Boron nitride nanoscrolls (BNSs) are open-ended, one-dimensional nanostructures made by the process of rolling boron nitride nanosheets into a scroll-like morphology. BNSs offer a high surface area to volume ratio and possess many unique properties (similar to carbon nanotubes, carbon nanoscrolls, and boron nitride nanotubes) such as high resistance to oxidation, chemical stability, increased lubrication, high-temperature resistance, electrical insulation, the ability to cap molecules inside and at the ends, and a wide bandgap regardless of chirality. Despite these attractive features and properties well suited for applications in biotechnology, energy storage, and electronics, the true potential of boron nitride and BNS as the next “miracle material” is yet to be fully explored. In this critical review, we assess, for the first time, various studies published on the formation and structural and dynamic characteristics of BNS; potential routes for BNS synthesis; and the toxicology of BNS. Finally, the future perspectives of BNS are discussed in view of its unique and exceptional candidacy for many (real-world) applications.

1.
K. S.
Novoselov
 et al, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5696
),
666
669
(
2004
).
2.
Z.
Gao
,
C.
Bumgardner
,
N.
Song
,
Y.
Zhang
,
J.
Li
, and
X. J. N. c
Li
, “
Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication
,”
Nat. Commun.
7
,
11586
(
2016
).
3.
K.
Choi
,
Y. T.
Lee
, and
S. J. N. T.
Im
, “
Two-dimensional van der Waals nanosheet devices for future electronics and photonics
,”
Nano Today
11
(
5
),
626
643
(
2016
).
4.
J.
Son
 et al, “
Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures
,”
Nat. Commun.
9
(
1
),
3988
(
2018
).
5.
Q.
Li
,
N.
Mahmood
,
J.
Zhu
,
Y.
Hou
, and
S. J. N. T.
Sun
, “
Graphene and its composites with nanoparticles for electrochemical energy applications
,”
Nano Today
9
(
5
),
668
683
(
2014
).
6.
C.
Chung
,
Y.-K.
Kim
,
D.
Shin
,
S.-R.
Ryoo
,
B. H.
Hong
, and
D.-H. J. A. o c r
Min
, “
Biomedical applications of graphene and graphene oxide
,”
Acc. Chem. Res.
46
(
10
),
2211
2224
(
2013
).
7.
V.
Georgakilas
 et al, “
Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications
,”
Chem. Rev.
116
(
9
),
5464
5519
(
2016
).
8.
Y.
Chen
,
C.
Tan
,
H.
Zhang
, and
L. J. C. S. R.
Wang
, “
Two-dimensional graphene analogues for biomedical applications
,”
Chem. Soc. Rev.
44
(
9
),
2681
2701
(
2015
).
9.
K.
Gong
 et al, “
Reinforcing effects of graphene oxide on portland cement paste
,”
J. Mater. Civil Eng.
27
(
2
),
A4014010
(
2014
).
10.
D. H.
Seo
 et al, “
Anti-fouling graphene-based membranes for effective water desalination
,”
Nat. Commun.
9
(
1
),
683
(
2018
).
11.
A. C.
Neto
and
K.
Novoselov
, “
New directions in science and technology: Two-dimensional crystals
,”
Rep. Prog. Phys.
74
(
8
),
082501
(
2011
).
12.
J.
Carpenter
, UK invests in graphene technology (28 June
2011
), available at https://www.bbc.com/news/science-environment-15152609.
13.
D. K.
Ghaffarzadeh
, How will graphene market change in the future? (28 June
2015
), available at https://www.printedelectronicsworld.com/articles/8655/how-will-the-graphene-market-change-in-the-future.
14.
E.
Gibney
, The super materials that could trump graphene (11 November
2015
), available at https://www.nature.com/news/the-super-materials-that-could-trump-graphene-1.17775.
15.
G.
Cassabois
,
P.
Valvin
, and
B.
Gil
, “
Hexagonal boron nitride is an indirect bandgap semiconductor
,”
Nat. Photonics
10
(
4
),
262
266
(
2016
).
16.
Y.
