Skeletal muscle precursor cells (MPCs) are considered key candidates for cell therapy in the treatment of skeletal muscle dysfunction due to injury, disease, or aging. However, expansion of a sufficient number of functional skeletal muscle cells in vitro from a small tissue biopsy has been challenging due to changes in the phenotypic expression of these cells under nonnatural microenvironmental or traditional culture conditions. This review provides an overview of recent progress in the design and biofabrication of advanced tissue-specific extracellular matrix (ECM) proteins for use in the enhancement of expansion and differentiation of MPCs for cell therapy and 3D bioprinting. We start with a brief introduction about the existing progress, drawbacks, and emerging challenges in the culture and maintenance of long term primary human MPCs for cell therapy. With regard to MPC proliferation, elongation, fusion, and differentiation into mature myofibers, we systematically summarize the benefits and limitations of recent progress. The importance of tissue-specific ECM in skeletal muscle regeneration is discussed, in particular, the mechanisms, rationale, strategy, and methodologies for using tissue-specific ECM proteins for myogenesis in 2D and 3D culture environments. Furthermore, perspectives on the challenges in developing tissue-specific ECM proteins for cell therapy using human MPCs are described. Finally, we propose potential strategies for overcoming the challenges in the development of advanced tissue-specific ECM proteins for promoting cell therapy with human skeletal muscle cells.

1.
D. C.
Zebrowski
,
S.
Vergarajauregui
,
C.-C.
Wu
,
T.
Piatkowski
,
R.
Becker
,
M.
Leone
 et al, “
Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes
,”
Elife
4
,
e05563
(
2015
).
2.
F. S.
Tedesco
,
A.
Dellavalle
,
J.
Diaz-Manera
,
G.
Messina
, and
G.
Cossu
, “
Repairing skeletal muscle: Regenerative potential of skeletal muscle stem cells
,”
J. Clin. Invest.
120
(
1
),
11
19
(
2010
).
3.
A. D.
Theocharis
,
S. S.
Skandalis
,
C.
Gialeli
, and
N. K.
Karamanos
, “
Extracellular matrix structure
,”
Adv. Drug Delivery Rev.
97
,
4
27
(
2016
).
4.
U.
Kuhl
,
M.
Ocalan
,
R.
Timpl
, and
K.
von der Mark
, “
Role of laminin and fibronectin in selecting myogenic versus fibrogenic cells from skeletal muscle cells in vitro
,”
Dev. Biol.
117
(
2
),
628
635
(
1986
).
5.
M. E.
Danoviz
and
Z.
Yablonka-Reuveni
, “
Skeletal muscle satellite cells: Background and methods for isolation and analysis in a primary culture system
,”
Methods Mol. Biol.
798
,
21
52
(
2012
).
6.
C.
Hoffmann
and
C.
Weigert
, “
Skeletal muscle as an endocrine organ: The role of myokines in exercise adaptations
,”
Cold Spring Harbor Perspect. Med.
7
(
11
),
a029793
(
2017
).
7.
E. H.
Marieb
and
K. S.
Francisco
,
Human Anatomy & Physiology
, 8th ed. (
Benjamin Cummings
,
2010
), p.
312
, ISBN 978-0-8053-9569-3.
8.
D.
Schumacher
,
B. K.
Tischer
,
J. P.
Teifke
,
K.
Wink
, and
N.
Osterrieder
, “
Generation of a permanent cell line that supports efficient growth of Marek's disease virus (MDV) by constitutive expression of MDV glycoprotein E
,”
J. Gen. Virol.
83
(
Pt 8
),
1987
1992
(
2002
).
9.
F.
Relaix
,
D.
Rocancourt
,
A.
Mansouri
, and
M.
Buckingham
, “
A Pax3/Pax7-dependent population of skeletal muscle progenitor cells
,”
Nature
435
(
7044
),
948
953
(
2005
).
10.
E.
Brandan
and
J.
Gutierrez
, “
Role of skeletal muscle proteoglycans during myogenesis
,”
Matrix Biol.
