Energy storage is one of the key elements within the actual stage of the energy transition, as it is probably one of the most important factors to allow high penetration of fluctuating renewable energies, such as wind or solar, in the existing power systems. Intensive research is being conducted to assess the economic aspects and technical performance of renewable energy-based systems supported by batteries by evaluating different services that batteries can provide to the electric grid or to the end-consumers. In Germany, where the majority of the currently installed 43 GW of PV capacity corresponds to small residential, commercial, or industrial facilities, an interesting market for batteries to enhance local self-consumption and autarky is already booming, with more than 80 000 storage system installations in 2017. In this context, this study presents a comprehensive analysis of the photovoltaic battery model by analyzing the technical and economic consequences that variations on the most relevant system parameters induce. The presented results are based on high resolution data obtained from a representative residential district with an autarky of above 95%. The employed battery model is based on the results obtained through an extensive test campaign and includes electrical and thermal sub-models. The analysis predicts that grid parity of residential PV battery systems can be reached in the upcoming years, with especially great potential of the retrofitting market for those PV installations which run out of the feed-in tariff policy.

1.
C.
Kost
,
S.
Shammugam
,
V.
Jülch
,
H.-T.
Nguyen
, and
T.
Schlegl
,
Levelized Cost of Electricity-Renewable Energy Technologies
(
Fraunhofer Institute for Solar Energy Systems ISE
,
Freiburg
,
2018
).
2.
I.
Pineda
and
P.
Tardieu
, http://WindEurope.org for Wind in Power 2017: Annual Combined Onshore and Offshore Wind Energy Statistics,
2018
.
3.
Agora Energiewende
,
12 Insights on Germany's Energiewende—a discussion paper exploring key challenges for the power sector
(
Agora Energiewende
,
2013
).
4.
M.
Zebarjadi
and
A.
Askarzadeh
, “
Optimization of a reliable grid-connected PV-based power plant with/without energy storage system by a heuristic approach
,”
Sol. Energy
125
,
12
21
(
2016
).
5.
A.-L.
Klingler
, “
Self-consumption with PV + Battery systems
,”
Appl. Energy
205
,
1560
1570
(
2017
).
6.
European Parliament and Council
, Official Journal L156 of the European Union,
2018
.
7.
A.
Berrueta
,
M.
Heck
,
M.
Jantsch
,
A.
Ursúa
, and
P.
Sanchis
, “
Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants
,”
Appl. Energy
228
,
1
11
(
2018
).
8.
G.
Fitzgerald
,
J.
Mandel
,
J.
Morris
, and
H.
Touati
,
The Economics of Battery Energy Storage
(
Rocky Mountain Institute
,
2015
).
9.
H.
Wirth
,
Recent Facts about Photovoltaics in Germany
(
Fraunhofer Institute for Solar Energy Systems ISE
,
2018
).
10.
Y.
Karneyeva
and
R.
Wüstenhagen
, “
Solar feed-in tariffs in a post-grid parity world
,”
Energy Policy
106
,
445
456
(
2017
).
11.
G.
Masson
,
J. I.
Briano
, and
M. J.
Baez
, “
Review and analysis of PV self-consumption policies
,”
Report No. IEA-PVPS T1-28
, International Energy Agency, IEA-PVPS, 2016, pp.
1
82
.
12.
D.
Setton
and
I.
Matuschke
, https://www.iass-potsdam.de/de/news/soziales-nachhaltigkeitsbarometer-zur-energiewende-zeigt-breite-zustimmung-aber-zweifel-der for Soziales Nachhaltigkeitsbarometer zur Energiewende zeigt breite Zustimmung, aber Zweifel an der Umsetzung.
13.
European Commission
, Best practices on renewable energy self-consumption, SWD(2015) 141 final,
2015
.
14.
