
Liu
 et al., “
Dynamic trapping of a polarization rotation vector soliton in a fiber laser
,”
Opt. Lett.
42
(
2
),
330
333
(
2017
).
214.
Y. Y.
Luo
 et al., “
Group-velocity-locked vector soliton molecules in fiber lasers
,”
Sci. Rep.
7
,
2369
(
2017
).
215.
S. M.
Zhang
 et al., “
Coexistence of polarization domains and polarization vector solitons in fiber lasers
,” in
Proceedings of 16th International Conference on Optical Communications & Networks (Icocn 2017)
(
2017
).
216.
A. E.
Akosman
 et al., “
Polarization rotation dynamics in harmonically mode-locked vector soliton fiber lasers
,”
IEEE J. Sel. Top. Quantum Electron.
24
(
3
),
1101107
(
2018
).
217.
X. L.
Fan
 et al., “
Generation of polarization-locked vector solitons in mode-locked thulium fiber laser
,”
IEEE Photonics J.
10
(
1
),
1500308
(
2018
).
218.
D. J.
Li
 et al., “
Internal polarization dynamics of vector dissipative-soliton-resonance pulses in normal dispersion fiber lasers
,”
Opt. Lett.
43
(
6
),
1222
1225
(
2018
).
219.
Y. X.
Yan
 et al., “
Wavelength tunable L band polarization-locked vector soliton fiber laser based on SWCNT-SA and CFBG
,”
Opt. Commun.
412
,
55
59
(
2018
).
220.
D. J.
Kaup
,
B. A.
Malomed
, and
R. S.
Tasgal
, “
Internal dynamics of a vector soliton in a nonlinear-optical fiber
,”
Phys. Rev. E
48
(
4
),
3049
3053
(
1993
).
221.
H.
Zhang
 et al., “
Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber laser
,”
Opt. Lett.
33
(
20
),
2317
2319
(
2008
).
222.
S.
Cundiff
,
B.
Collings
, and
W.
Knox
, “
Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser
,”
Opt. Express
1
(
1
),
12
21
(
1997
).
223.
S. T.
Cundiff
 et al., “
Observation of polarization-locked vector solitons in an optical fiber
,”
Phys. Rev. Lett.
82
(
20
),
3988
3991
(
1999
).
224.
S. T.
Cundiff
,
B. C.
Collings
, and
K.
Bergman
, “
Polarization locked vector solitons and axis instability in optical fiber
,”
Chaos
10
(
3
),
613
624
(
2000
).
225.
V. V.
Afanasjev
, “
Soliton polarization rotation in fiber lasers
,”
Opt. Lett.
20
(
3
),
270
272
(
1995
).
226.
S. V.
Sergeyev
 et al., “
Vector solitons with locked and precessing states of polarization
,”
Opt. Express
20
(
24
),
27434
27440
(
2012
).
227.
M. N.
Islam
,
C. D.
Poole
, and
J. P.
Gordon
, “
Soliton trapping in birefringent optical fibers
,”
Opt. Lett.
14
(
18
),
1011
1013
(
1989
).
228.
X. X.
Jin
 et al., “
Generation of high-order group-velocity-locked vector solitons
,”
IEEE Photonics J.
7
(
5
),
7102206
(
2015
).
229.
S. N.
Zhu
 et al., “
Evidence of pseudo-high-order group-velocity-locked vector dissipative solitons
,” in
Proceedings of Ieee Photonics Conference (Ipc)
(
2016
), pp.
172
173
.
230.
X.
Wang
 et al., “
Decomposition of group-velocity-locked-vector-dissipative solitons and formation of the high-order soliton structure by the product of their recombination
,”
Appl. Opt.
57
(
4
),
746
751
(
2018
).
231.
S. N.
Zhu
 et al., “
Manipulation of group-velocity-locked vector dissipative solitons and properties of the generated high-order vector soliton structure
,”
Appl. Opt.
57
(
9
),
2064
2068
(
2018
).
232.
D. N.
Christodoulides
, “
Black and white vector solitons in weakly birefringent optical fibers
,”
Phys. Lett. A
132
(
8–9
),
451
452
(
1988
).
233.
Y. C.
Meng
 et al., “
Bright-dark soliton pairs emission of a fiber laser
,” in
Proceedings of Passive Components and Fiber-Based Devices Viii
(
2011
), p.
8307
.
234.
Y. C.
Meng
 et al., “
Bright-dark soliton pairs in a self-mode locking fiber laser
,”
Opt. Eng.
51
(
6
),
064302
(
2012
).
235.
Y. C.
Meng
 et al., “
Bright-dark soliton pairs emission of a fiber laser
,” in
Proceedings of 2011 Asia Communications and Photonics Conference and Exhibition (Acp)
(
2012
).
236.
Q. Y.
Ning
 et al., “
Bright-dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser
,”
IEEE Photonics J.
4
(
5
),
1647
(
2012
).
237.
H. Y.
Wang
 et al., “
Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser
,”
Laser Phys.
22
(
1
),
282
285
(
2012
).
238.
L. R.
Wang
, “
Coexistence and evolution of bright pulses and dark solitons in a fiber laser
,”
Opt. Commun.
297
,
129
132
(
2013
).
239.
J.
Gao
 et al., “
Bright-dark pair in passively mode-locked fiber laser based on graphene
,”
Laser Phys.
24
(
8
),
085104
(
2014
).
240.
R. Y.
Lin
 et al., “
Bright and dark square pulses generated from a graphene-oxide mode-locked ytterbium-doped fiber laser
,”
IEEE Photonics J.
6
(
3
),
1500908
(
2014
).
241.
S. S.
Huang
 et al., “
Observation of multipulse bunches in a graphene oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion
,”
Appl. Phys. B: Lasers Opt.
116
(
4
),
939
946
(
2014
).
242.
B.
Guo
 et al., “
Observation of bright-dark soliton pair in a fiber laser with topological insulator
,”
IEEE Photonics Technol. Lett.
27
(
7
),
701
704
(
2015
).
243.
Z. X.
Zhang
 et al., “
Orthogonally polarized bright-dark pulse pair generation in mode-locked fiber laser with a large-angle tilted fiber grating
,”
Appl. Phys. B: Lasers Opt.
122
(
6
),
161
(
2016
).
244.
R. W.
Zhao
 et al., “
Multi-wavelength bright-dark pulse pair fiber laser based on rhenium disulfide
,”
Opt. Express
26
(
5
),
5819
5826
(
2018
).
245.
Y. S.
Kivshar
and
S. K.
Turitsyn
, “
Vector dark solitons
,”
Opt. Lett.
18
(
5
),
337
339
(
1993
).
246.
H.
Zhang
 et al., “
Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers
,”
Phys. Rev. B
80
(
5
),
052302
(
2009
).
247.
P.
Grelu
and
N.
Akhmediev
, “
Dissipative solitons for mode-locked lasers
,”
Nat. Photonics
6
(
2
),
84
92
(
2012
).
248.
M.
Mirzazadeh
 et al., “
Optical solitons with complex Ginzburg-Landau equation
,”
Nonlinear Dyn.
85
(
3
),
1979
2016
(
2016
).
249.
N. R.
Pereira
and
L.
Stenflo
, “
Nonlinear Schrodinger equation including growth and damping
,”
Phys. Fluids
20
(
10
),
1733
1734
(
1977
).
250.
J. G.
Liu
,
Y. Z.
Li
, and
B.
