We introduce the concept of a probabilistic or p-bit, intermediate between the standard bits of digital electronics and the emerging q-bits of quantum computing. We show that low barrier magnets or LBMs provide a natural physical representation for p-bits and can be built either from perpendicular magnets designed to be close to the in-plane transition or from circular in-plane magnets. Magnetic tunnel junctions (MTJs) built using LBMs as free layers can be combined with standard NMOS transistors to provide three-terminal building blocks for large scale probabilistic circuits that can be designed to perform useful functions. Interestingly, this three-terminal unit looks just like the 1T/MTJ device used in embedded magnetic random access memory technology, with only one difference: the use of an LBM for the MTJ free layer. We hope that the concept of p-bits and p-circuits will help open up new application spaces for this emerging technology. However, a p-bit need not involve an MTJ; any fluctuating resistor could be combined with a transistor to implement it, while completely digital implementations using conventional CMOS technology are also possible. The p-bit also provides a conceptual bridge between two active but disjoint fields of research, namely, stochastic machine learning and quantum computing. First, there are the applications that are based on the similarity of a p-bit to the binary stochastic neuron (BSN), a well-known concept in machine learning. Three-terminal p-bits could provide an efficient hardware accelerator for the BSN. Second, there are the applications that are based on the p-bit being like a poor man's q-bit. Initial demonstrations based on full SPICE simulations show that several optimization problems, including quantum annealing are amenable to p-bit implementations which can be scaled up at room temperature using existing technology.

1.
E.
Chen
,
D.
Apalkov
,
Z.
Diao
,
A.
Driskill-Smith
,
D.
Druist
,
D.
Lottis
,
V.
Nikitin
,
X.
Tang
,
S.
Watts
,
S.
Wang
,
S.
Wolf
,
A. W.
Ghosh
,
J.
Lu
,
S. J.
Poon
,
M.
Stan
,
W.
Butler
,
S.
Gupta
,
C. K. A.
Mewes
,
T.
Mewes
, and
P.
Visscher
, “
Advances and future prospects of spin-transfer torque random access memory
,”
IEEE Trans. Magn.
46
,
1873
1878
(
2010
).
2.
L.
Lopez-Diaz
,
L.
Torres
, and
E.
Moro
, “
Transition from ferromagnetism to superparamagnetism on the nanosecond time scale
,”
Phys. Rev. B
65
,
224406
(
2002
).
3.
N.
Locatelli
,
A.
Mizrahi
,
A.
Accioly
,
R.
Matsumoto
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
V.
Cros
,
L. G.
Pereira
,
D.
Querlioz
 et al, “
Noise-enhanced synchronization of stochastic magnetic oscillators
,”
Phys. Rev. Appl.
2
,
034009
(
2014
).
4.
B.
Parks
,
M.
Bapna
,
J.
Igbokwe
,
H.
Almasi
,
W.
Wang
, and
S. A.
Majetich
, “
Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators
,”
AIP Adv.
8
,
055903
(
2018
).
5.
D.
Vodenicarevic
,
N.
Locatelli
,
A.
Mizrahi
,
J.
Friedman
,
A.
Vincent
,
M.
Romera
,
A.
Fukushima
,
K.
Yakushiji
,
H.
Kubota
,
S.
Yuasa
,
S.
Tiwari
,
J.
Grollier
, and
D.
Querlioz
, “
Low-energy truly random number generation with superparamagnetic tunnel junctions for unconventional computing
,”
Phys. Rev. Appl.
8
,
054045
(
2017
).
6.
D.
Vodenicarevic
,
N.
Locatelli
,
A.
Mizrahi
,
T.
Hirtzlin
,
J. S.
Friedman
,
J.
Grollier
, and
D.
Querlioz
, “
Circuit-level evaluation of the generation of truly random bits with superparamagnetic tunnel junctions
,” in
Proceedings of 2018 IEEE International Symposium on Circuits and Systems (ISCAS)
(
2018
), pp.
1
4
.
7.
P.
Debashis
,
R.
Faria
,
K. Y.
Camsari
, and
Z.
Chen
, “
Designing stochastic nanomagnets for probabilistic spin logic
,”
IEEE Magn. Lett.
