The extraordinary success of graphene in various applications has led to the quest to innovate techniques for production and patterning of nanomaterials. Numerous techniques such as vapor deposition, epitaxial growth, mechanical and chemical exfoliation have been explored to achieve this goal. These new methods have enabled the synthesis of a monolayer to a few layer graphene structures, in various forms such as films, nanoribbons, and 3D nanocomposites that are dispersed in solutions, suspended or deposited on substrates. However, several challenges still exist in processing graphene for futuristic device fabrication. Thus, there is a need to review the traditional processing and synthesis techniques developed for obtaining graphene. This review will provide a solid foundation on technology development for achieving economical and high throughput synthesis of high quality graphene for scalable applications. In this review, we provide a brief discussion on the theory of graphene, discuss synthesis techniques along with conventional and recent approaches to pattern graphene structures, and conclude with an emphasis on direct patterning methods. Discussions on the properties of graphene produced using different techniques and their emerging applications will assist in selecting an appropriate methodology for achieving desired properties in graphene. This is expected to be instrumental in the development of new strategies for fabrication of futuristic graphene-based devices.

1.
R. E.
Peierls
, “
Bemerkungen über umwandlungstemperaturen
,”
Helv. Phys. Acta
7
,
81
(
1934
).
2.
L. D.
Landau
, “
Zur Theorie der phasenumwandlungen II
,”
Phys. Z. Sowjetunion
11
,
26
(
1937
).
3.
N. D.
Mermin
, “
Crystalline order in two dimensions
,”
Phys. Rev.
176
,
250
(
1968
).
4.
K. S.
Novoselov
 et al, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
(
2004
).
5.
A. K.
Geim
and
I. V.
Grigorieva
, “
Van der Waals heterostructures
,”
Nature
499
,
419
(
2013
).
6.
P. R.
Wallace
, “
The band theory of graphite
,”
Phys. Rev.
71
,
622
(
1947
).
7.
S.
Saxena
 et al, “
Investigation of structural and electronic properties of graphene oxide
,”
Appl. Phys. Lett.
99
,
13104
(
2011
).
8.
A. H.
Castro Neto
,
N. M. R.
Peres
,
K. S.
Novoselov
,
A. K.
Geim
, and
F.
Guinea
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
(
2009
).
9.
M. I.
Katsnelson
,
K. S.
Novoselov
, and
A. K.
Geim
, “
Chiral tunnelling and the Klein paradox in graphene
,”
Nat. Phys.
2
,
620
(
2006
).
10.
M. I.
Katsnelson
and
K. S.
Novoselov
, “
Graphene: New bridge between condensed matter physics and quantum electrodynamics
,”
Solid State Commun.
143
,
3
(
2007
).
11.
T. M.
Rusin
and
W.
Zawadzki
, “
Zitterbewegung of electrons in graphene in a magnetic field
,”
Phys. Rev. B
78
,
125419
(
2008
).
12.
V. V.
Cheianov
and
V. I.
Fal'ko
, “
Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene
,”
Phys. Rev. B
74
,
41403
(
2006
).
13.
S.
Cho
,
Y.-F.
Chen
, and
M. S.
Fuhrer
, “
Gate-tunable graphene spin valve
,”
Appl. Phys. Lett.
91
,
123105
(
2007
).
14.
J.
Chang
,
G.
Zhou
,
E. R.
Christensen
,
R.
Heideman
, and
J.
Chen
, “
Graphene-based sensors for detection of heavy metals in water: A review
,”
Anal. Bioanal. Chem.
406
,
3957
(
2014
).
15.
P. B.
Pawar
 et al, “
Water Purification using Graphene covered micro-porous, reusable carbon membrane
,”
MRS Adv.
1
,
1411
(
2016
).
16.
A.
Pandey
 et al, “
3D oxidized graphene frameworks: An efficient adsorbent for methylene blue
,”
J. Miner.
70
,
469
(
2018
).
17.
G.
Eda
,
H.
Emrah Unalan
,
N.
Rupesinghe
,
G. A. J.
Amaratunga
, and
M.
Chhowalla
, “
Field emission from graphene based composite thin films
,”
Appl. Phys. Lett.
93
,
233502
(
2008
).
18.
M.
Pumera
, “
Graphene in biosensing
,”
Mater. Today
14
,
308
(
2011
).
19.
R. P.
Choudhary
,
S.
Shukla
,
K.
Vaibhav
,
P. B.
Pawar
, and
S.