Wang
 et al, “
High temperature thermal management with boron nitride nanosheets
,”
Nanoscale
10
(
1
),
167
173
(
2018
).
17.
L. H.
Li
and
Y.
Chen
, “
Atomically thin boron nitride: Unique properties and applications
,”
Adv. Funct. Mater.
26
(
16
),
2594
2608
(
2016
).
18.
L. H.
Li
,
J.
Cervenka
,
K.
Watanabe
,
T.
Taniguchi
, and
Y.
Chen
, “
Strong oxidation resistance of atomically thin boron nitride nanosheets
,”
ACS Nano
8
(
2
),
1457
1462
(
2014
).
19.
Z.
Liu
 et al, “
Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride
,”
Nat. Commun.
4
,
2541
(
2013
).
20.
X.
Chen
 et al, “
Preparation and electrochemical hydrogen storage of boron nitride nanotubes
,”
J. Phys. Chem. B
109
(
23
),
11525
11529
(
2005
).
21.
A.
Tokarev
,
E.
Kjeang
,
M.
Cannon
, and
D.
Bessarabov
, “
Theoretical limit of reversible hydrogen storage capacity for pristine and oxygen-doped boron nitride
,”
Int. J. Hydrogen Energy
41
(
38
),
16984
16991
(
2016
).
22.
P.
Fu
,
J.
Wang
,
R.
Jia
,
S.
Bibi
,
R. I.
Eglitis
, and
H.-X.
Zhang
, “
Theoretical study on hydrogen storage capacity of expanded h-BN systems
,”
Comput. Mater. Sci.
139
,
335
340
(
2017
).
23.
Q.
Weng
 et al, “
Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery
,”
ACS Nano
8
(
6
),
6123
6130
(
2014
).
24.
G.
Ciofani
 et al, “
Boron nitride nanotubes: A novel vector for targeted magnetic drug delivery
,”
Curr. Nanosci.
5
(
1
),
33
38
(
2009
).
25.
X.
Li
 et al, “
Multimodal luminescent-magnetic boron nitride nanotubes@ NaGdF 4: Eu structures for cancer therapy
,”
Chem. Commun.
50
(
33
),
4371
4374
(
2014
).
26.
X.
Li
,
C.
Zhi
,
N.
Hanagata
,
M.
Yamaguchi
,
Y.
Bando
, and
D.
Golberg
, “
Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs
,”
Chem. Commun.
49
(
66
),
7337
7339
(
2013
).
27.
G.
Ciofani
,
V.
Raffa
,
A.
Menciassi
, and
A. J. N. T.
Cuschieri
, “
Boron nitride nanotubes: An innovative tool for nanomedicine
,”
Nano Today
4
(
1
),
8
10
(
2009
).
28.
J.
Li
,
R.
Dahal
,
S.
Majety
,
J.
Lin
, and
H.
Jiang
, “
Hexagonal boron nitride epitaxial layers as neutron detector materials
,”
Nucl. Instrum. Methods Phys. Res. A
654
(
1
),
417
420
(
2011
).
29.
T. H.
Ferreira
,
M. C.
Miranda
,
Z.
Rocha
,
A. S.
Leal
,
D. A.
Gomes
, and
E.
Sousa
, “
An assessment of the potential use of BNNTs for boron neutron capture therapy
,”
Nanomaterials
7
(
4
),
82
(
2017
).
30.
G.
Ciofani
,
V.
Raffa
,
A.
Menciassi
, and
A.
Cuschieri
, “
Folate functionalized boron nitride nanotubes and their selective uptake by glioblastoma multiforme cells: Implications for their use as boron carriers in clinical boron neutron capture therapy
,”
Nanoscale Res. Lett.
4
(
2
),
113
(
2009
).
31.
T. H.
Ferreira
 et al, “
Folate-grafted boron nitride nanotubes: Possible exploitation in cancer therapy
,”
Int. J. Pharm.
481
(
1-2
),
56
63
(
2015
).
32.
M.
Nurunnabi
,
M.
Nafiujjaman
,
S.-J.