9
,
4305205
(
2018
).
8.
R. P.
Cowburn
,
D. K.
Koltsov
,
A. O.
Adeyeye
,
M. E.
Welland
, and
D. M.
Tricker
, “
Single-domain circular nanomagnets
,”
Phys. Rev. Lett.
83
,
1042
(
1999
).
9.
P.
Debashis
,
R.
Faria
,
K. Y.
Camsari
,
J.
Appenzeller
,
S.
Datta
, and
Z.
Chen
, “
Experimental demonstration of nanomagnet networks as hardware for Ising computing
,” in
Proceedings of 2016 IEEE International Electron Devices Meeting (IEDM)
(
2016
), pp.
34.3.1
34.3.4
.
10.
B.
Sutton
,
K. Y.
Camsari
,
B.
Behin-Aein
, and
S.
Datta
, “
Intrinsic optimization using stochastic nanomagnets
,”
Sci. Rep.
7
,
44370
(
2017
).
11.
R.
Faria
,
K. Y.
Camsari
, and
S.
Datta
, “
Low-barrier nanomagnets as p-bits for spin logic
,”
IEEE Magn. Lett.
8
,
1
5
(
2017
).
12.
K. Y.
Camsari
,
R.
Faria
,
B. M.
Sutton
, and
S.
Datta
, “
Stochastic p-bits for invertible logic
,”
Phys. Rev. X
7
,
031014
(
2017
).
13.
K. Y.
Camsari
,
S.
Salahuddin
, and
S.
Datta
, “
Implementing p-bits with embedded MTJ
,”
IEEE Electron Device Lett.
38
,
1767
1770
(
2017
).
14.
A.
Mizrahi
,
T.
Hirtzlin
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
J.
Grollier
, and
D.
Querlioz
, “
Neural-like computing with populations of superparamagnetic basis functions
,”
Nat. Commun.
9
,
1533
(
2018
).
15.
M.
Bapna
and
S. A.
Majetich
, “
Current control of time-averaged magnetization in superparamagnetic tunnel junctions
,”
Appl. Phys. Lett.
111
,
243107
(
2017
).
16.
B.
Behin-Aein
,
V.
Diep
, and
S.
Datta
, “
A building block for hardware belief networks
,”
Sci. Rep.
6
,
29893
(
2016
).
17.
R. P.
Feynman
, “
Simulating physics with computers
,”
Int. J. Theor. Phys.
21
,
467
488
(
1982
).
18.
D. H.
Ackley
,
G. E.
Hinton
, and
T. J.
Sejnowski
, “
A learning algorithm for Boltzmann machines
,”
Cognit. Sci.
9
,
147
169
(
1985
).
19.
R. M.
Neal
, “
Connectionist learning of belief networks
,”
Artif. Intell.
56
,
71
113
(
1992
).
20.

Equation (1) can be equivalently written as mi = sgn[tanh Ii + r].

21.

The signum function (sgn) would be replaced by the step function (Θ) and the tanh function would be replaced by the sigmoid function (σ) such that mi=Θ[σ(2Ii)r0], where the random number r0 is uniformly distributed between 0 and 1.

22.
M.
Hu
,
J. P.
Strachan
,
Z.
Li
,
E. M.
Grafals
,
N.
Davila
,
C.
Graves
,
S.
Lam
,
N.
Ge
,
J. J.
Yang
, and
R. S.
Williams
, “
Dot-product engine for neuromorphic computing: Programming 1t1m crossbar to accelerate matrix-vector multiplication
,” in
Proceedings of the 53rd Annual Design Automation Conference
(ACM,
2016
), p.
19
.
23.
S.
Bhatti
,
R.
Sbiaa
,
A.
Hirohata
,
H.
Ohno
,
S.
Fukami
, and
S.
Piramanayagam
, “
Spintronics based random access memory: A review
,”
Mater. Today
20
,
530
548
(
2017
).
24.
B.
Behin-Aein
,
A.
Sarkar
, and
S.
Datta
, “
Modeling circuits with spins and magnets for all-spin logic
,” in
2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC)
(IEEE,
2012
), pp.
36
40
.