Sumit
, “
Optical properties of few layered graphene quantum dots
,”
Mater. Res. Express
2
,
95024
(
2015
).
20.
S.
Shukla
and
S.
Saxena
, “
Spectroscopic investigation of confinement effects on optical properties of graphene oxide
,”
Appl. Phys. Lett.
98
,
73104
(
2011
).
21.
X.
Wang
,
L.
Zhi
, and
K.
Müllen
, “
Transparent, conductive graphene electrodes for dye-sensitized solar cells
,”
Nano Lett.
8
,
323
(
2008
).
22.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
,
183
(
2007
).
23.
B.
Partoens
and
F.
Peeters
, “
From graphene to graphite: Electronic structure around the K point
,”
Phys. Rev. B
74
,
075404
(
2006
).
24.
S.
Morozov
 et al, “
Two-dimensional electron and hole gases at the surface of graphite
,”
Phys. Rev. B
72
,
201401
(
2005
).
25.
B.
Lang
, “
A LEED study of the deposition of carbon on platinum crystal surfaces
,”
Surf. Sci.
53
,
317
(
1975
).
26.
A.
Nagashima
 et al, “
Electronic structure of monolayer graphite on some transition metal carbide surfaces
,”
Surf. Sci.
287–288
,
609
(
1993
).
27.
H.
Shioyama
, “
Cleavage graphite to graphene
,”
J. Mater. Sci. Lett.
20
,
499
(
2001
).
28.
L. M.
Viculis
,
J. J.
Mack
, and
R. B.
Kaner
, “
A chemical route to carbon nanoscrolls
,”
Science
299
,
1361
(
2003
).
29.
M.
Yi
and
Z.
Shen
, “
A review on mechanical exfoliation for the scalable production of graphene
,”
J. Mater. Chem. A
3
,
11700
(
2015
).
30.
B.
Jayasena
and
S.
Subbiah
, “
A novel mechanical cleavage method for synthesizing few-layer graphenes
,”
Nanoscale Res. Lett.
6
,
95
(
2011
).
31.
M.
Lotya
 et al, “
Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions
,”
J. Am. Chem. Soc.
131
,
3611
(
2009
).
32.
Y.
Hernandez
 et al, “
High-yield production of graphene by liquid-phase exfoliation of graphite
,”
Nat. Nanotechnol.
3
,
563
(
2008
).
33.
J. N.
Coleman
, “
Liquid exfoliation of defect-free graphene
,”
Acc. Chem. Res.
46
,
14
(
2013
).
34.
X.
Wang
 et al, “
Heteroatom doped graphene materials: Syntheses, properties and applications
,”
Chem. Soc. Rev.
43
,
7067
(
2014
).
35.
A. E.
Karu
and
M.
Beer
, “
Pyrolytic formation of highly crystalline graphite films
,”
J. Appl. Phys.
37
,
2179
(
1966
).
36.
X.
Li
 et al, “
Large-area synthesis of high-quality and uniform graphene films on copper foils
,”
Science
324
,
1312
(
2009
).
37.
E. S.
Polsen
,
D. Q.
McNerny
,
B.
Viswanath
,
S. W.
Pattinson
, and
A.
John Hart
, “
High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor
,”
Sci. Rep.
5
,
10257
(
2015
).
38.
J. C.
Shelton
,
H. R.
Patil
, and
J. M.
Blakely
, “
Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition
,”
Surf. Sci.
43
,
493
(
1974
).
39.
M. A.
Capano
,
B. M.
Capano
,
D. T.
Morisette
,
A.
Salleo
,
S.
Lee
, and
M. F.
Toney
, “
High-resolution x-ray analysis of graphene grown on 4H-SiC (000 1) at low pressures
,”
J. Mater. Res.
29
,
439
(
2014
).
40.
C.
Berger
 et al, “
Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
,”
J. Phys. Chem. B
108
,
19912
(
2004
).
41.
W. S.
Hummers
and
R. E.
Offeman
, “
Preparation of graphitic oxide
,”
J. Am. Chem. Soc.
80
,
1339
(
1958
).
42.
D. C.
Marcano
 et al, “
Improved synthesis of graphene oxide
,”
ACS Nano
4
,
4806
(
2010
).
43.
S.
Park
 et al, “
Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents
,”
Nano Lett.
9
,
1593
(
2009
).
44.
L. L.
Zhang
,
R.
Zhou
, and
X. S.
Zhao
, “
Graphene-based materials as supercapacitor electrodes
,”
J. Mater. Chem.
20
,
5983
(
2010
).