32
(
6
),
289
297
(
2013
).
11.
B. C.
Syverud
,
J. D.
Lee
,
K. W.
VanDusen
, and
L. M.
Larkin
, “
Isolation and purification of satellite cells for skeletal muscle tissue engineering
,”
J. Regener. Med.
3
(
2
),
117
(
2014
).
12.
M.
Sampaolesi
,
S.
Blot
,
G.
D'Antona
,
N.
Granger
,
R.
Tonlorenzi
,
A.
Innocenzi
 et al, “
Corrigendum: Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs
,”
Nature
494
(
7438
),
506
(
2013
).
13.
H.
Chang
,
M.
Yoshimoto
,
K.
Umeda
,
T.
Iwasa
,
Y.
Mizuno
,
S.
Fukada
 et al, “
Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells
,”
FASEB J.
23
(
6
),
1907
1919
(
2009
).
14.
F. S.
Tedesco
,
M. F.
Gerli
,
L.
Perani
,
S.
Benedetti
,
F.
Ungaro
,
M.
Cassano
 et al, “
Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy
,”
Sci. Transl. Med.
4
(
140
),
140ra89
(
2012
).
15.
J. H.
Lee
,
P. A.
Kosinski
, and
D. M.
Kemp
, “
Contribution of human bone marrow stem cells to individual skeletal myotubes followed by myogenic gene activation
,”
Exp. Cell Res.
307
(
1
),
174
182
(
2005
).
16.
S. V.
Forcales
, “
Potential of adipose-derived stem cells in muscular regenerative therapies
,”
Front. Aging Neurosci.
7
,
123
(
2015
).
17.
C. A.
Collins
,
I.
Olsen
,
P. S.
Zammit
,
L.
Heslop
,
A.
Petrie
,
T. A.
Partridge
 et al, “
Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche
,”
Cell
122
(
2
),
289
301
(
2005
).
18.
D.
Montarras
,
J.
Morgan
,
C.
Collins
,
F.
Relaix
,
S.
Zaffran
,
A.
Cumano
 et al, “
Direct isolation of satellite cells for skeletal muscle regeneration
,”
Science
309
(
5743
),
2064
2067
(
2005
).
19.
Z.
Qu-Petersen
,
B.
Deasy
,
R.
Jankowski
,
M.
Ikezawa
,
J.
Cummins
,
R.
Pruchnic
 et al, “
Identification of a novel population of muscle stem cells in mice: Potential for muscle regeneration
,”
J. Cell Biol.
157
(
5
),
851
864
(
2002
).
20.
R. O.
Hynes
and
A.
Naba
, “
Overview of the matrisome—An inventory of extracellular matrix constituents and functions
,”
Cold Spring Harbor Perspect. Biol.
4
(
1
),
a004903
(
2012
).
21.
K. C.
Clause
and
T. H.
Barker
, “
Extracellular matrix signaling in morphogenesis and repair
,”
Curr. Opin. Biotechnol.
24
(
5
),
830
833
(
2013
).
22.
T. L.
Adair-Kirk
and
R. M.
Senior
, “
Fragments of extracellular matrix as mediators of inflammation
,”
Int. J. Biochem. Cell Biol.
40
(
6–7
),
1101
1110
(
2008
).
23.
J. A.
DeQuach
,
V.
Mezzano
,
A.
Miglani
,
S.
Lange
,
G. M.
Keller
,
F.
Sheikh
 et al, “
Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture
,”
PLoS One
5
(
9
),
e13039
(
2010
).
24.
Y.
Zhang
,
Y.
He
,
S.
Bharadwaj
,
N.
Hammam
,
K.
Carnagey
,
R.
Myers
 et al, “
Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype
,”
Biomaterials
30
(
23–24
),
4021
4028
(
2009
).
25.
R.
Lang
,
M. M.
Stern
,
L.
Smith
,
Y.
Liu
,
S.
Bharadwaj
,
G.