Tian
, “
Soliton-like solutions for the modified variable-coefficient Ginzburg-Landau equation
,”
Commun. Nonlinear Sci. Numer. Simul.
14
(
4
),
1214
1226
(
2009
).
251.
A.
Chong
 et al., “
All-normal-dispersion femtosecond fiber laser
,”
Opt. Express
14
(
21
),
10095
10100
(
2006
).
252.
L. M.
Zhao
 et al., “
Gain-guided solitons in dispersion-managed fiber lasers with large net cavity dispersion
,”
Opt. Lett.
31
(
20
),
2957
2959
(
2006
).
253.
L. M.
Zhao
 et al., “
Gain-guided and dispersion-managed soliton fiber lasers
,” in Proceedings of
Tencon 2006 – 2006 Ieee Region 10 Conference
(
2006
), Vol.
1–4
, p.
66
-+.
254.
L. M.
Zhao
,
D. Y.
Tang
, and
J.
Wu
, “
Gain-guided soliton in a positive group-dispersion fiber laser
,”
Opt. Lett.
31
(
12
),
1788
1790
(
2006
).
255.
H. H.
Lin
 et al., “
Gain-guided solitons in positive dispersion lasers
,”
Acta Phys. Sin.
57
(
9
),
5646
5650
(
2008
).
256.
C.
Lecaplain
,
B.
Ortac
, and
A.
Hideur
, “
High-energy femtosecond pulses from a dissipative soliton fiber laser
,”
Opt. Lett.
34
(
23
),
3731
3733
(
2009
).
257.
P.
Grelu
 et al., “
Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators
,”
J. Opt. Soc. Am. B
27
(
11
),
2336
2341
(
2010
).
258.
L. R.
Wang
,
X. M.
Liu
, and
Y. K.
Gong
, “
Experimental research on high-energy dissipative solitons in an erbium-doped fiber laser
,”
Acta Phys. Sin.
59
(
9
),
6200
6204
(
2010
).
259.
K.
Jiang
 et al., “
High-energy dissipative soliton with MHz repetition rate from an all-fiber passively mode-locked laser
,”
Opt. Commun.
285
(
9
),
2422
2425
(
2012
).
260.
C. M.
Ouyang
,
P.
Shum
, and
K.
Wu
, “
High pulse energy all-fiber F-P cavity dissipative soliton laser
,”
IEEE Photonics Technol. Lett.
25
(
3
),
303
305
(
2013
).
261.
C.
Xie
 et al., “
High energy dissipative soliton mode-locked fiber oscillator based on a multipass cell
,”
Acta Phys. Sin.
62
(
5
),
054203
(
2013
).
262.
J. H.
Yang
 et al., “
High-energy rectangular pulse dissipative soliton generation in a long-cavity sigma-shaped configuration mode-locked fiber laser
,”
Chin. Phys. Lett.
31
(
2
),
024208
(
2014
).
263.
C. Y.
Huang
 et al., “
Developing high energy dissipative soliton fiber lasers at 2 micron
,”
Sci. Rep.
5
,
13680
(
2015
).
264.
M.
Tang
 et al., “
High-energy dissipative solitons generation from a large normal dispersion Er-fiber laser
,”
Opt. Lett.
40
(
7
),
1414
1417
(
2015
).
265.
N.
Yang
,
Y. L.
Tang
, and
J. Q.
Xu
, “
High-energy harmonic mode-locked 2 mu m dissipative soliton fiber lasers
,”
Laser Phys. Lett.
12
(
8
),
085102
(
2015
).
266.
H. X.
Zhang
 et al., “
Optimal design of higher energy dissipative-soliton fiber lasers
,”
Opt. Commun.
335
,
212
217
(
2015
).
267.
R.
Becheker
 et al., “
High-energy dissipative soliton-driven fiber optical parametric oscillator emitting at 1.7 mu m
,”
Laser Phys. Lett.
15
(
11
),
115103
(
2018
).
268.
M. L. Y.
Francisco
,
J. H.
Lee
, and
O. K.
Pashaev
, “
Dissipative hierarchies and resonance solitons for KP-II and MKP-II
,”
Math. Comp. Simul.
74
(
4–5
),
323
332
(
2007
).
269.
W.
Chang
 et al., “
Dissipative soliton resonances in laser models with parameter management
,”
J. Opt. Soc. Am. B
25
(
12
),
1972
1977
(
2008
).
270.
W.
Chang
 et al., “
Dissipative soliton resonances
,”
Phys. Rev. A
78
(
2
),
023830
(
2008
).
271.
A. S.
Kiselev
,
A. S.
Kiselev
, and
N. N.
Rozanov
, “
Dissipative discrete spatial optical solitons in a system of coupled optical fibers with the Kerr and resonance nonlinearities
,”
Opt. Spectrosc.
105
(
4
),
547
556
(
2008
).
272.
W.
Chang
 et al., “
Dissipative soliton resonances in the anomalous dispersion regime
,”
Phys. Rev. A
79
(
3
),
033840
(
2009
).
273.
X.
Wu
 et al., “
Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser
,”
Opt. Express
17
(
7
),
5580
5584
(
2009
).
274.
E.
Ding
,
P.
Grelu
, and
J. N.
Kutz
, “
Dissipative soliton resonance in a passively mode-locked fiber laser
,”
Opt. Lett.
36
(
7
),
1146
1148
(
2011
).
275.
L. N.
Duan
 et al., “
Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser
,”
Opt. Express
20
(
1
),
265
270
(
2012
).
276.
Z. C.
Luo
 et al., “
Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser
,”
Opt. Lett.
37
(
22
),
4777
4779
(
2012
).
277.
Z. C.
Cheng
 et al., “
Dissipative soliton resonance in an all-normal-dispersion graphene oxide mode-locked Yb-doped fiber laser
,” in Proceedings of
2013 Conference on Lasers and Electro-Optics (Cleo)
(
2013
).
278.
A.
Komarov
 et al., “
Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions
,”
Phys. Rev. A
87
(
2
),
023838
(
2013
).
279.
L.
Liu
 et al., “
Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition
,”
Opt. Express
21
(
22
),
27087
27092
(
2013
).
280.
Z. C.
Luo
 et al., “
Dissipative soliton resonance in an anomalous-dispersion figure-eight fiber laser
,” in
Proceedings of 2013 Conference on Lasers and Electro-Optics (Cleo)
(
2013
).
281.
S. K.
Wang
 et al., “
Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser
,”
Opt. Express
21
(
2
),
2402
2407
(
2013
).
282.
Z. W.
Xu
and
Z. X.
Zhang
, “
Diverse output states from an all-normal dispersion ytterbium-doped fiber laser: Q-switch, dissipative soliton resonance, and noise-like pulse
,”
Opt. Laser Technol.
48
,
67
71
(
2013
).
283.
J. H.
Yang
 et al., “
Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser
,”
IEEE Photonics J.
5
(
3
),
1500806
(
2013
).
284.
H. Q.
Lin
 et al., “
Dissipative soliton resonance in an all-normal-dispersion Yb-doped figure-eight fibre laser with tunable output
,”
Laser Phys. Lett.
11
(
8
),
085102
(
2014
).
285.
N. A.
Veretenov
 et al., “
Modulational instability, switching waves, bistability and dissipative solitons at resonance excitation of molecular J-aggregates
,” in
Proceedings of 2014 International Conference Laser Optics
(
2014
).
286.
Z. C.
Cheng
,
H. H.
Li
, and
P.
Wang
, “
Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers
,”
Opt. Express
23
(
5
),
5972
5981
(
2015
).