Lee
,
I.-K.
Park
,
K. M.
Huh
, and
Y-k
Lee
, “
Preparation of ultra-thin hexagonal boron nitride nanoplates for cancer cell imaging and neurotransmitter sensing
,”
Chem. Commun.
52
(
36
),
6146
6149
(
2016
).
33.
Y. A.
Wu
 et al, “
Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals
,”
Nanotechnology
22
(
19
),
195603
(
2011
).
34.
J.
Peng
,
S.
Wang
,
P.-H.
Zhang
,
L.-P.
Jiang
,
J.-J.
Shi
, and
J.-J.
Zhu
, “
Fabrication of graphene quantum dots and hexagonal boron nitride nanocomposites for fluorescent cell imaging
,”
J. Biomed. Nanotechnol.
9
(
10
),
1679
1685
(
2013
).
35.
B.
Liu
 et al, “
One‐step synthesis of boron nitride quantum dots: Simple chemistry meets delicate nanotechnology
,”
Chemistry
22
(
52
),
18899
18907
(
2016
).
36.
A. L.
Tiano
 et al, “
Boron nitride nanotube: Synthesis and applications
,”
Nanosens. Biosens. Info-Tech Sens. Syst.
9060
,
906006
(
2014
); in International Society for Optics and Photonics.
37.
C. H.
Lee
,
M.
Xie
,
V.
Kayastha
,
J.
Wang
, and
Y. K. J. C. o M.
Yap
, “
Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition
,”
Chem. Mater.
22
(
5
),
1782
1787
(
2010
).
38.
H.
Zeng
 et al, “‘
White graphenes’: Boron nitride nanoribbons via boron nitride nanotube unwrapping
,”
Nano Lett.
10
(
12
),
5049
5055
(
2010
).
39.
X.
Chen
,
R. A.
Boulos
,
J. F.
Dobson
, and
C. L.
Raston
, “
Shear induced formation of carbon and boron nitride nano-scrolls
,”
Nanoscale
5
(
2
),
498
502
(
2013
).
40.
X.
Li
 et al, “
Exfoliation of hexagonal boron nitride by molten hydroxides
,”
Adv. Mater.
25
(
15
),
2200
2204
(
2013
).
41.
Y.
Wang
,
Z.
Shi
, and
J.
Yin
, “
Boron nitride nanosheets: Large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole
,”
J. Mater. Chem.
21
(
30
),
11371
11377
(
2011
).
42.
C.
Ohata
,
R.
Tagami
,
Y.
Nakanishi
,
R.
Iwaki
,
K.
Nomura
, and
J.
Haruyama
, “
Hexagonal boron-nitride nanomesh magnets
,”
Appl. Phys. Lett.
109
(
13
),
133110
(
2016
).
43.
G.
Lian
,
X.
Zhang
,
M.
Tan
,
S.
Zhang
,
D.
Cui
, and
Q.
Wang
, “
Facile synthesis of 3D boron nitride nanoflowers composed of vertically aligned nanoflakes and fabrication of graphene-like BN by exfoliation
,”
J. Mater. Chem.
21
(
25
),
9201
9207
(
2011
).
44.
G.
Carotenuto
,
A.
Longo
,
S.
De Nicola
,
C.
Camerlingo
, and
L.
Nicolais
, “
A simple mechanical technique to obtain carbon nanoscrolls from graphite nanoplatelets
,”
Nanoscale Res. Lett.
8
(
1
),
403
(
2013
).
45.
M. E.
Schmidt
 et al, “
Controlled fabrication of electrically contacted carbon nanoscrolls
,”
Nanotechnology
29
(
23
),
235605
(
2018
).
46.
X.
Xie
 et al, “
Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene
,”
Nano Lett.
9
(
7
),
2565
2570
(
2009
).
47.
D.
Xia
 et al, “
Fabrication of carbon nanoscrolls from monolayer graphene
,”
Small
6
(
18
),
2010
2019
(
2010
).
48.
Y.
Wang
and
Y.