45.
F.
Miao
 et al, “
Inkjet printing of electrochemically-exfoliated graphene nano-platelets
,”
Synth. Met.
220
,
318
(
2016
).
46.
A. G.
Cano-Márquez
 et al, “
Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes
,”
Nano Lett.
9
,
1527
(
2009
).
47.
L.
Jiao
,
L.
Zhang
,
X.
Wang
,
G.
Diankov
, and
H.
Dai
, “
Narrow graphene nanoribbons from carbon nanotubes
,”
Nature
458
,
877
(
2009
).
48.
D. V.
Kosynkin
 et al, “
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
,”
Nature
458
,
872
(
2009
).
49.
B.
Rethfeld
,
D. S.
Ivanov
,
M. E.
Garcia
, and
S. I.
Anisimov
, “
Modelling ultrafast laser ablation
,”
J. Phys. D: Appl. Phys.
50
,
193001
(
2017
).
50.
M.
Qian
 et al, “
Formation of graphene sheets through laser exfoliation of highly disordered pyrolytic graphite
,”
Appl. Phys. Lett.
98
,
173108
(
2011
).
51.
R.
Arul
 et al, “
The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement
,”
Carbon
99
,
423
(
2016
).
52.
S.
Kang
,
C. C.
Evans
,
S.
Shukla
,
O.
Reshef
, and
E.
Mazur
, “
Patterning and reduction of graphene oxide using femtosecond-laser irradiation
,”
Opt. Laser Technol.
103
,
340
(
2018
).
53.
Y.
Miyamoto
,
H.
Zhang
, and
D.
Tománek
, “
Photoexfoliation of graphene from graphite: An ab initio study
,”
Phys. Rev. Lett.
104
,
208302
(
2010
).
54.
W.
Zhang
 et al, “
A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach
,”
Angew. Chem., Int. Ed.
48
,
5864
(
2009
).
55.
W.
Nie
 et al, “
Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering
,”
Carbon
116
,
325
(
2017
).
56.
X.
Liu
 et al, “
Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage
,”
Nano Energy
37
,
108
(
2017
).
57.
C.
Yunfeng
 et al, “
Self-Assembly of flexible free-standing 3D porous MoS2-reduced graphene oxide structure for high-performance lithium-ion batteries
,”
Adv. Funct. Mater
27
,
1700234
(
2017
).
58.
Q.
Bao
and
K. P.
Loh
, “
Graphene photonics, plasmonics, and broadband optoelectronic devices
,”
ACS Nano
6
,
3677
(
2012
).
59.
G.
Xiong
,
C.
Meng
,
R. G.
Reifenberger
,
P. P.
Irazoqui
, and
T. S.
Fisher
, “
A review of graphene-based electrochemical microsupercapacitors
,”
Electroanalysis
26
,
30
(
2014
).
60.
S.
Santra
 et al, “
CMOS integration of inkjet-printed graphene for humidity sensing
,”
Sci. Rep.
5
,
17374
(
2015
).
61.
M. H.
Ervin
,
L. T.
Le
, and
W. Y.
Lee
, “
Inkjet-printed flexible graphene-based supercapacitor
,”
Electrochim. Acta
147
,
610
(
2014
).
62.
S.
Majee
,
C.
Liu
,
B.
Wu
,
S. L.
Zhang
, and
Z. B.
Zhang
, “
Ink-jet printed highly conductive pristine graphene patterns achieved with water-based ink and aqueous doping processing
,”
Carbon
114
,
77
(
2017
).
63.
W. S.
Chang
 et al, “
Micropatterning of reduced graphene oxide by meniscus-guided printing
,”
Carbon
123
,
364
(
2017
).
64.
E. B.
Secor
,
B. Y.
Ahn
,
T. Z.
Gao
,
J. A.
Lewis
, and
M. C.
Hersam
, “
Rapid and versatile photonic annealing of graphene inks for flexible printed electronics
,”
Adv. Mater.
27
,
6683
(
2015
).
65.
A.
Capasso
 et al, “
Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach
,”
Solid State Commun.
224
,
53
(
2015
).
66.
C.
Zhu
 et al, “
Highly compressible 3D periodic graphene aerogel microlattices
,”
Nat. Commun.
6
,
6962
(
2015
).
67.
A. E.
Jakus
 et al, “
Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications
,”
ACS Nano
9
,
4636
(
2015
).
68.
W. J.
Hyun
,
E. B.
Secor
,
M. C.
Hersam
,
C. D.
Frisbie
, and
L. F.
Francis
, “
High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics
,”
Adv. Mater.