287.
K.
Krzempek
, “
Dissipative soliton resonances in all-fiber Er-Yb double clad figure-8 laser
,”
Opt. Express
23
(
24
),
30651
30656
(
2015
).
288.
D. J.
Li
 et al., “
Mechanism of dissipative-soliton-resonance generation in passively mode-locked all-normal-dispersion fiber lasers
,”
J. Lightwave Technol.
33
(
18
),
3781
3787
(
2015
).
289.
W.
Lin
 et al., “
Analytical identification of soliton dynamics in normal-dispersion passively mode-locked fiber lasers: From dissipative soliton to dissipative soliton resonance
,”
Opt. Express
23
(
11
),
14860
14875
(
2015
).
290.
Y.
Xu
 et al., “
Dissipative soliton resonance in a wavelength-tunable thulium-doped fiber laser with net-normal dispersion
,”
IEEE Photonics J.
7
(
3
),
1502007
(
2015
).
291.
I.
Armas-Rivera
 et al., “
Dissipative soliton resonance in a full polarization-maintaining fiber ring laser at different values of dispersion
,”
Opt. Express
24
(
9
),
9966
9974
(
2016
).
292.
K.
Krzempek
and
K.
Abramski
, “
Dissipative soliton resonance mode-locked double clad Er:Yb laser at different values of anomalous dispersion
,”
Opt. Express
24
(
20
),
22379
22386
(
2016
).
293.
K.
Krzempek
,
J.
Sotor
, and
K.
Abramski
, “
Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser
,”
Opt. Lett.
41
(
21
),
4995
4998
(
2016
).
294.
J. S.
Lee
,
J. H.
Koo
, and
J. H.
Lee
, “
A pulse-width-tunable, mode-locked fiber laser based on dissipative soliton resonance using a bulk-structured Bi2Te3 topological insulator
,”
Opt. Eng.
55
(
8
),
081309
(
2016
).
295.
D. J.
Li
 et al., “
Compression of dissipative-soliton-resonance pulses in a mode-locked fiber laser with a nonlinear optical loop mirror
,” in
Proceedings of 2016 Conference on Lasers and Electro-Optics (Cleo)
(
2016
).
296.
D. J.
Li
 et al., “
Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers
,”
Sci. Rep.
6
,
23631
(
2016
).
297.
G.
Semaan
 et al., “
10 mu J dissipative soliton resonance square pulse in a dual amplifier figure-of-eight double-clad Er: Yb mode-locked fiber laser
,”
Opt. Lett.
41
(
20
),
4767
4770
(
2016
).
298.
S. S.
Tan
 et al., “
Dissipative soliton resonance in thulium-doped fiber laser and its application for microscopy
,” in Proceedings of
2016 Conference on Lasers and Electro-Optics (Cleo)
(
2016
).
299.
Z. K.
Wang
 et al., “
All fiber tunable- or dual-wavelength Yb-doped fiber laser covering from dissipative soliton to dissipative soliton resonance
,”
Chin. Opt. Lett.
14
(
4
),
041401
(
2016
).
300.
B. K.
Yang
 et al., “
Dissipative soliton resonance pulse generation from an all-fiber mode-locked dumbbell-shaped fiber laser
,”
in Proceedings of 15th International Conference on Optical Communications and Networks (Icocn)
(
2016
).
301.
J. Q.
Zhao
 et al., “
100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system
,”
Opt. Express
24
(
11
),
2072
2081
(
2016
).
302.
F.
Ben Braham
 et al., “
Experimental optimization of dissipative soliton resonance square pulses in all anomalous passively mode-locked fiber laser
,”
J. Opt.
19
(
10
),
105501
(
2017
).
303.
F.
Ben Braham
 et al., “
Exhaustive study of dissipative soliton resonance in a dual amplifier passively mode-locked fiber laser
,” in
Proceedings of 19th International Conference on Transparent Optical Networks (Icton)
(
2017
).
304.
J. H.
Cai
,
S. P.
Chen
, and
J.
Hou
, “
1.1-kW peak-power dissipative soliton resonance in a mode-locked Yb-fiber laser
,”
IEEE Photonics Technol. Lett.
29
(
24
),
2191
2194
(
2017
).
305.
S.
Das Chowdhury
 et al., “
High repetition rate gain-switched 1.94 mu m fiber laser pumped by 1.56 mu m dissipative soliton resonance fiber laser
,”
Opt. Lett.
42
(
13
),
2471
2474
(
2017
).
306.
Z. S.
Deng
 et al., “
Switchable generation of rectangular noise-like pulse and dissipative soliton resonance in a fiber laser
,”
Opt. Lett.
42
(
21
),
4517
4520
(
2017
).
307.
Z. Y.
Dou
 et al., “
The generation of dissipative soliton resonance from dumbbell-shaped Er-doped fiber laser
,”
in Proceedings of 16th International Conference on Optical Communications & Networks (Icocn 2017)
(
2017
).
308.
T. J.
Du
 et al., “
1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser
,”
Opt. Lett.
42
(
3
),
462
465
(
2017
).
309.
W. X.
Du
 et al., “
Simulation of dissipative-soliton-resonance generation in a passively mode-locked Yb-doped fiber laser
,” in
Proceedings of Aopc 2017: Laser Components, Systems, and Applications
(
2017
), p.
10457
.
310.
A.
Ferrando
, “
Nonlinear plasmonic amplification via dissipative soliton-plasmon resonances
,”
Phys. Rev. A
95
(
1
),
013816
(
2017
).
311.
S.
Kharitonov
and
C. S.
Bres
, “
All-fiber dissipative soliton resonance mode-locked Figure-9 thulium-doped fiber laser
,”
in Proceedings of Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (Cleo/Europe-Eqec)
(
2017
).
312.
K.
Krzempek
and
K.
Abramski
, “
6.5 mu J pulses from a compact dissipative soliton resonance mode-locked erbium-ytterbium double clad (DC) laser
,”
Laser Phys. Lett.
14
(
1
),
015101
(
2017
).
313.
K.
Krzempek
,
D.
Tomaszewska
, and
K. M.
Abramski
, “
Dissipative soliton resonance mode-locked all-polarization-maintaining double clad Er:Yb fiber laser
,”
Opt. Express
25
(
21
),
24853
24860
(
2017
).
314.
J. L.
Zheng
 et al., “
Black phosphorus based all-optical-signal-processing: Toward high performances and enhanced stability
,”
ACS Photonics
4
(
6
),
1466
1476
(
2017
).
315.
Y. J.
Lyu
 et al., “
Harmonic dissipative soliton resonance pulses in a fiber ring laser at different values of anomalous dispersion
,”
Photonics Res.
5
(
6
),
612
616
(
2017
).
316.
Y. J.
Lyu
 et al., “
Multipulse dynamics under dissipative soliton resonance conditions
,”
Opt. Express
25
(
12
),
13286
13295
(
2017
).
317.
A.
Niang
 et al., “
Dynamics of dissipative soliton resonance square pulses in fiber lasers
,” in
Proceedings of 19th International Conference on Transparent Optical Networks (Icton)
(
2017
).
318.
M.
Salhi
 et al., “
Route to high energy dissipative soliton resonance pulse in a dual amplifier figure-of-eight fiber laser
,” in
Proceedings of Nonlinear Optics and Applications X
(
2017
), p.
10228
.
319.
G.
Semaan
 et al., “
Harmonic dissipative soliton resonance square pulses in an anomalous dispersion passively mode-locked fiber ring laser
,”
Laser Phys. Lett.