Zhang
, “
Superior thermal conductivity of carbon nanoscroll based thermal interface materials
,” in
65th IEEE Electronic Components and Technology Conference (ECTC)
(
2015
), pp.
1234
1239
.
49.
G. W.
Hanson
, “
Fundamental transmitting properties of carbon nanotube antennas
,” in
Antennas and Propagation Society International Symposium
(IEEE,
2005
), Vol.
3
, pp.
247
250
.
50.
M.
Hassanzadazar
,
M.
Ahmadi
,
R.
Ismail
, and
H.
Goudarzi
, “
Electrical property analytical prediction on archimedes chiral carbon nanoscrolls
,”
J. Electron. Mater.
45
(
10
),
5404
5411
(
2016
).
51.
M.
Rahmani
,
H.
Ghafoori Fard
,
M. T.
Ahmadi
, and
K.
Rahmani
, “
Analytical prediction of carbon nanoscroll-based electrochemical glucose biosensor performance
,”
Int. J. Environ. Anal. Chem.
97
(
11
),
1024
1036
(
2017
).
52.
T.
Zhang
,
Q.
Xue
,
S.
Zhang
, and
M. J. N. T.
Dong
, “
Theoretical approaches to graphene and graphene-based materials
,”
Nano Today
7
(
3
),
180
200
(
2012
).
53.
X.
Blase
,
A.
Rubio
,
S.
Louie
, and
M.
Cohen
, “
Stability and band gap constancy of boron nitride nanotubes
,”
EPL (Europhys. Lett.)
28
(
5
),
335
(
1994
).
54.
S.-H.
Jhi
and
Y.-K.
Kwon
, “
Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage
,”
Phys. Rev. B
69
(
24
),
245407
(
2004
).
55.
R.
Ma
,
Y.
Bando
,
H.
Zhu
,
T.
Sato
,
C.
Xu
, and
D.
Wu
, “
Hydrogen uptake in boron nitride nanotubes at room temperature
,”
J. Am. Chem. Soc.
124
(
26
),
7672
7673
(
2002
).
56.
E. S.
Permyakova
 et al, “
Synthesis and characterization of folate conjugated boron nitride nanocarriers for targeted drug delivery
,”
J. Phys. Chem. C
121
(
50
),
28096
28105
(
2017
).
57.
X.
Li
 et al, “
Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment
,”
Nat. Commun.
8
,
13936
(
2017
).
58.
S.
Chivilikhin
,
I. Y.
Popov
, and
V.
Gusarov
, “
Dynamics of nanotube twisting in a viscous fluid
,”
Doklady Phys.
52
(
1
),
60
62
(
2007
).
59.
N.
Marom
 et al, “
Stacking and registry effects in layered materials: The case of hexagonal boron nitride
,”
Phys. Rev. Lett.
105
(
4
),
046801
(
2010
).
60.
D.-H.
Kim
,
H.-S.
Kim
,
M. W.
Song
,
S.
Lee
, and
S. Y.
Lee
, “
Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy
,”
Nano Convergence
4
(
1
),
13
(
2017
).
61.
K.
Ba
 et al, “
Chemical and bandgap engineering in monolayer hexagonal boron nitride
,”
Sci. Rep.
7
,
45584
(
2017
).
62.
J.
Bao
 et al, “
Two-dimensional hexagonal boron nitride as lateral heat spreader in electrically insulating packaging
,”
J. Phys. D: Appl. Phys.
49
(
26
),
265501
(
2016
).
63.
M.
Uddin
,
T.
Doan
,
J.
Li
,
K.
Ziemer
,
J.
Lin
, and
H.
Jiang
, “
Electrical transport properties of (BN)-rich hexagonal (BN) C semiconductor alloys
,”
AIP Adv.
4
(
8
),
087141
(
2014
).
64.
W.
Zhou
,
J.
Zuo
,
X.
Zhang
, and
A.
Zhou
, “
Thermal, electrical, and mechanical properties of hexagonal boron nitride–reinforced epoxy composites
,”
J. Compos. Mater.
48
(
20
),
2517
2526
(
2014
).
65.
E.