25.
B.
Behin-Aein
, “
Computing multi-magnet based devices and methods for solution of optimization problems
,” U.S. patent 8,698,517 (
2014
).
26.
W. H.
Choi
,
Y.
Lv
,
J.
Kim
,
A.
Deshpande
,
G.
Kang
,
J.-P.
Wang
, and
C. H.
Kim
, “
A magnetic tunnel junction based true random number generator with conditional perturb and real-time output probability tracking
,” in Proceedings of
2014 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2014
), pp.
12
15
.
27.
A.
Fukushima
,
T.
Seki
,
K.
Yakushiji
,
H.
Kubota
,
H.
Imamura
,
S.
Yuasa
, and
K.
Ando
, “
Spin dice: A scalable truly random number generator based on spintronics
,”
Appl. Phys. Express
7
,
083001
(
2014
).
28.
A. F.
Vincent
,
J.
Larroque
,
N.
Locatelli
,
N. B.
Romdhane
,
O.
Bichler
,
C.
Gamrat
,
W. S.
Zhao
,
J.
Klein
,
S.
Galdin-Retailleau
, and
D.
Querlioz
, “
Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems
,”
IEEE Trans. Biomed. Circuits Syst.
9
,
166
174
(
2015
).
29.
A.
Sengupta
,
M.
Parsa
,
B.
Han
, and
K.
Roy
, “
Probabilistic deep spiking neural systems enabled by magnetic tunnel junction
,”
IEEE Trans. Electron Devices
63
,
2963
2970
(
2016
).
30.
Y.
Lv
and
J.-P.
Wang
, “
A single magnetic-tunnel-junction stochastic computing unit
,” in Proceedings of
2017 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2017
), pp.
36
42
.
31.
S.
Geman
and
D.
Geman
, “
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
,”
IEEE Trans. Pattern Anal. Mach. Intell.
6
,
721
741
(
1984
).
32.
A. Z.
Pervaiz
,
B. M.
Sutton
,
L. A.
Ghantasala
, and
K. Y.
Camsari
, “
Weighted p-bits for fpga implementation of probabilistic circuits
,”
IEEE Trans. Neural Networks Learn. Syst.
(published online).
33.
S.
Cheemalavagu
,
P.
Korkmaz
,
K. V.
Palem
,
B. E. S.
Akgul
, and
L. N.
Chakrapani
, “
A probabilistic CMOS switch and its realization by exploiting noise
,” in
the Proceedings of the IFIP International
(
2005
).
34.
M.
Bucci
,
L.
Germani
,
R.
Luzzi
,
A.
Trifiletti
, and
M.
Varanonuovo
, “
A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC
,”
IEEE Trans. Comput.
52
,
403
409
(
2003
).
35.
D. E.
Holcomb
,
W. P.
Burleson
, and
K.
Fu
, “
Power-up SRAM state as an identifying fingerprint and source of true random numbers
,”
IEEE Trans. Comput.
58
,
1198
1210
(
2009
).
36.
J.
Wang
,
H.
Meng
, and
J.-P.
Wang
, “
Programmable spintronics logic device based on a magnetic tunnel junction element
,”
J. Appl. Phys.
97
,
10D509
(
2005
).
37.
S.
Matsunaga
,
J.
Hayakawa
,
S.
Ikeda
,
K.
Miura
,
H.
Hasegawa
,
T.
Endoh
,
H.
Ohno
, and
T.
Hanyu
, “
Fabrication of a nonvolatile full adder based on logic-in-memory architecture using magnetic tunnel junctions
,”
Appl. Phys. Express
1
,
091301
(
2008
).
38.
H.
Ohno
,
T.
Endoh
,
T.
Hanyu
,
N.
Kasai
, and
S.
Ikeda
, “
Magnetic tunnel junction for nonvolatile cmos logic
,” in Proceedings of
2010 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2010
), pp.
9
4
.
39.
A.
Lyle
,
S.
Patil
,
J.
Harms
,
B.
Glass
,
X.
Yao
,
D.
Lilja
, and
J.-P.
Wang
, “
Magnetic tunnel junction logic architecture for realization of simultaneous computation and communication
,”
IEEE Trans. Magn.