14
(
5
),
055401
(
2017
).
320.
P.
Wang
 et al., “
Pulse dynamics of dual-wavelength dissipative soliton resonances and domain wall solitons in a Tm fiber laser with fiber-based Lyot filter
,”
Opt. Express
25
(
24
),
30708
30719
(
2017
).
321.
Z.
Xu
 et al., “
Ultra-long duration and ultra-high duty cycle dissipative soliton resonance in a mode-locked thulium-doped fiber laser
,” in
Proceedings of Aopc 2017: Laser Components, Systems, and Applications
(
2017
), p.
10457
.
322.
G. K.
Zhao
 et al., “
Dissipative soliton resonance in bismuth-doped fiber laser
,”
Opt. Express
25
(
17
),
20923
20931
(
2017
).
323.
J. Q.
Zhao
 et al., “
1.04 km ultra-long cladding-pumped thulium-doped fiber laser with large energy noise-like-toped dissipative soliton resonances
,” in
Proceedings of 2017 Conference on Lasers and Electro-Optics Pacific Rim (Cleo-Pr)
(
2017
).
324.
T. J.
Du
 et al., “
2 mu m high-power dissipative soliton resonance in a compact sigma-shaped Tm-doped double-clad fiber laser
,”
Appl. Phys. Express
11
(
5
),
052701
(
2018
).
325.
L.
Mei
 et al., “
Width and amplitude tunable square-wave pulse in dual-pump passively mode-locked fiber laser
,”
Opt. Lett.
39
(
11
),
3235
3237
(
2014
).
326.
M.
Salhi
 et al., “
Broadly peak power and pulse width tunable dissipative soliton resonance generation in figure of eight fiber laser
,”
Rom. Rep. Phys.
70
(
1
),
402
(
2018
).
327.
N.
Wang
 et al., “
Ultraviolet-enhanced supercontinuum generation with a mode-locked Yb-doped fiber laser operating in dissipative-soliton-resonance region
,”
Opt. Express
26
(
2
),
1689
1696
(
2018
).
328.
X. H.
Li
 et al., “
cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime
,”
Opt. Lett.
35
(
19
),
3249
3251
(
2010
).
329.
J. Q.
Zhao
 et al., “
Dissipative soliton resonances in a mode-locked holmium-doped fiber laser
,”
IEEE Photonics Technol. Lett.
30
(
19
),
1699
1702
(
2018
).
330.
B. A.
Malomed
and
A. A.
Nepomnyashchy
, “
Kinks and solitons in the generalized Ginzburg-Landau equation
,”
Phys. Rev. A
42
(
10
),
6009
6014
(
1990
).
331.
E. A.
Kuznetsov
, “
Solitons in parametrically unstable plasma
,”
Dokl. Akad. Nauk SSSR
236
(
3
),
575
577
(
1977
).
332.
Y. C.
Ma
, “
Perturbed plane-wave solutions of the cubic Schrodinger equation
,”
Stud. Appl. Math.
60
(
1
),
43
58
(
1979
).
333.
N. N.
Akhmediev
,
V. M.
Eleonskii
, and
N. E.
Kulagin
, “
Exact 1st-order solutions of the nonlinear Schrodinger-equation
,”
Theor. Math. Phys.
72
(
2
),
809
818
(
1987
).
334.
B. A.
Malomed
,
N. N.
Rosanov
, and
S. V.
Fedorov
, “
Dynamics of nonlinear Schrodinger breathers in a potential trap
,”
Phys. Rev. E
97
(
5
),
052204
(
2018
).
335.
K.
Tamura
 et al., “
77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser
,”
Opt. Lett.
18
(
13
),
1080
1082
(
1993
).
336.
L. M.
Zhao
 et al., “
Multi-pulse dispersion-managed solitons in a fiber laser at near zero dispersion
,” in
Proceedings of 2007 Pacific Rim Conference on Lasers and Electro-Optics
(
2007
), Vol.
1–4
, p.
790
-+.
337.
L. M.
Zhao
 et al., “
Period-doubling of dispersion-managed solitons in an erbium-doped fiber laser at around zero dispersion
,”
Opt. Commun.
278
(
2
),
428
433
(
2007
).
338.
M. J.
Ablowitz
,
T. P.
Horikis
, and
B.
Ilan
, “
Solitons in dispersion-managed mode-locked lasers
,”
Phys. Rev. A
77
(
3
),
033814
(
2008
).
339.
A.
Chong
,
W. H.
Renninger
, and
F. W.
Wise
, “
Observation of antisymmetric dispersion-managed solitons in a mode-locked laser
,”
Opt. Lett.
33
(
15
),
1717
1719
(
2008
).
340.
L. M.
Zhao
 et al., “
Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion
,”
Opt. Commun.
281
(
12
),
3324
3326
(
2008
).
341.
B. G.
Bale
,
S.
Boscolo
, and
S. K.
Turitsyn
, “
Dissipative dispersion-managed solitons in mode-locked lasers
,”
Opt. Lett.
34
(
21
),
3286
3288
(
2009
).
342.
B. G.
Bale
,
S.
Boscolo
, and
S. K.
Turitsyn
, “
Dissipative dispersion-managed solitons in mode-locked fibre lasers
,” in
Proceedings of 2009 35th European Conference on Optical Communication (Ecoc)
(
2009
).
343.
Z. C.
Luo
 et al., “
Modulation instability induced by cross-phase modulation in a dual-wavelength dispersion-managed soliton fiber ring laser
,”
Appl. Phys. B: Lasers Opt.
100
(
4
),
811
820
(
2010
).
344.
R.
Gumenyuk
 et al., “
Dissipative dispersion-managed soliton 2 mu m thulium/holmium fiber laser
,”
Opt. Lett.
36
(
5
),
609
611
(
2011
).
345.
D. J.
Lei
and
H.
Dong
, “
Generalized characteristics of soliton in dispersion-managed fiber lasers
,”
Optik
124
(
16
),
2544
2548
(
2013
).
346.
B. H.
Yue
 et al., “
Evolution of dark-dark soliton pairs in a dispersion managed erbium-doped fiber ring laser
,”
Laser Phys.
23
(
7
),
075106
(
2013
).
347.
X. X.
Han
, “
Nanotube-mode-locked fiber laser delivering dispersion-managed or dissipative solitons
,”
J. Lightwave Technol.
32
(
8
),
1472
1476
(
2014
).
348.
J. H.
Lin
 et al., “
Bound states of dispersion-managed solitons from single-mode Yb-doped fiber laser at net-normal dispersion
,”
IEEE Photonics J.
7
(
5
),
1
(
2015
).
349.
Z.
Zhang
 et al., “
All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser
,”
Appl. Phys. Lett.
107
(
24
),
241107
(
2015
).
350.
D. A.
Dvoretskiy
 et al., “
Dispersion-managed soliton generation in the hybrid mode-locked erbium-doped all-fiber ring laser
,” in
Proceedings of 2016 International Conference Laser Optics (Lo)
(
2016
).
351.
Q.
Yu
 et al., “
A versatile fiber laser delivering dispersion-managed soliton and Q-switched pulse
,” in
Proceedings of 2016 Progress in Electromagnetics Research Symposium (Piers)
(
2016
), pp.
1606
1610
.
352.
D. A.
Dvoretskiy
 et al., “
Comb peculiarities of dispersion-managed solitons in a hybrid mode-locked all-fiber ring laser
,”
IEEE Photonics Technol. Lett.
29
(
18
),
1588
1591
(
2017
).