Bundesministerium der Justiz und für Verbraucherschutz
, https://www.gesetze-im-internet.de/eeg_2014/ for §3 Nr.19; §61b,k; and §95 Nr.2 from EEG 2017, November 2018.
15.
Bundesministerium der Justiz und für Verbraucherschutz
, https://www.gesetze-im-internet.de/stromnzv/BJNR224300005.html for Verordnung über den Zugang zu Elektrizitätsversorgungsnetzen (Stromnetzzugangsverordnung - StromNZV), November
2018
.
16.
M.
Koepp
,
L.
Krampe
,
M.
Wünsch
, and
H.
Schalle
,
Mieterstrom: Rechtliche Einordnung, Organisationsformen, Potenziale und Wirtschaftlichkeit von Mieterstrommodellen (MSM)
(
Boos Hummel & Wegerich (BH&W) and Prognos AG
,
Berlin
,
2017
).
17.
pv magazine
, https://www.pv-magazine.de/2017/03/09/pv-magazine-roundtable-geschftsmodelle-fr-gewerbespeicher/ for pv magazine Roundtable: Geschäftsmodelle für Gewerbespeicher (
2018
).
18.
A.-L.
Klingler
and
F.
Schuhmacher
, “
Residential photovoltaic self-consumption
,”
Energy Effic.
21
,
121
(
2018
).
19.
R.
Luthander
,
J.
Widén
,
D.
Nilsson
, and
J.
Palm
, “
Photovoltaic self-consumption in buildings
,”
Appl. Energy
142
,
80
94
(
2015
).
20.
J.
Hoppmann
,
J.
Volland
,
T. S.
Schmidt
, and
V. H.
Hoffmann
, “
The economic viability of battery storage for residential solar photovoltaic systems—A review and a simulation model
,”
Renewable Sustainable Energy Rev.
39
,
1101
1118
(
2014
).
21.
M.
Naumann
,
R. C.
Karl
,
C. N.
Truong
,
A.
Jossen
, and
H. C.
Hesse
, “
Lithium-ion battery cost analysis in PV-household application
,”
Energy Procedia
73
,
37
47
(
2015
).
22.
G.
Merei
,
J.
Moshövel
,
D.
Magnor
, and
D. U.
Sauer
, “
Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications
,”
Appl. Energy
168
,
171
178
(
2016
).
23.
A.
Braeutigam
,
T.
Rothacher
,
H.
Staubitz
, and
R.
Trost
, “
Fact sheet
,” in
The energy storage market in Germany
(
Germany Trade and Invest, GTAI
,
2019
).
24.
E.
Barbour
and
M. C.
González
, “
Projecting battery adoption in the prosumer era
,”
Appl. Energy
215
,
356
370
(
2018
).
25.
A.
Pena-Bello
,
M.
Burer
,
M. K.
Patel
, and
D.
Parra
, “
Optimizing PV and grid charging in combined applications to improve the profitability of residential batteries
,”
J. Energy Storage
13
,
58
72
(
2017
).
26.
R.
Baetens
,
R.
de Coninck
,
J.
van Roy
,
B.
Verbruggen
,
J.
Driesen
,
L.
Helsen
, and
D.
Saelens
, “
Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings by integrated system simulation
,”
Appl. Energy
96
,
74
83
(
2012
).
27.
A.
Zeh
,
M.
Rau
, and
R.
Witzmann
, “
Comparison of decentralised and centralised grid-compatible battery storage systems in distribution grids with high PV penetration
,”
Prog. Photovoltaics: Res. Appl.
24
,
496
506
(
2016
).
28.
K.
Uddin
,
R.
Gough
,
J.
Radcliffe
,
J.
Marco
, and
P.
Jennings
, “
Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom
,”
Appl. Energy
206
,
12
21
(
2017
).
29.
J. S.
Stein
and
B.
Farnung
, “
PV performance modeling methods and practices
,” in
Results from the 4th PV Performance Modeling Collaborative Workshop
, IEA PVPS Task 13 (
2017
), pp.