47
,
2970
2973
(
2011
).
40.
X.
Yao
,
J.
Harms
,
A.
Lyle
,
F.
Ebrahimi
,
Y.
Zhang
, and
J.-P.
Wang
, “
Magnetic tunnel junction-based spintronic logic units operated by spin transfer torque
,”
IEEE Trans. Nanotechnol.
11
,
120
126
(
2012
).
41.
J.
Grollier
,
D.
Querlioz
, and
M. D.
Stiles
, “
Spintronic nanodevices for bioinspired computing
,”
Proc. IEEE
104
,
2024
2039
(
2016
).
42.
N.
Locatelli
,
V.
Cros
, and
J.
Grollier
, “
Spin-torque building blocks
,”
Nat. Mater.
13
,
11
(
2014
).
43.
Y.
Cao
,
T.
Sato
,
D.
Sylvester
,
M.
Orshansky
, and
C.
Hu
, “
Predictive technology model
,” (
2002
), see http://ptm.asu.edu.
44.
C. M.
Liyanagedera
,
A.
Sengupta
,
A.
Jaiswal
, and
K.
Roy
, “
Stochastic spiking neural networks enabled by magnetic tunnel junctions: From nontelegraphic to telegraphic switching regimes
,”
Phys. Rev. Appl.
8
,
064017
(
2017
).
45.
D. E.
Nikonov
and
I. A.
Young
, “
Benchmarking of beyond-cmos exploratory devices for logic integrated circuits
,”
IEEE J. Explor. Solid-State Comput. Devices Circuits
1
,
3
11
(
2015
).
46.
K. Y.
Camsari
,
R.
Faria
,
O.
Hassan
,
B. M.
Sutton
, and
S.
Datta
, “
Equivalent circuit for magnetoelectric read and write operations
,”
Phys. Rev. Appl.
9
,
044020
(
2018
).
47.
A. K.
Biswas
,
H.
Ahmad
,
J.
Atulasimha
, and
S.
Bandyopadhyay
, “
Experimental demonstration of complete 180° reversal of magnetization in isolated co nanomagnets on a pmn–pt substrate with voltage generated strain
,”
Nano Lett.
17
,
3478
3484
(
2017
).
48.
S.
Manipatruni
,
D. E.
Nikonov
, and
I. A.
Young
, “
Beyond cmos computing with spin and polarization
,”
Nat. Phys.
14
,
338
(
2018
).
49.
M.
Jerry
,
A.
Parihar
,
A.
Raychowdhury
, and
S.
Datta
, “
A random number generator based on insulator-to-metal electronic phase transitions
,” in
Proceedings of 2017 75th Annual Device Research Conference (DRC)
(IEEE,
2017
), pp.
1
2
.
50.
T. G.
Lewis
and
W. H.
Payne
, “
Generalized feedback shift register pseudorandom number algorithm
,”
J. ACM
20
,
456
468
(
1973
).
51.
T.
Shibata
and
T.
Ohmi
, “
A functional MOS transistor featuring gate-level weighted sum and threshold operations
,”
IEEE Trans. Electron Devices
39
,
1444
1455
(
1992
).
52.
O.
Hassan
,
K. Y.
Camsari
, and
S.
Datta
, “
Voltage-driven building block for hardware belief networks
,” e-print arXiv:1801.09026 [cs] (
2018
).
53.
G.
Lemieux
and
D.
Lewis
,
Design of Interconnection Networks for Programmable Logic
(
Springer US
,
Boston, MA
,
2004
).
54.
P. A.
Merolla
,
J. V.
Arthur
,
R.
Alvarez-Icaza
,
A. S.
Cassidy
,
J.
Sawada
,
F.
Akopyan
,
B. L.
Jackson
,
N.
Imam
,
C.
Guo
,
Y.
Nakamura
 et al, “
A million spiking-neuron integrated circuit with a scalable communication network and interface
,”
Science
345
,
668
673
(
2014
).
55.
A. Z.
Pervaiz
,
L. A.
Ghantasala
,
K. Y.
Camsari
, and
S.
Datta
, “
Hardware emulation of stochastic p-bits for invertible logic
,”
Sci. Rep.