353.
J. K.
Shi
 et al., “
Femtosecond pulse coupling dynamics between a dispersion-managed soliton oscillator and a nonlinear amplifier in an all-PCF-based laser system
,”
Optik
145
,
569
575
(
2017
).
354.
P.
Wang
,
X. S.
Xiao
, and
C. X.
Yang
, “
Quantized pulse separations of phase-locked soliton molecules in a dispersion-managed mode-locked Tm fiber laser at 2 mu m
,”
Opt. Lett.
42
(
1
),
29
32
(
2017
).
355.
L.
Hou
 et al., “
Sub-200 femtosecond dispersion-managed soliton ytterbium-doped fiber laser based on carbon nanotubes saturable absorber
,”
Opt. Express
26
(
7
),
9063
9070
(
2018
).
356.
L.
Hou
 et al., “
Stable dispersion-managed soliton molecules in Yb-doped polarization-maintaining fiber laser with chirped fiber Bragg grating
,”
Opt. Eng.
57
(
8
),
086102
(
2018
).
357.
Y. Y.
Luo
 et al., “
Dispersion-managed soliton molecules in a near zero-dispersion fiber laser
,”
IEEE Photonics J.
10
(
6
),
7105210
(
2018
).
358.
G. S.
Parmar
 et al., “
Dispersion-managed soliton fiber laser with random dispersion, multiphoton absorption and gain dispersion
,”
J. Opt.
20
(
10
),
105501
(
2018
).
359.
S. K.
Turitsyn
,
B. G.
Bale
, and
M. P.
Fedoruk
, “
Dispersion-managed solitons in fibre systems and lasers
,”
Phys. Rep.
521
(
4
),
135
203
(
2012
).
360.
S. M. J.
Kelly
 et al., “
Average soliton dynamics of a high-gain erbium fiber laser
,”
Opt. Lett.
16
(
17
),
1337
1339
(
1991
).
361.
L. M.
Zhao
 et al., “
Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser
,”
Opt. Lett.
32
(
13
),
1806
1808
(
2007
).
362.
A. B.
Grudinin
and
S.
Gray
, “
Passive harmonic mode locking in soliton fiber lasers
,”
J. Opt. Soc. Am. B
14
(
1
),
144
154
(
1997
).
363.
L. M.
Zhao
 et al., “
Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity
,”
Opt. Express
12
(
19
),
4573
4578
(
2004
).
364.
J. M.
Soto-Crespo
 et al., “
Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs
,”
Phys. Rev. E
75
(
1
),
016613
(
2007
).
365.
M.
Grapinet
and
P.
Grelu
, “
Vibrating soliton pairs in a mode-locked laser cavity
,”
Opt. Lett.
31
(
14
),
2115
2117
(
2006
).
366.
Y.
Kodama
,
M.
Romagnoli
, and
S.
Wabnitz
, “
Soliton stability and interactions in fiber lasers
,”
Electron. Lett.
28
(
21
),
1981
1983
(
1992
).
367.
B.
Zhao
 et al., “
Soliton interaction in a fiber ring laser
,”
Passive Compon. Fiber-Based Devices, Pts 1 2
5623
,
652
662
(
2005
).
368.
A.
Komarov
 et al., “
Spectral management of solitons interaction and generation regimes of fiber laser
,” in
Proceedings of the 9th International Conference on Transparent Optical Networks
(Icton,
2007
), Vol.
1
, p.
217
-+.
369.
A.
Komarov
 et al., “
Interaction of dissipative solitons under spectral and amplitude control of pulse wings in fiber lasers
,”
Proc. SPIE
6612
,
661209
(
2007
).
370.
W. C.
Chen
,
Z. C.
Luo
, and
W. C.
Xu
, “
The interaction of dual wavelength solitons in fiber laser
,”
Laser Phys. Lett.
6
(
11
),
816
820
(
2009
).
371.
N. D.
Nguyen
and
L. N.
Binh
, “
Solitonic interactions in actively multi-bound soliton fiber lasers
,” in
Proceedings of 2009 Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference
(Cleo/Qels 2009), Vol.
1–5
, pp.
2613
2614
.
372.
M.
Olivier
 et al., “
Pulse collisions in the stretched-pulse fiber laser
,”
Opt. Lett.
29
(
13
),
1461
1463
(
2004
).
373.
M.
Stratmann
,
T.
Pagel
, and
F.
Mitschke
, “
Experimental observation of temporal soliton molecules
,”
Phys. Rev. Lett.
95
(
14
),
143902
(
2005
).
374.
D. Y.
Tang
 et al., “
Observation of bound states of solitons in a passively mode-locked fiber laser
,”
Phys. Rev. A
64
(
3
),
033814
(
2001
).
375.
S.
Chouli
and
P.
Grelu
, “
Rains of solitons in a fiber laser
,”
Opt. Express
17
(
14
),
11776
11781
(
2009
).
376.
S.
Chouli
and
P.
Grelu
, “
Soliton rains in a fiber laser: An experimental study
,”
Phys. Rev. A
81
(
6
),
063829
(
2010
).
377.
S.
Chouli
and
P.
Grelu
, “
Complex self-organized multi-pulse dynamics in a fiber laser: The rain of solitons
,” in
Proceedings of 2011 Progress in Electromagnetics Research Symposium, Piers
,
Marrakesh
(
2011
), pp.
12
16
.
378.
R.
Gumenyuk
and
O. G.
Okhotnikov
, “
Temporal control of vector soliton bunching by slow/fast saturable absorption
,”
J. Opt. Soc. Am. B
29
(
1
),
1
7
(
2012
).
379.
M.
Haelterman
and
A.
Sheppard
, “
Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media
,”
Phys. Rev. E
49
(
4
),
3376
3381
(
1994
).
380.
B. A.
Malomed
, “
Bound solitons in coupled nonlinear Schrodinger-equations
,”
Phys. Rev. A
45
(
12
),
R8321
R8323
(
1992
).
381.
B. A.
Malomed
, “
Bound solitons in the nonlinear Schrodinger-Ginzburg-Landau equation
,”
Phys. Rev. A
44
(
10
),
6954
6957
(
1991
).
382.
V. V.
Afanasjev
,
B. A.
Malomed
, and
P. L.
Chu
, “
Stability of bound states of pulses in the Ginzburg-Landau equations
,”
Phys. Rev. E
56
(
5
),
6020
6025
(
1997
).
383.
N. N.
Akhmediev
,
A.
Ankiewicz
, and
J. M.
SotoCrespo
, “
Multisoliton solutions of the complex Ginzburg-Landau equation
,”
Phys. Rev. Lett.
79
(
21
),
4047
4051
(
1997
).
384.
N. N.
Akhmediev
,
A.
Ankiewicz
, and
J. M.
Soto-Crespo
, “
Stable soliton pairs in optical transmission lines and fiber lasers
,”
J. Opt. Soc. Am. B
15
(
2
),
515
523
(
1998
).
385.
Y. D.
Gong
 et al., “
Bound soliton pulses in passively mode-locked fiber laser
,”
Opt. Commun.
200
(
1–6
),
389
399
(
2001
).
386.
Y. D.
Gong
 et al., “
Mechanism of bound soliton pulse formation in a passively mode locked fiber ring laser
,”
Opt. Eng.
41
(
11
),
2778
2782
(
2002
).
387.
N. H.
Seong
and
D. Y.
Kim
, “
Experimental observation of stable bound solitons in a figure-eight fiber laser
,”
Opt. Lett.