1
98
.
30.
Sandia National Laboratories
, https://pvpmc.sandia.gov/applications/pv_lib-toolbox/ for PV Performance Modeling Collaborative|PV-Lib Toolbox, October
2018
.
31.
A.
Driesse
,
P.
Jain
, and
S.
Harrison
, “
Beyond the Curves: Modeling the Electrical Efficiency of Photovoltaic Inverters
,” in
Proceedings of the 33rd IEEE Photovoltaic Specialists Conference
(
2008
).
32.
D.
Bernardi
,
E.
Pawlikowski
, and
J.
Newman
, “
A general energy balance for battery systems
,”
J. Electrochem. Soc.
132
,
5–12
(
1985
).
33.
N. S.
Hussein
,
C.
Kost
, and
T.
Schlegh
,
Electricity Cost from Renewable Energy Technologies in Egypt
(
Fraunhofer Institut for Solar Energy Systems ISE
,
2016
).
34.
R.
Fu
,
D.
Feldman
,
R.
Margolis
,
M.
Woodhouse
, and
K.
Ardani
,
U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017
(
National Renewable Energy Laboratory NREL
,
2017
).
35.
J.
McLaren
,
P.
Gagnon
,
K.
Anderson
,
E.
Elgqvist
,
R.
Fu
, and
T.
Remo
,
Battery Energy Storage Market: Commercial Scale, Lithium-Ion Projects in the U.S.
(
National Renewable Energy Laboratory NREL
,
2016
).
36.
J.
Mayer
,
S.
Philipps
,
N. S.
Hussein
,
T.
Schlegh
, and
C.
Senkpiel
,
Current and Future Cost of Photovoltaics
(
Fraunhofer Institut for Solar Energy Systems, ISE
,
2015
).
37.
International Renewable Energy Agency (IRENA)
,
Battery Storage for Renewables: Market Status and Technology Outlook
(
IRENA
,
2015
).
38.
C.
Curry
,
Lithium-Ion Battery Costs and Market: Squeezed Margins Seek Technology Improvements & New Business Models
(
Bloomberg New Energy Finance BNEF
,
2017
).
39.
European Parliament
, Energy: New target of 32% from renewables by 2030 agreed by MEPs and ministers, 19 June
2018
.
40.
S.
Cao
and
K.
Sirén
, “
Impact of simulation time-resolution on the matching of PV production and household electric demand
,”
Appl. Energy
128
,
192
208
(
2014
).
41.
S.
Quoilin
,
K.
Kavvadias
,
A.
Mercier
,
I.
Pappone
, and
A.
Zucker
, “
Quantifying self-consumption linked to solar home battery systems
,”
Appl. Energy
182
,
58
67
(
2016
).
42.
J.
Salom
,
A. J.
Marszal
,
J.
Widén
,
J.
Candanedo
, and
K. B.
Lindberg
, “
Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data
,”
Appl. Energy
136
,
119
131
(
2014
).
43.
K.
Voss
,
I.
Sartori
,
A.
Napolitano
,
S.
Geier
 et al., “
Load matching and grid interaction of net zero energy buildings (IEA SHCP Task40/ECBCS: Towards Net Zero Energy Solar Buildings)
,” in Eurosun 2010, 29 June (
2010
).
44.
B.
Burger
, www.energy-charts.de for Energy Charts; accessed 22 November
2018
.
45.
M.
Hukan
, “
High precision multi-use lithium-ion batteries test-bench for measurement of coulombic efficiency and entropic coefficient
,” Master thesis (Fraunhofer ISE,
2016
).
46.
L.
Millet
, “
Development of an empirically-based numerical model for the BTMS design of an EV's lithium-ion battery pack
,” thesis for Master of Computational Mechanics, CIMNE (Universitat Politècnica de Catalunya, UPC,
2017
).
You do not currently have access to this content.