7
,
10994
(
2017
).
56.
K. Y.
Camsari
,
S.
Ganguly
, and
S.
Datta
, “
Modular approach to spintronics
,”
Sci. Rep.
5
,
10571
(
2015
).
57.
L. N.
Chakrapani
,
P.
Korkmaz
,
B. E.
Akgul
, and
K. V.
Palem
, “
Probabilistic system-on-a-chip architectures
,”
ACM Trans. Des. Autom. Electron. Syst. (TODAES)
12
,
29
(
2007
).
58.
D.
Querlioz
,
O.
Bichler
,
A. F.
Vincent
, and
C.
Gamrat
, “
Bioinspired programming of memory devices for implementing an inference engine
,”
Proc. IEEE
103
,
1398
1416
(
2015
).
59.
Y.
Shim
,
S.
Chen
,
A.
Sengupta
, and
K.
Roy
, “
Stochastic spin-orbit torque devices as elements for bayesian inference
,”
Sci. Rep.
7
,
14101
(
2017
).
60.
W.
Tylman
,
T.
Waszyrowski
,
A.
Napieralski
,
M.
Kamiński
,
T.
Trafidło
,
Z.
Kulesza
,
R.
Kotas
,
P.
Marciniak
,
R.
Tomala
, and
M.
Wenerski
, “
Real-time prediction of acute cardiovascular events using hardware-implemented bayesian networks
,”
Comput. Biol. Med.
69
,
245
253
(
2016
).
61.
A.
Ardakani
,
F.
Leduc-Primeau
,
N.
Onizawa
,
T.
Hanyu
, and
W. J.
Gross
, “
Vlsi implementation of deep neural network using integral stochastic computing
,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
25
,
2688
2699
(
2017
).
62.
R.
Zand
,
K. Y.
Camsari
,
S. D.
Pyle
,
I.
Ahmed
,
C. H.
Kim
, and
R. F.
DeMara
, “
Low-energy deep belief networks using intrinsic sigmoidal spintronic-based probabilistic neurons
,” in
Proceedings of the 2018 on Great Lakes Symposium on VLSI
(ACM,
2018
), pp.
15
20
.
63.
R.
Salakhutdinov
,
A.
Mnih
, and
G.
Hinton
, “
Restricted Boltzmann machines for collaborative filtering
,” in
Proceedings of the 24th International Conference on Machine Learning
(ACM,
2007
), pp.
791
798
.
64.
G. E.
Hinton
, “
Training products of experts by minimizing contrastive divergence
,”
Neural Comput.
14
,
1771
1800
(
2002
).
65.
M. N.
Bojnordi
and
E.
Ipek
, “
Memristive Boltzmann machine: A hardware accelerator for combinatorial optimization and deep learning
,” in
Proceedings of 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA)
(IEEE,
2016
), pp.
1
13
.
66.
R.
Faria
,
J.
Kaiser
,
O.
Hassan
,
K. Y.
Camsari
, and
S.
Datta
, “
Accelerating machine learning using stochastic embedded mtj
” (unpublished).
67.
D. J.
Amit
and
D. J.
Amit
,
Modeling Brain Function: The World of Attractor Neural Networks
(
Cambridge University Press
,
1992
).
68.
M.
Yamaoka
,
C.
Yoshimura
,
M.
Hayashi
,
T.
Okuyama
,
H.
Aoki
, and
H.
Mizuno
, “
A 20k-spin ising chip to solve combinatorial optimization problems with cmos annealing
,”
IEEE J. Solid-State Circuits
51
,
303
309
(
2016
).
69.
P. L.
McMahon
,
A.
Marandi
,
Y.
Haribara
,
R.
Hamerly
,
C.
Langrock
,
S.
Tamate
,
T.
Inagaki
,
H.
Takesue
,
S.
Utsunomiya
,
K.
Aihara
 et al, “
A fully programmable 100-spin coherent ising machine with all-to-all connections
,”
Science
354
,
614
617
(
2016
).
70.
Y.
Shim
,
A.
Jaiswal
, and
K.