27
(
15
),
1321
1323
(
2002
).
388.
P.
Shum
 et al., “
Closely spaced bound solitons with FWHM duration of 326fs and separation of 938 fs from a passively mode locked fiber ring laser
,” in
Proceedings of 3rd International Conference on Microwave and Millimeter Wave Technology
(
2002
), pp.
1083
1086
.
389.
D. Y.
Tang
 et al., “
Bound-soliton fiber laser
,”
Phys. Rev. A
66
(
3
),
033806
(
2002
).
390.
Y. D.
Gong
 et al., “
Bound solitons with 103-fs pulse width and 585.5-fs separation from Di-nolm figure-8 fiber laser
,”
Microwave Opt. Technol. Lett.
39
(
2
),
163
164
(
2003
).
391.
Y. D.
Gong
 et al., “
Close spaced ultra-short bound solitons from DI-NOLM figure-8 fiber laser
,”
Opt. Commun.
220
(
4–6
),
297
302
(
2003
).
392.
R. K.
Lee
,
Y.
Lai
, and
B. A.
Malomed
, “
Quantum correlations in bound-soliton pairs and trains in fiber lasers
,”
Phys. Rev. A
70
(
6
),
063817
(
2004
).
393.
B.
Zhao
 et al., “
Bound twin-pulse solitons in a fiber ring laser
,”
Phys. Rev. E
70
(
6
),
067602
(
2004
).
394.
R. K.
Lee
,
Y. C.
Lai
, and
B. A.
Malomed
, “
Photon-number fluctuation and correlation of bound soliton pairs in mode-locked fiber lasers
,”
Opt. Lett.
30
(
22
),
3084
3086
(
2005
).
395.
S. M.
Zhang
 et al., “
Bound soliton pulses in a passively mode-locked fibre ring laser
,”
Chin. Phys.
14
(
9
),
1839
1843
(
2005
).
396.
L. M.
Zhao
,
D. Y.
Tang
, and
B.
Zhao
, “
Period-doubling and quadrupling of bound solitons in a passively mode-locked fiber laser
,”
Opt. Commun.
252
(
1–3
),
167
172
(
2005
).
397.
W. W.
Hsiang
,
C. Y.
Lin
, and
Y. C.
Lai
, “
Stable new bound soliton pairs in a 10 GHz hybrid frequency modulation mode-locked Er-fiber laser
,”
Opt. Lett.
31
(
11
),
1627
1629
(
2006
).
398.
G.
Martel
 et al., “
On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser
,”
Opt. Lett.
32
(
4
),
343
345
(
2007
).
399.
L. M.
Zhao
 et al., “
Bound states of dispersion-managed solitons in a fiber laser at near zero dispersion
,”
Appl. Opt.
46
(
21
),
4768
4773
(
2007
).
400.
L. M.
Zhao
 et al., “
Bound states of gain-guided solitons in a passively mode-locked fiber laser
,”
Opt. Lett.
32
(
21
),
3191
3193
(
2007
).
401.
L. N.
Binh
 et al., “
Multi-bound solitons in a FM mode-locked fiber laser
,” in
Proceedings of 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference
(
2008
), Vol.
1–8
, p.
1737
-+.
402.
A.
Komarov
,
A.
Haboucha
, and
F.
Sanchez
, “
Ultrahigh-repetition-rate bound-soliton harmonic passive mode-locked fiber lasers
,”
Opt. Lett.
33
(
19
),
2254
2256
(
2008
).
403.
W. W.
Hsiang
 et al., “
Passive synchronization between a self-similar pulse and a bound-soliton bunch in a two-color mode-locked fiber laser
,”
Opt. Lett.
34
(
13
),
1967
1969
(
2009
).
404.
A.
Komarov
,
K.
Komarov
, and
F.
Sanchez
, “
Quantization of binding energy of structural solitons in passive mode-locked fiber lasers
,”
Phys. Rev. A
79
(
3
),
033807
(
2009
).
405.
L. M.
Zhao
,
D. Y.
Tang
, and
D.
Liu
, “
Ultrahigh-repetition-rate bound-soliton fiber laser
,”
Appl. Phys. B: Lasers Opt.
99
(
3
),
441
447
(
2010
).
406.
X.
Wu
 et al., “
Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber
,”
Opt. Commun.
284
(
14
),
3615
3618
(
2011
).
407.
X. M.
Wei
 et al., “
All fiber ring bound-soliton laser with a round trip time of 5.7 ns
,”
Opt. Commun.
285
(
24
),
5449
5451
(
2012
).
408.
J.
Du
 et al., “
Observation of bound states of solitons in an L-band passive mode-locking ring fiber laser
,”
Opt. Laser Technol.
46
,
61
66
(
2013
).
409.
Z.
Gong
 et al., “
Observation of continuously tuning of the phase-difference and separation of bound solitons from a carbon-nanotube mode-locked fiber laser
,” in
Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (Cleo-Pr)
(
2013
).
410.
L. L.
Gui
,
X. S.
Xiao
, and
C. X.
Yang
, “
Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser
,”
J. Opt. Soc. Am. B
30
(
1
),
158
164
(
2013
).
411.
R.
Gumenyuk
and
O. G.
Okhotnikov
, “
Impact of gain medium dispersion on stability of soliton bound states in fiber laser
,”
IEEE Photonics Technol. Lett.
25
(
2
),
133
135
(
2013
).
412.
C.
Mou
 et al., “
Polarization dynamics of bound state solitons in a carbon nanotubes mode locked erbium doped fiber laser
,” in
Proceedings of 2013 Conference on and International Quantum Electronics Conference Lasers and Electro-Optics Europe (Cleo Europe/Iqec)
(
2013
).
413.
X.
Zhao
 et al., “
Generation of higher-order bound solitons in a carbon nanotube mode-locked fiber laser
,” in
Proceedings of 2013 Conference on Lasers and Electro-Optics (Cleo)
(
2013
).
414.
F.
Bahloul
 et al., “
Numerical demonstration of generation of bound solitons in figure of eight microstructured fiber laser in normal dispersion regime
,”
Opt. Commun.
311
,
282
287
(
2014
).
415.
J.
Guo
, “
Bound-state solitons in a linear-cavity fiber laser mode-locked by single-walled carbon nanotubes
,”
J. Mod. Opt.
61
(
12
),
980
985
(
2014
).
416.
Y.
Liu
 et al., “
Generating ultra-long bound soliton sequences from a mode-locked fiber laser through intracavity spectral shaping
,” in
Proceedings of 2014 Conference on Lasers and Electro-Optics (Cleo)
(
2014
).
417.
A. P.
Luo
 et al., “
Observation of three bound states from a topological insulator mode-locked soliton fiber laser
,”
IEEE Photonics J.
6
(
4
),
1501508
(
2014
).
418.
C. J.
Luo
,
S. M.
Wang
, and
Y.
Lai
, “
10 GHz bound soliton mode-locking in an environmentally stable FM mode-locked Er-doped fiber soliton laser
,” in
Proceedings of 2014 Conference on Lasers and Electro-Optics (Cleo)
(
2014
).
419.
L.
Yun
and
D.
Han
, “
Bound state of dissipative solitons in a nanotube-mode-locked fiber laser
,”
Opt. Commun.
313
,
70
73
(
2014
).
420.
A.
Komarov
,
K.
Komarov
, and
F.
Sanchez
, “
Harmonic passive mode locking lasers of bound-soliton structures in fiber
,”
Opt. Commun.
354
,
158
162
(
2015
).
421.