27
,
109
(
2015
).
69.
Z.
Liu
 et al, “
Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene
,”
Adv. Mater.
28
,
2217
(
2016
).
70.
Z.-S.
Wu
,
K.
Parvez
,
X.
Feng
, and
K.
Müllen
, “
Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers
,”
J. Mater. Chem. A
2
,
8288
(
2014
).
71.
P.
Ahlberg
 et al, “
A two-in-one process for reliable graphene transistors processed with photo-lithography
,”
Appl. Phys. Lett.
107
,
203104
(
2015
).
72.
J. W.
Shin
 et al, “
Display process compatible accurate graphene patterning for OLED applications
,”
2D Materials
5
,
014003
(
2018
).
73.
R.
Shi
,
H.
Xu
,
B.
Chen
,
Z.
Zhang
, and
L.
Peng
, “
Scalable fabrication of graphene devices through photolithography
,”
Appl. Phys. Lett.
102
,
113102
(
2013
).
74.
X.
Wang
and
H.
Dai
, “
Etching and narrowing of graphene from the edges
,”
Nat. Chem.
2
,
661
(
2010
).
75.
J. W.
Suk
 et al, “
Transfer of CVD-grown monolayer graphene onto arbitrary substrates
,”
ACS Nano
5
,
6916
(
2011
).
76.
X.
Liang
 et al, “
Toward clean and crackless transfer of graphene
,”
ACS Nano
5
,
9144
(
2011
).
77.
Y.
Lee
 et al, “
Wafer-scale synthesis and transfer of monolayer graphene
,”
Nano Lett.
10
,
490
(
2010
).
78.
M. D.
Fischbein
and
M.
Drndić
, “
Electron beam nanosculpting of suspended graphene sheets
,”
Appl. Phys. Lett.
93
,
113107
(
2008
).
79.
Z.
Chen
,
Y. M.
Lin
,
M. J.
Rooks
, and
P.
Avouris
, “
Graphene nano-ribbon electronics
,”
Phys. E
40
,
228
(
2007
).
80.
L.
Tapasztó
,
G.
Dobrik
,
P.
Lambin
, and
L. P.
Biró
, “
Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography
,”
Nat. Nanotechnol.
3
,
397
(
2008
).
81.
S. A.
Boden
,
Z.
Moktadir
,
D. M.
Bagnall
,
H.
Mizuta
, and
H. N.
Rutt
, “
Focused helium ion beam milling and deposition
,”
Microelectron. Eng.
88
,
2452
(
2011
).
82.
J. F.
Doyen
 et al, “
Side-gated transport in focused-ion-beam-fabricated multilayered graphene nanoribbons
,”
Small
4
,
716
(
2008
).
83.
D.
Lucot
 et al, “
Deposition and FIB direct patterning of nanowires and nanorings into suspended sheets of graphene
,”
Microelectron. Eng.
86
,
882
(
2009
).
84.
A. N.
Abbas
 et al, “
Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography
,”
ACS Nano
8
,
1538
(
2014
).
85.
N.
Kalhor
,
S. A.
Boden
, and
H.
Mizuta
, “
Sub-10 nm patterning by focused He-ion beam milling for fabrication of downscaled graphene nano devices
,”
Microelectron. Eng.
114
,
70
(
2014
).
86.
D. C.
Bell
,
M. C.
Lemme
,
L. A.
Stern
,
J. R.
Williams
, and
C. M.
Marcus
, “
Precision cutting and patterning of graphene with helium ions
,”
Nanotechnology
20
,
455301
(
2009
).
87.
S. H.
Lee
 et al, “
Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films
,”
Angew. Chem., Int. Ed.
49
,
10084
(
2010
).
88.
D.
Yu
and
L.
Dai
, “
Self-assembled graphene/carbon nanotube hybrid films for supercapacitors
,”
J. Phys. Chem. Lett.
1
,
467
(
2010
).
89.
W.
Chen
,
S.
Li
,
C.
Chen
, and
L.
Yan
, “
Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel
,”
Adv. Mater.
23
,
5679
(
2011
).
90.
D.
Wang
 et al, “
Ternary self-assembly of ordered metal oxide - graphene nanocomposites for electrochemical energy storage
,”
ACS Nano
4
,
1587
(
2010
).
91.
R.-Z.
Li
 et al, “
High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes
,”
Energy Environ. Sci.
9
,
1458
(
2016
).
92.