Roy
, “
Ising computation based combinatorial optimization using spin-hall effect (she) induced stochastic magnetization reversal
,”
J. Appl. Phys.
121
,
193902
(
2017
).
71.
T.
Wang
and
J.
Roychowdhury
, “
Oscillator-based ising machine
,” preprint arXiv:1709.08102 (
2017
).
72.
T.
Van Vaerenbergh
,
R.
Bose
,
D.
Kielpinski
,
G. J.
Mendoza
,
J. S.
Pelc
,
N. A.
Tezak
,
C.
Santori
, and
R. G.
Beausoleil
, “
How coherent ising machines push circuit design in silicon photonics to its limits (conference presentation)
,”
Proc. SPIE
10537
,
105370D
(
2018
).
73.
G. E.
Hinton
, “
A practical guide to training restricted Boltzmann machines
,” in Neural networks: Tricks of the trade (Springer,
1985
); available at https://link.springer.com/chapter/10.1007/978-3-642-35289-8_32.
74.
K. G.
Murty
and
S. N.
Kabadi
, “
Some np-complete problems in quadratic and nonlinear programming
,”
Math. Program.
39
,
117
129
(
1987
).
75.
P. W.
Shor
, “
Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer
,”
SIAM Rev.
41
,
303
332
(
1999
).
76.
F. L.
Traversa
and
M.
Di Ventra
, “
Polynomial-time solution of prime factorization and np-complete problems with digital memcomputing machines
,”
Chaos
27
,
023107
(
2017
).
77.
M.
Di Ventra
and
F. L.
Traversa
, “
Perspective: Memcomputing: Leveraging memory and physics to compute efficiently
,”
J. Appl. Phys.
123
,
180901
(
2018
).
78.
A.
Lucas
, “
Ising formulations of many np problems
,”
Front. Phys.
2
,
5
(
2014
).
79.
X.
Peng
,
Z.
Liao
,
N.
Xu
,
G.
Qin
,
X.
Zhou
,
D.
Suter
, and
J.
Du
, “
Quantum adiabatic algorithm for factorization and its experimental implementation
,”
Phys. Rev. Lett.
101
,
220405
(
2008
).
80.
P.
Henelius
and
S.
Girvin
, “
A statistical mechanics approach to the factorization problem
,” e-print arXiv:1102.1296 [cond-mat].
81.
S.
Jiang
,
K. A.
Britt
,
T. S.
Humble
, and
S.
Kais
, “
Quantum annealing for prime factorization
,”
Sci. Rep.
8
,
1
9
(
2018
).
82.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
, “
Optimization by simulated annealing
,”
Science
220
,
671
680
(
1983
).
83.
J.
Mooij
,
T.
Orlando
,
L.
Levitov
,
L.
Tian
,
C. H.
Van der Wal
, and
S.
Lloyd
, “
Josephson persistent-current qubit
,”
Science
285
,
1036
1039
(
1999
).
84.
M. W.
Johnson
,
M. H.
Amin
,
S.
Gildert
,
T.
Lanting
,
F.
Hamze
,
N.
Dickson
,
R.
Harris
,
A. J.
Berkley
,
J.
Johansson
,
P.
Bunyk
 et al, “
Quantum annealing with manufactured spins
,”
Nature
473
,
194
(
2011
).
85.
T.
Albash
and
D. A.
Lidar
, “
Adiabatic quantum computation
,”
Rev. Mod. Phys.
90
,
015002
(
2018
).
86.
K. Y.
Camsari
,
S.
Chowdhury
, and
S.
Datta
, “
Scaled quantum circuits emulated with room temperature p-bits
,” preprint arXiv:1810.07144 (
2018
).
87.
K. Y.
Camsari
,
A. Z.
Pervaiz
,
R.
Faria
,
E. E.
Marinero
, and
S.
Datta
, “
Ultrafast spin-transfer-torque switching of synthetic ferrimagnets
,”
IEEE Magn. Lett.
7
,
1
5
(
2016
).
88.
U.
Atxitia
,
T.
Birk
,
S.
Selzer
, and
U.
Nowak
, “
Superparamagnetic limit of antiferromagnetic nanoparticles
,” preprint arXiv:1808.07665 (
2018
).
You do not currently have access to this content.