H. H.
Liu
and
K. K.
Chow
, “
High fundamental-repetition-rate bound solitons in carbon nanotube-based fiber lasers
,”
IEEE Photonics Technol. Lett.
27
(
8
),
867
870
(
2015
).
422.
S.
Sugavanam
 et al., “
Pulse-to-pulse spectral evolution of breathing bound solitons in a mode-locked fiber laser
,” in
Proceedings of 2015 Conference on Lasers and Electro-Optics (Cleo)
(
2015
).
423.
C.
Zeng
,
Y. D.
Cui
, and
J.
Guo
, “
Observation of dual-wavelength solitons and bound states in a nanotube/microfiber mode-locking fiber laser
,”
Opt. Commun.
347
,
44
49
(
2015
).
424.
X.
He
 et al., “
Bound states of dissipative solitons in the single-mode Yb-doped fiber laser
,”
IEEE Photonics J.
8
(
2
),
1500706
(
2016
).
425.
D. A.
Korobko
 et al., “
Analysis of steady bound soliton-state attributes in hybrid mode-locked fiber laser
,”
Laser Phys. Lett.
13
(
10
),
105103
(
2016
).
426.
L.
Li
 et al., “
Bidirectional operation of 100 fs bound solitons in an ultra-compact mode-locked fiber laser
,”
Opt. Express
24
(
18
),
21020
21026
(
2016
).
427.
C. J.
Luo
and
Y. C.
Lai
, “
RIN noise reduction effect of a 10 GHz hybrid bound soliton mode-locked fiber laser
,” in
Proceedings of 2016 Ieee Photonics Conference (Ipc)
(
2016
), pp.
170
171
.
428.
C. J.
Luo
,
S. M.
Wang
, and
Y.
Lai
, “
Bound soliton fiber laser mode-locking without saturable absorption effect
,”
IEEE Photonics J.
8
(
4
),
1502609
(
2016
).
429.
Y. Y.
Luo
 et al., “
Wavelength tuning and bound states of dissipative solitons in fiber lasers
,” in
Proceedings of 2016 15th International Conference on Optical Communications and Networks (Icocn)
(
2016
).
430.
M.
Pang
 et al., “
All-optical bit storage in a fibre laser by optomechanically bound states of solitons (vol 10, pg 454, 2016)
,”
Nat. Photonics
10
(
12
),
814
814
(
2016
).
431.
M.
Pang
 et al., “
All-optical bit storage in a fibre laser by optomechanically bound states of solitons
,”
Nat. Photonics
10
(
7
),
454
(
2016
).
432.
X. Q.
Wang
and
Y.
Yao
, “
Switchable repetition-rate bound solitons passively mode-locked fiber laser
,”
Adv. Laser Processes Manuf.
10018
,
1001801
(
2016
).
433.
X.
Zou
 et al., “
Versatile mode-locked fiber laser with switchable operation states of bound solitons
,”
Appl. Opt.
55
(
16
),
4323
4327
(
2016
).
434.
M.
Chernysheva
 et al., “
Double-wall carbon nanotube hybrid mode-locker in Tm-doped fibre laser: A novel mechanism for robust bound-state solitons generation
,”
Sci. Rep.
7
,
44314
(
2017
).
435.
Y. L.
Gu
 et al., “
Observation of bound soliton in mode locked fiber laser exploiting simplified nonlinear polarization rotation
,” in
Proceedings of 2017 Conference on Lasers and Electro-Optics Pacific Rim (Cleo-Pr)
(
2017
).
436.
W. B.
He
,
M.
Pang
, and
P. S.
Russell
, “
Multi-soliton bound states in fibre laser harmonically mode-locked at GHz-rates by optoacoustic effects in PCF
,” in
Proceedings of 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (Cleo/Europe-Eqec)
(
2017
).
437.
K. X.
Li
 et al., “
Analysis of bound-soliton states in a dual-wavelength mode-locked fiber laser based on Bi2Se3
,”
IEEE Photonics J.
9
(
3
),
1400209
(
2017
).
438.
X.
Li
 et al., “
Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber
,”
IEEE Photonics Technol. Lett.
29
(
23
),
2071
2074
(
2017
).
439.
B. L.
Lu
 et al., “
Observation of bound state solitons in tunable all-polarization-maintaining Yb-doped fiber laser
,”
Laser Phys.
27
(
7
),
075102
(
2017
).
440.
H. X.
Wang
,
L.
Li
, and
L. M.
Zhao
, “
Numerical study of bound states solitons in a dispersion-managed fiber laser
,” in Proceedings of
16th International Conference on Optical Communications & Networks (Icocn 2017)
(
2017
).
441.
Y.
Zheng
 et al., “
Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser
,”
Chin. Phys. B
26
(
7
),
074212
(
2017
).
442.
H.
Liang
 et al., “
Evolution of complex pulse-bunches in a bound-state soliton fiber laser
,”
IEEE Photonics Technol. Lett.
30
(
16
),
1475
1478
(
2018
).
443.
A.
Zavyalov
 et al., “
Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers
,”
Phys. Rev. A
80
(
4
),
043829
(
2009
).
444.
A.
Zavyalov
 et al., “
Hysteresis of dissipative soliton molecules in mode-locked fiber lasers
,”
Opt. Lett.
34
(
24
),
3827
3829
(
2009
).
445.
W. C.
Chen
 et al., “
Soliton molecule in fiber laser
,”
Laser Phys.
20
(
9
),
1818
1823
(
2010
).
446.
X. M.
Liu
, “
Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers
,”
Phys. Rev. A
82
(
6
),
063834
(
2010
).
447.
B.
Ortac
 et al., “
Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser
,”
Opt. Lett.
35
(
10
),
1578
1580
(
2010
).
448.
W. C.
Chen
 et al., “
Effect of gain media characteristics on the formation of soliton molecules in fiber laser
,”
Laser Phys.
21
(
11
),
1919
1924
(
2011
).
449.
X. H.
Li
 et al., “
Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers
,”
Opt. Commun.
285
(
6
),
1356
1361
(
2012
).
450.
A.
Zaviyalov
,
P.
Grelu
, and
F.
Lederer
, “
Impact of slow gain dynamics on soliton molecules in mode-locked fiber lasers
,”
Opt. Lett.
37
(
2
),
175
177
(
2012
).
451.
J. S.
Peng
 et al., “
Generation of soliton molecules in a normal-dispersion fiber laser
,”
IEEE Photonics Technol. Lett.
25
(
10
),
948
951
(
2013
).
452.
X. H.
Li
 et al., “
Experimental observation of soliton molecule evolution in Yb-doped passively mode-locked fiber lasers
,”
Laser Phys. Lett.
11
(
7
),
075103
(
2014
).
453.
A. P.
Luo
 et al., “
Generation of a noiselike soliton molecule induced by a comb filter in a figure-eight fiber laser
,”
Appl. Phys. Express
8
(
4
),
042702
(
2015
).
454.
Y. Q.
Huang
 et al., “
Coexistence of harmonic soliton molecules and rectangular noise-like pulses in a figure-eight fiber laser
,”
Opt. Lett.
41
(
17
),
4056
4059
(
2016
).
455.
P.
Wang
 et al., “
Generation of wavelength-tunable soliton molecules in a 2-mu m ultrafast all-fiber laser based on nonlinear polarization evolution
,”
Opt. Lett.
41
(
10
),
2254
2257
(
2016
).
456.
P.