Perim
,
L. D.
Machado
, and
D. S.
Galvao
, “
A brief review on syntheses, structures, and applications of nanoscrolls
,”
Front. Mater.
1
,
31
(
2014
).
66.
S.
Chivilikhin
,
I. Y.
Popov
,
A.
Svitenkov
,
D.
Chivilikhin
, and
V.
Gusarov
, “
Formation and evolution of nanoscroll ensembles based on layered-structure compounds
,”
Doklady Phys.
54
(
11
),
491
(
2009
).
67.
E.
Perim
and
D. S.
Galvao
, “
The structure and dynamics of boron nitride nanoscrolls
,”
Nanotechnology
20
(
33
),
335702
(
2009
).
68.
D. H.
Robertson
,
D. W.
Brenner
, and
J. W.
Mintmire
, “
Energetics of nanoscale graphitic tubules
,”
Phys. Rev. B
45
(
21
),
12592
(
1992
).
69.
C.
Yan
,
J.
Liu
,
F.
Liu
,
J.
Wu
,
K.
Gao
, and
D.
Xue
, “
Tube formation in nanoscale materials
,”
Nanoscale Res. Lett.
3
(
12
),
473
(
2008
).
70.
S. F.
Braga
,
V. R.
Coluci
,
S. B.
Legoas
,
R.
Giro
,
D. S.
Galvão
, and
R. H.
Baughman
, “
Structure and dynamics of carbon nanoscrolls
,”
Nano Lett.
4
(
5
),
881
884
(
2004
).
71.
A. I.
Siahlo
 et al, “
Structure and energetics of carbon, hexagonal boron nitride, and carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls
,”
Phys. Rev. Mater.
2
(
3
),
036001
(
2018
).
72.
Z.
Liu
,
J.
Gao
,
G.
Zhang
,
Y.
Cheng
, and
Y.-W.
Zhang
, “
From two-dimensional nano-sheets to roll-up structures: Expanding the family of nanoscroll
,”
Nanotechnology
28
(
38
),
385704
(
2017
).
73.
E.
Perim
and
D. S.
Galvo
, “
Boron nitride nanoscrolls
,” in
Physicae Proceedings
(
2012
).
74.
E.
Perim
,
R.
Paupitz
, and
D. S.
Galvao
, “
Controlled route to the fabrication of carbon and boron nitride nanoscrolls: A molecular dynamics investigation
,”
Appl. Phys.
113
(
5
),
054306
(
2013
).
75.
Y.
Li
, “
Boron-nitride nanotube triggered self-assembly of hexagonal boron-nitride nanostructure
,”
Phys. Chem. Chem. Phys.
16
(
38
),
20689
20696
(
2014
).
76.
D. Y.
Hwang
and
D. H.
Suh
, “
Formation of hexagonal boron nitride nanoscrolls induced by inclusion and exclusion of self-assembling molecules in solution process
,”
Nanoscale
6
(
11
),
5686
5690
(
2014
).
77.
D. Y.
Hwang
,
K. H.
Choi
,
J. E.
Park
, and
D. H.
Suh
, “
Evolution of magnetism by rolling up hexagonal boron nitride nanosheets tailored with superparamagnetic nanoparticles
,”
Phys. Chem. Chem. Phys.
19
(
5
),
4048
4055
(
2017
).
78.
L.
Yuan
 et al, “
A reliable way of mechanical exfoliation of large scale two dimensional materials with high quality
,”
AIP Adv.
6
(
12
),
125201
(
2016
).
79.
Y.
Hernandez
 et al, “
High-yield production of graphene by liquid-phase exfoliation of graphite
,”
Nat. Nanotechnol.
3
(
9
),
563
(
2008
).
80.
Y.-Z.
Wang
,
T.
Chen
,
X.-F.
Gao
,
H.-H.
Liu
, and
X.-X.
Zhang
, “
Liquid phase exfoliation of graphite into few-layer graphene by sonication and microfluidization
,”
Mater. Express
7
(
6
),
491
499
(
2017
).
81.
B.
Tang
,
X.