Liu
 et al, “
Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix
,”
Biomaterials
32
(
29
),
7042
7052
(
2011
).
26.
A.
Skardal
,
L.
Smith
,
S.
Bharadwaj
,
A.
Atala
,
S.
Soker
, and
Y.
Zhang
, “
Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function
,”
Biomaterials
33
(
18
),
4565
4575
(
2012
).
27.
D.
Zhang
,
Y.
Zhang
,
Y.
Zhang
,
H.
Yi
,
Z.
Wang
,
R.
Wu
 et al, “
Tissue-specific extracellular matrix enhances skeletal muscle precursor cell expansion and differentiation for potential application in cell therapy
,”
Tissue Eng. Part A
23
(
15–16
),
784
794
(
2017
).
28.
H.
Yi
,
S.
Forsythe
,
Y.
He
,
Q.
Liu
,
G.
Xiong
,
S.
Wei
 et al, “
Tissue-specific extracellular matrix promotes myogenic differentiation of human muscle progenitor cells on gelatin and heparin conjugated alginate hydrogels
,”
Acta Biomater.
62
,
222
233
(
2017
).
29.
X.
Hou
,
C.
Shi
,
W.
Chen
,
B.
Chen
,
W.
Jia
,
Y.
Guo
 et al, “
Transplantation of human adipose-derived mesenchymal stem cells on a bladder acellular matrix for bladder regeneration in a canine model
,”
Biomed. Mater.
11
(
3
),
031001
(
2016
).
30.
A.
Shokeir
,
Y.
Osman
,
M.
El-Sherbiny
,
M.
Gabr
,
T.
Mohsen
, and
M.
El-Baz
, “
Comparison of partial urethral replacement with acellular matrix versus spontaneous urethral regeneration in a canine model
,”
Eur. Urol.
44
(
5
),
603
609
(
2003
).
31.
A. M.
Kajbafzadeh
,
R.
Abbasioun
,
S.
Sabetkish
,
N.
Sabetkish
,
P.
Rahmani
,
K.
Tavakkolitabassi
 et al, “
Future prospects for human tissue engineered urethra transplantation: Decellularization and recellularization-based urethra regeneration
,”
Ann. Biomed. Eng.
45
(
7
),
1795
1806
(
2017
).
32.
A. M.
Kajbafzadeh
,
R.
Abbasioun
,
N.
Sabetkish
,
S.
Sabetkish
,
A. A.
Habibi
, and
K.
Tavakkolitabassi
, “
In vivo human corpus cavernosum regeneration: Fabrication of tissue-engineered corpus cavernosum in rat using the body as a natural bioreactor
,”
Int. Urol. Nephrol.
49
(
7
),
1193
1199
(
2017
).
33.
W.
Dai
,
P.
Gerczuk
,
Y.
Zhang
,
L.
Smith
,
O.
Kopyov
,
G. L.
Kay
 et al, “
Intramyocardial injection of heart tissue-derived extracellular matrix improves postinfarction cardiac function in rats
,”
J. Cardiovasc. Pharmacol. Ther.
18
(
3
),
270
279
(
2013
).
34.
S.
Schwarz
,
L.
Koerber
,
A. F.
Elsaesser
,
E.
Goldberg-Bockhorn
,
A. M.
Seitz
,
L.
Durselen
 et al, “
Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications
,”
Tissue Eng. Part A
18
(
21–22
),
2195
2209
(
2012
).
35.
T. J.
Keane
,
A.
DeWard
,
R.
Londono
,
L. T.
Saldin
,
A. A.
Castleton
,
L.
Carey
 et al, “
Tissue-specific effects of esophageal extracellular matrix,” Tissue
Eng. Part A
21
(
17–18
),
2293
2300
(
2015
).
36.
R. O.
Hynes
, “
The extracellular matrix: Not just pretty fibrils
,”
Science
326
(
5957
),
1216
1219
(
2009
).
37.
A.
Urciuolo
,
L.
Urbani
,
S.