Wang
,
C. Y.
Bao
, and
C. X.
Yang
, “
Soliton molecules in a 2-mu m Thulium-doped fiber laser
,” in
Proceedings of 2016 Conference on Lasers and Electro-Optics (Cleo)
(
2016
).
457.
C. Y.
Ma
 et al., “
Dynamic evolution of the soliton molecules in an all-normal dispersion fiber laser
,”
Laser Phys.
27
(
6
),
065102
(
2017
).
458.
L. L.
Gui
 et al., “
Soliton molecules and multisoliton states in ultrafast fibre lasers: Intrinsic complexes in dissipative systems
,”
Appl. Sci.
8
(
2
),
201
(
2018
).
459.
R. H.
Li
 et al., “
Ultrawide-space and controllable soliton molecules in a narrow-linewidth mode-locked fiber laser
,”
IEEE Photonics Technol. Lett.
30
(
16
),
1423
1426
(
2018
).
460.
B. W.
Liu
 et al., “
Soliton molecules in a fiber laser based on optic evanescent field interaction with WS2
,”
Appl. Phys. B: Lasers Opt.
124
(
7
),
151
(
2018
).
461.
M.
Liu
 et al., “
Real-time visualization of soliton molecules with evolving behavior in an ultrafast fiber laser
,”
J. Opt.
20
(
3
),
034010
(
2018
).
462.
A.
Niknafs
,
H.
Rooholamininejad
, and
A.
Bahrampour
, “
Generation of two-soliton and three-soliton molecules in a circular fiber array laser
,”
Laser Phys.
28
(
4
),
045406
(
2018
).
463.
H. Q.
Qin
 et al., “
Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser
,”
Opt. Lett.
43
(
9
),
1982
1985
(
2018
).
464.
C.
Mou
 et al., “
Bound state vector solitons with locked and precessing states of polarization
,”
Opt. Express
21
(
22
),
26868
26875
(
2013
).
465.
L. L.
Gui
 et al., “
Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser
,”
IEEE Photonics Technol. Lett.
23
(
23
),
1790
1792
(
2011
).
466.
M.
Boiti
,
C.
Laddomada
, and
F.
Pempinelli
, “
Non-linear Schrodinger-equation, potential non-linear Schrodinger-equation and soliton-solutions
,”
Nuovo Cimento Soc. Ital. Fis., A
68
(
3
),
236
248
(
1982
).
467.
F. B.
Pelap
and
M. M.
Faye
, “
Modulational instability and exact solutions of the modified quintic complex Ginzburg-Landau equation
,”
J. Phys. A: Math. Gen.
37
(
5
),
1727
1735
(
2004
).
468.
V. E.
Zakharov
and
A. V.
Mikhailov
, “
Polarization domains in nonlinear optics
,”
JETP Lett.
45
(
6
),
349
352
(
1987
).
469.
M.
Haelterman
, “
Polarization domain-wall solitary waves for optical-fiber transmission
,”
Electron. Lett.
30
(
18
),
1510
1511
(
1994
).
470.
S.
Wabnitz
and
B.
Daino
, “
Polarization domains and instabilities in nonlinear-optical fibers
,”
Phys. Lett. A
182
(
2–3
),
289
293
(
1993
).
471.
S.
Pitois
,
G.
Millot
, and
S.
Wabnitz
, “
Polarization domain wall solitons with counterpropagating laser beams
,”
Phys. Rev. Lett.
81
(
7
),
1409
1412
(
1998
).
472.
B. A.
Malomed
,
A. A.
Nepomnyashchy
, and
M. I.
Tribelsky
, “
Domain boundaries in convection patterns
,”
Phys. Rev. A
42
(
12
),
7244
7263
(
1990
).
473.
M.
Haelterman
and
A. P.
Sheppard
, “
Polarization domain-walls in diffractive or dispersive Kerr media
,”
Opt. Lett.
19
(
2
),
96
98
(
1994
).
474.
B. A.
Malomed
, “
Domain-wall between traveling waves
,”
Phys. Rev. E
50
(
5
),
R3310
R3313
(
1994
).
475.
B. A.
Malomed
, “
Optical domain-walls
,”
Phys. Rev. E
50
(
2
),
1565
1571
(
1994
).
476.
P.
Kockaert
 et al., “
Isotropic polarization modulational instability and domain walls in spun fibers
,”
Appl. Phys. Lett.
75
(
19
),
2873
2875
(
1999
).
477.
H.
Zhang
 et al., “
Dual-wavelength domain wall solitons in a fiber ring laser
,”
Opt. Express
19
(
4
),
3525
3530
(
2011
).
478.
Z. B.
Lin
 et al., “
Generation of dual-wavelength domain-wall rectangular-shape pulses in HNLF-based fiber ring laser
,”
Opt. Laser Technol.
44
(
7
),
2260
2264
(
2012
).
479.
C.
Lecaplain
,
P.
Grelu
, and
S.
Wabnitz
, “
Polarization-domain-wall complexes in fiber lasers
,”
J. Opt. Soc. Am. B
30
(
1
),
211
218
(
2013
).
480.
Z. C.
Luo
 et al., “
Generation of high-energy dual-wavelength domain wall pulse with low repetition rate in an HNLF-based fiber ring laser
,”
Chin. Phys. B
23
(
6
),
064203
(
2014
).
481.
H.
Ahmad
 et al., “
Domain-wall dark pulse generation in fiber laser incorporating MoS2
,”
Appl. Phys. B: Lasers Opt.
122
(
4
),
69
(
2016
).
482.
J. M.
Liu
 et al., “
Polarization domain wall pulses in a microfiber-based topological insulator fiber laser
,”
Sci. Rep.
6
,
29128
(
2016
).
483.
D. Y.
Tang
 et al., “
Polarization domain formation and domain dynamics in a quasi-isotropic cavity fiber laser
,”
IEEE J. Sel. Top. Quantum Electron.
20
(
5
),
0901309
(
2014
).
484.
M.
Gilles
 et al., “
Polarization domain walls in optical fibres as topological bits for data transmission
,”
Nat. Photonics
11
(
2
),
102
107
(
2017
).
485.
G.
Herink
 et al., “
Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate
,”
Nat. Photonics
10
(
5
),
321
(
2016
).
486.
A.
Mahjoubfar
 et al., “
Time stretch and its applications
,”
Nat. Photonics
11
(
6
),
341
351
(
2017
).
487.
M.
Popov
and
O.
Gat
, “
Pulse growth dynamics in laser mode locking
,”
Phys. Rev. A
97
(
1
),
011801(R)
(
2018
).
488.
X. M.
Liu
,
X. K.
Yao
, and
Y. D.
Cui
, “
Real-time observation of the buildup of soliton molecules
,”
Phys. Rev. Lett.
121
(
2
),
023905
(
2018
).
489.
M. M.
Han
 et al., “
Generation of soliton bursts with flexibly controlled pulse intervals based on the dispersive Fourier-transform technique
,”
IEEE J. Sel. Top. Quantum Electron.
25
(
4
),
7500106
(
2019
).
490.
P.
Ryczkowski
 et al., “
Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser
,”
Nat. Photonics
12
(
4
),
221
(
2018
).
491.
J. S.
Peng
and
H. P.
Zeng
, “
Build-up of dissipative optical soliton molecules via diverse soliton interactions
,”
Laser Photonics Rev.
12
(
8
),
1800009
(
2018
).
492.
A.
Klein
 et al., “
Ultrafast rogue wave patterns in fiber lasers
,”
Optica
5
(
7
),
774
778
(
2018
).
You do not currently have access to this content.