Yun
,
Z.
Xiong
, and
X.
Wang
, “
Formation of graphene oxide nanoscrolls in organic solvents: Toward scalable device fabrication
,”
ACS Appl. Nano Mater.
1
(
2
),
686
697
(
2018
).
82.
T.
Fan
 et al, “
Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor
,”
Nanoscale Res. Lett.
10
(
1
),
192
(
2015
).
83.
L. M.
Viculis
,
J. J.
Mack
, and
R. B.
Kaner
, “
A chemical route to carbon nanoscrolls
,”
Science
299
(
5611
),
1361
1361
(
2003
).
84.
Z.
Ding
 et al, “
Lithium intercalation and exfoliation of layered bismuth selenide and bismuth telluride
,”
J. Mater. Chem.
19
(
17
),
2588
2592
(
2009
).
85.
X.
Fan
 et al, “
Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion
,”
Nano Lett.
15
(
9
),
5956
5960
(
2015
).
86.
Q.
Li
 et al, “
Intermediate phases in sodium intercalation into MoS2 nanosheets and their implications for sodium-ion batteries
,”
Nano Energy
38
,
342
349
(
2017
).
87.
E.
Ziambaras
,
J.
Kleis
,
E.
Schröder
, and
P.
Hyldgaard
, “
Potassium intercalation in graphite: A van der Waals density-functional study
,”
Phys. Rev. B
76
(
15
),
155425
(
2007
).
88.
X.
Chen
,
L.
Li
,
X.
Sun
,
H. G.
Kia
, and
H.
Peng
, “
A novel synthesis of graphene nanoscrolls with tunable dimension at a large scale
,”
Nanotechnology
23
(
5
),
055603
(
2012
).
89.
A.
Ismach
 et al, “
Toward the controlled synthesis of hexagonal boron nitride films
,”
ACS Nano
6
(
7
),
6378
6385
(
2012
).
90.
K. K.
Kim
 et al, “
Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices
,”
ACS Nano
6
(
10
),
8583
8590
(
2012
).
91.
C.-W.
Chang
,
W.-Q.
Han
, and
A.
Zettl
, “
Thermal conductivity of BCN and BN nanotubes
,”
J. Vacuum Sci. Technol. B
23
(
5
),
1883
1886
(
2005
).
92.
H.
Şahin
 et al, “
Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations
,”
Phys. Rev. B
80
(
15
),
155453
, 10/28/
2009
.
93.
Y.
Lin
and
J. W.
Connell
, “
Advances in 2D boron nitride nanostructures: Nanosheets, nanoribbons, nanomeshes, and hybrids with graphene
,”
Nanoscale
4
(
22
),
6908
6939
(
2012
).
94.
L.
Lindsay
and
D.
Broido
, “
Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride
,”
Phys. Rev. B
84
(
15
),
155421
(
2011
).
95.
L.
Lindsay
and
D.
Broido
, “
Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes
,”
Phys. Rev. B
85
(
3
),
035436
(
2012
).
96.
S. M.
Kim
 et al, “
Synthesis of large-area multilayer hexagonal boron nitride for high material performance
,”
Nat. Commun.
6
,
8662
(
2015
).
97.
C. F.
Woellner
,
L. D.
Machado
,
P. A. S.
Autreto
,
J. M.
de Sousa
, and
D. S.
Galvao
, “
Structural transformations of carbon and boron nitride nanoscrolls at high impact collisions
,”
Phys. Chem. Chem. Phys.
20
(
7
),
4911
4916
(
2018
).
98.
Y.
Li
,
W.
Zhang
,
B.
Guo
, and
D.
Datta
, “
Interlayer shear of nanomaterials: Graphene–graphene, boron nitride–boron nitride and graphene–boron nitride
,”
Acta Mech. Solida Sin.
30
(
3
),
234
240
(
2017
).
99.
J.
Wang
 et al, “
Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning
,”
Nanoscale
9
(
28
),
9787
9791
(
2017
).
100.