Perin
,
P.
Maghsoudlou
,
F.
Scottoni
,
A.
Gjinovci
 et al, “
Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration
,”
Sci. Rep.
8
(
1
),
8398
(
2018
).
38.
S.
Grefte
,
M. J. W.
Adjobo-Hermans
,
E. M. M.
Versteeg
,
W. J. H.
Koopman
, and
W. F.
Daamen
, “
Impaired primary mouse myotube formation on crosslinked type I collagen films is enhanced by laminin and entactin
,”
Acta Biomater.
30
,
265
276
(
2016
).
39.
Y.
Ohtake
,
H.
Tojo
, and
M.
Seiki
, “
Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle
,”
J. Cell Sci.
119
(
Pt 18
),
3822
3832
(
2006
).
40.
P. M.
Crapo
,
T. W.
Gilbert
, and
S. F.
Badylak
, “
An overview of tissue and whole organ decellularization processes
,”
Biomaterials
32
(
12
),
3233
3243
(
2011
).
41.
T. J.
Keane
,
I. T.
Swinehart
, and
S. F.
Badylak
, “
Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance
,”
Methods
84
,
25
34
(
2015
).
42.
L.
Gui
,
S. A.
Chan
,
C. K.
Breuer
, and
L. E.
Niklason
, “
Novel utilization of serum in tissue decellularization
,”
Tissue Eng. Part C Methods
16
(
2
),
173
184
(
2010
).
43.
V.
Kaartinen
,
J. W.
Voncken
,
C.
Shuler
,
D.
Warburton
,
D.
Bu
,
N.
Heisterkamp
 et al, “
Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction
,”
Nat. Genet.
11
(
4
),
415
421
(
1995
).
44.
S. H.
Lee
and
H.
Shin
, “
Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering
,”
Adv. Drug Delivery Rev.
59
(
4–5
),
339
359
(
2007
).
45.
H.
Huang
,
A. I.
Herrera
,
Z.
Luo
,
O.
Prakash
, and
X. S.
Sun
, “
Structural transformation and physical properties of a hydrogel-forming peptide studied by NMR, transmission electron microscopy, and dynamic rheometer
,”
Biophys. J.
103
(
5
),
979
988
(
2012
).
46.
H.
Huang
,
Y.
Ding
,
X. S.
Sun
, and
T. A.
Nguyen
, “
Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells
,”
PloS One
8
(
3
),
e59482
(
2013
).
47.
X.
Li
,
A.
Galliher-Beckley
,
H.
Huang
,
X.
Sun
, and
J.
Shi
, “
Peptide nanofiber hydrogel adjuvanted live virus vaccine enhances cross-protective immunity to porcine reproductive and respiratory syndrome virus
,”
Vaccine
31
(
41
),
4508
4515
(
2013
).
48.
P. G.
Miller
and
M. L.
Shuler
, “
Design and demonstration of a pumpless 14 compartment microphysiological system
,”
Biotechnol. Bioeng.
113
(
10
),
2213
2227
(
2016
).
49.
J.
Liang
,
X. S.
Sun
,
Z.
Yang
, and
S.
Cao
, “
Anticancer drug camptothecin test in 3D hydrogel networks with HeLa cells
,”
Sci. Rep.
7
,
37626
(
2017
).
50.
H.
Huang
,
J.
Shi
,
J.
Laskin
,
Z.
Liu
,
D. S.
McVey
, and
X. S.
Sun
, “
Design of a shear-thinning recoverable peptide hydrogel from native sequences and application for influenza H1N1 vaccine adjuvant
,”
Soft Matter
7
(
19
),
8905
8912
(
2011
).
51.
J.
Liang
,
G.
Liu
,
J.
Wang
, and
X. S.
Sun
, “
Controlled release of BSA-linked cisplatin through a PepGel self-assembling peptide nanofiber hydrogel scaffold
,”
Amino Acids
49
(
12
),
2015
2021
(
2017
).
You do not currently have access to this content.