Y. C.
Guan
,
Y. W.
Fang
,
G. C.
Lim
,
H. Y.
Zheng
, and
M. H.
Hong
, “
Fabrication of laser-reduced graphene oxide in liquid nitrogen environment
,”
Sci. Rep.
6
,
28913
(
2016
).
93.
E. C. P.
Smits
 et al, “
Laser induced forward transfer of graphene Laser induced forward transfer of graphene
,”
Appl. Phys. Lett.
111
,
173101
(
2017
).
94.
Y.-L.
Zhang
 et al, “
Photoreduction of graphene oxides: Methods, properties, and applications
,”
Adv. Opt. Mater.
2
,
10
(
2014
).
95.
Y.
Zhang
 et al, “
Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction
,”
Nano Today
5
,
15
(
2010
).
96.
G.
Williams
,
B.
Seger
, and
P. V.
Kamat
, “
UV-assisted photocatalytic reduction of graphene oxide
,”
ACS Nano
2
,
1487
(
2008
).
97.
D. A.
Sokolov
,
K. R.
Shepperd
, and
T. M.
Orlando
, “
Formation of graphene features from direct laser-induced reduction of graphite oxide
,”
J. Phys. Chem. Lett.
1
,
2633
(
2010
).
98.
M. F.
El-Kady
,
V.
Strong
,
S.
Dubin
, and
R. B.
Kaner
, “
Laser scribing of high-performance and flexible graphene-based electrochemical capacitors
,”
Science
335
,
1326
(
2012
).
99.
W.
Gao
 et al, “
Direct laser writing of micro-supercapacitors on hydrated graphite oxide films
,”
Nat. Nanotechnol.
6
,
496
(
2011
).
100.
R.
Mukherjee
,
A. V.
Thomas
,
A.
Krishnamurthy
, and
N.
Koratkar
, “
Photothermally reduced graphene as high-power anodes for lithium-ion Batteries
,”
ACS Nano
6
,
7867
(
2012
).
101.
D. A.
Sokolov
,
C. M.
Rouleau
,
D. B.
Geohegan
, and
T. M.
Orlando
, “
Excimer laser reduction and patterning of graphite oxide
,”
Carbon
53
,
81
(
2013
).
102.
C.
Huhu
 et al, “
Graphene fibers with predetermined deformation as moisture-triggered actuators and robots
,”
Angew. Chem. Int. Ed.
52
,
10482
(
2013
).
103.
X.
Shi
 et al, “
Femtosecond laser rapid fabrication of large-area rose-like micropatterns on free standing flexible graphene films
,”
Sci. Rep.
5
,
17557
(
2015
).
104.
V.
Strong
 et al, “
Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices
,”
ACS Nano
6
,
1395
(
2012
).
105.
H.
Fatt Teoh
,
Y.
Tao
,
E.
Soon Tok
,
G.
Wei Ho
, and
C.
Haur Sow
, “
Direct laser-enabled graphene oxide–reduced graphene oxide layered structures with micropatterning
,”
J. Appl. Phys.
112
,
64309
(
2012
).
106.
S.
Tongay
 et al, “
Drawing graphene nanoribbons on SiC by ion implantation
,”
Appl. Phys. Lett.
100
,
073501
(
2012
).
107.
M. G.
Lemaitre
 et al, “
Low-temperature, site selective graphitization of SiC via ion implantation and pulsed laser annealing
,”
Appl. Phys. Lett.
100
,
193105
(
2012
).
108.
J.
Zhao
 et al, “
Rise of silicene: A competitive 2D material
,”
Prog. Mater. Sci.
83
,
24
(
2016
).
109.
M. E.
Dávila
and
G.
Le Lay
, “
Few layer epitaxial germanene: A novel two-dimensional Dirac material
,”
Sci. Rep.
6
,
20714
(
2016
).
110.
S.
Saxena
,
R. P.
Chaudhary
, and
S.
Shukla
, “
Stanene: Atomically thick free-standing layer of 2D hexagonal tin
,”
Sci. Rep.
6
,
31073
(
2016
).
111.
R. K.
Joshi
 et al, “
Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS2 layers
,”
AIP Adv.
6
,
15315
(
2016
).
112.
F.
Matusalem
,
D. S.
Koda
,
F.
Bechstedt
,
M.
Marques
, and
L. K.
Teles
, “
Deposition of topological silicene, germanene and stanene on graphene-covered SiC substrates
,”
Sci. Rep.
7
,
15700
(
2017
).
You do not currently have access to this content.