M. H.
Tahersima
and
V. J.
Sorger
, “
Enhanced photon absorption in spiral nanostructured solar cells using layered 2D materials
,”
Nanotechnology
26
(
34
),
344005
(
2015
).
101.
A. L. M.
Reddy
,
A. E.
Tanur
, and
G. C.
Walker
, “
Synthesis and hydrogen storage properties of different types of boron nitride nanostructures
,”
Int. J. Hydrogen Energy
35
(
9
),
4138
4143
(
2010
).
102.
T.
Li
,
M.
Lin
,
Y.
Huang
, and
T.
Lin
, “
Quantum transport in carbon nanoscrolls
,”
Phys. Lett. A
376
(
4
),
515
520
(
2012
).
103.
J.
Zheng
 et al, “
Production of high‐quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen
,”
Adv. Mater.
23
(
21
),
2460
2463
(
2011
).
104.
L.
Jiang
,
L.
Gao
, and
J.
Sun
, “
Production of aqueous colloidal dispersions of carbon nanotubes
,”
J. Colloid Interface Sci.
260
(
1
),
89
94
(
2003
).
105.
D.
Golberg
, “
Synthesis and characterization of ropes made of BN multiwalled nanotubes
,”
Scr. Mater.
44
(
8
),
1561
1565
(
2001
).
106.
Y.
Chen
,
J.
Zou
,
S. J.
Campbell
, and
G.
Le Caer
, “
Boron nitride nanotubes: Pronounced resistance to oxidation
,”
Appl. Phys. Lett.
84
(
13
),
2430
2432
(
2004
).
107.
C.
Zhi
,
Y.
Bando
,
C.
Tang
,
S.
Honda
,
H.
Kuwahara
, and
D.
Golberg
, “
Boron nitride nanotubes/polystyrene composites
,”
J. Mater. Res.
21
(
11
),
2794
2800
(
2006
).
108.
X.
Chen
 et al, “
Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells
,”
J. Am. Chem. Soc.
131
(
3
),
890
891
(
2009
).
109.
L.
Horvath
 et al, “
In vitro investigation of the cellular toxicity of boron nitride nanotubes
,”
ACS Nano
5
(
5
),
3800
3810
(
2011
).
110.
N.
Wang
 et al, “
Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans
,”
Int. J. Nanomed.
12
,
5941
(
2017
).
111.
M.
Rasel
,
T.
Li
,
T.
Nguyen
, and
Y.
Gu
, “
The assessment of toxicity of boron nitride nanoparticle using atomic forced microscopy
,” in
7th WACBE World Congress on Bioengineering
(
2015
), pp.
31
34
.
112.
G.
Ciofani
,
S.
Danti
,
G. G.
Genchi
,
B.
Mazzolai
, and
V.
Mattoli
, “
Boron nitride nanotubes: Biocompatibility and potential spill‐over in nanomedicine
,”
Small
9
(
9‐10
),
1672
1685
(
2013
).
113.
V. K.
Kodali
 et al, “
Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture
,”
Nanotoxicology
11
(
8
),
1040
1058
(
2017
).
114.
Y.
Volkov
,
J.
McIntyre
, and
A.
Prina-Mello
, “
Graphene toxicity as a double-edged sword of risks and exploitable opportunities: A critical analysis of the most recent trends and developments
,”
2D Mater.
4
(
2
),
022001
(
2017
).
115.
T. A.
Tabish
,
S.
Zhang
, and
P. G.
Winyard
, “
Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species
,”
Redox Biol.
15
,
34
40
(
2017
).
116.
T. A.
Tabish
 et al, “
Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues
,”
Appl. Mater. Today
12
,
389
401
(
2018
).
117.
A. B.
Seabra
,
A. J.
Paula
,
R.
de Lima
,
O. L.
Alves
, and
N.
Durán
, “
Nanotoxicity of graphene and graphene oxide
,”
Chem. Res. Toxicol.
27
(
2
),
159
168
(
2014
).
118.
C.
Fisher
,
A. E.
Rider
,
Z. J.
Han
,
S.
Kumar
,
I.
Levchenko
, and
K.
Ostrikov
, “
Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine
,”
J. Nanomater.
2012
,
315185
(
2012
).
119.
L.
Ma-Hock
 et al, “
Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black
,”
Part. Fibre Toxicol.
10
(
1
),
23
(
2013
).
120.
R. K.
Matharu
 et al, “
The effect of graphene–poly (methyl methacrylate) fibres on microbial growth
,”
Interface Focus
8
(
3
),
20170058
(
2018
).
121.
P. L.
Heseltine
,
J.
Ahmed
, and
M.
Edirisinghe
, “
Developments in pressurized gyration for the mass production of polymeric fibers
,”
Macromol. Mater. Eng.
303
(
9
),
1800218
(
2018
).
122.
T. A.
Tabish
 et al, “
Influence of luminescent graphene quantum dots on trypsin activity
,”
Int. J. Nanomed.
13
,
1525
(
2018
).
123.
R. K.
Matharu
,
L.
Ciric
, and
M.
Edirisinghe
, “
Nanocomposites: Suitable alternatives as antimicrobial agents
,”
Nanotechnology
29
(
28
),
282001
(
2018
).
124.
E. P.
Randviir
,
D. A.
Brownson
, and
C. E.
Banks
, “
A decade of graphene research: Production, applications and outlook
,”
Mater. Today
17
(
9
),
426
432
(
2014
).
125.
L.
Jing
 et al, “
Biocompatible hydroxylated boron nitride nanosheets/poly (vinyl alcohol) interpenetrating hydrogels with enhanced mechanical and thermal responses
,”
ACS Nano
11
(
4
),
3742
3751
(
2017
).
126.
A.
Salvetti
 et al, “
In vivo biocompatibility of boron nitride nanotubes: Effects on stem cell biology and tissue regeneration in planarians
,”
Nanomedicine
10
(
12
),
1911
1922
(
2015
).
127.
S.
Feng
 et al, “
Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs
,”
Int. J. Nanomed.
11
,
4573
(
2016
).
128.
T. H.
Ferreira
,
P.
Silva
,
R.
Santos
, and
E.
Sousa
, “
A novel synthesis route to produce boron nitride nanotubes for bioapplications
,”
J. Biomater. Nanobiotechnol.
2
(
04
),
426
(
2011
).
129.
A.
Pullanchiyodan
,
K. S.
Nair
, and
K. P.
Surendran
, “
Silver-decorated boron nitride nanosheets as an effective hybrid filler in PMMA for high-thermal-conductivity electronic substrates
,”
ACS Omega
2
(
12
),
8825
8835
(
2017
).
130.
T.
Wang
 et al, “
Enhanced thermal conductivity of polyimide composites with boron nitride nanosheets
,”
Sci. Rep.
8
(
1
),
1557
(
2018
).
131.
D.
Lahiri
 et al, “
Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro
,”
Acta Biomater.
6
(
9
),
3524
3533
(
2010
).
132.
D.
Lahiri
,
V.
Singh
,
A. P.
Benaduce
,
S.
Seal
,
L.
Kos
, and
A.
Agarwal
, “
Boron nitride nanotube reinforced hydroxyapatite composite: Mechanical and tribological performance and in-vitro biocompatibility to osteoblasts
,”
J. Mech. Behav. Biomed. Mater.
4
(
1
),
44
56
(
2011
).
133.
A. L. M.
Reddy
,
B. K.
Gupta
,
T. N.
Narayanan
,
A. A.
Martí
,
P. M.
Ajayan
, and
G. C.
Walker
, “
Probing of Ni-encapsulated ferromagnetic boron nitride nanotubes by time-resolved and steady-state photoluminescence spectroscopy
,”
J. Phys. Chem. C
116
(
23
),
12803
12809
(
2012
).
134.
Y.
Yu
,
H.
Chen
,
Y.
Liu
,
L. H.
Li
, and
Y.
Chen
, “
Humidity sensing properties of single Au-decorated boron nitride nanotubes
,”
Electrochem. Commun.
30
,
29
33
(
2013
).
You do not currently have access to this content.