Three dimensional (3D) printing is a revolutionizing technology, which endows engineers, designers, and manufacturers with the ability to rapidly translate digital sketches into physical objects. The advantages that lie in the high resolution and accuracy of this technique were not concealed from the eyes of tissue engineers that soon harnessed this power for fabrication of complex biological structures. Nevertheless, while the conventional 3D printing scheme is oriented to yield durable and sturdy structures, the delicate nature of the substances used in 3D bioprinting results in fragile and mechanically unstable constructs. This poses a significant restriction that needs to be overcome in order to successfully complete the printing of intact, accurate, and biologically relevant constructs with desirable properties. To address these complications, advanced means of stabilization which are applied during and/or following the printing procedure are constantly being developed. In this review, the rational and principles behind widely used stabilization strategies in extrusion-based bioprinting will be covered. Examples of implementation of these strategies in recently published research in the field of tissue engineering will also be presented and discussed.

1.
B. C.
Gross
,
J. L.
Erkal
,
S. Y.
Lockwood
,
C.
Chen
, and
D. M.
Spence
, “
Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences
,”
Anal. Chem.
86
(
7
),
3240
3253
(
2014
).
2.
J. R. C.
Dizon
,
A. H.
Espera
,
Q.
Chen
, and
R. C.
Advincula
, “
Mechanical characterization of 3D-printed polymers
,”
Addit. Manuf.
20
,
44
67
(
2018
).
3.
S. C.
Ligon
,
R.
Liska
,
J.
Stampfl
,
M.
Gurr
, and
R.
Mulhaupt
, “
Polymers for 3D printing and customized additive manufacturing
,”
Chem. Rev.
117
(
15
),
10212
10290
(
2017
).
4.
T. D.
Ngo
,
A.
Kashani
,
G.
Imbalzano
,
K. T. Q.
Nguyen
, and
D.
Hui
, “
Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
,”
Composites B
143
,
172
196
(
2018
).
5.
A.
Shafiee
and
A.
Atala
, “
Tissue engineering: Toward a new era of medicine
,”
Annu. Rev. Med.
68
,
29
40
(
2017
).
6.
A. S.
Mao
and
D. J.
Mooney
, “
Regenerative medicine: Current therapies and future directions
,”
Proc. Natl. Acad. Sci. U. S. A.
112
(
47
),
14452
14459
(
2015
).
7.
A.
Khademhosseini
and
R.
Langer
, “
A decade of progress in tissue engineering
,”
Nat. Protoc.
11
(
10
),
1775
1781
(
2016
).
8.
Q.-Z.
Chen
,
S. E.
Harding
,
N. N.
Ali
,
A. R.
Lyon
, and
A. R.
Boccaccini
, “
Biomaterials in cardiac tissue engineering: Ten years of research survey
,”
Mater. Sci. Eng. R
59
(
1
),
1
37
(
2008
).
9.
T.
Dvir
,
B. P.
Timko
,
D. S.
Kohane
, and
R.
Langer
, “
Nanotechnological strategies for engineering complex tissues
,”
Nat. Nanotechnol.
6
(
1
),
13
22
(
2011
).
10.
H.
Lee
and
T. G.
Park
, “
Design principles in biomaterials and scaffolds
,” in
Principles of Regenerative Medicine
, edited by
A.
Atala
,
R.
Lanza
, and
R.
Nerem
(
Academic Press
,
San Diego
,
2008
), Chap. 33, pp.
580
593
.
11.
T.
Lu
,
Y.
Li
, and
T.
Chen
, “
Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering
,”
Int. J. Nanomed.
8
,
337
350
(
2013
).
12.
B.
Subia
,
J.
Kundu
, and
S. C.
Kundu
,
Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications
(
INTECH Open Access Publisher
,
2010
).
13.
N.
Zhu
and
X.
Chen
,
Biofabrication of Tissue Scaffolds
(
INTECH Open Access Publisher
,
2013
).
14.
A.
Shapira
,
R.
Feiner
, and
T.
Dvir
, “
Composite biomaterial scaffolds for cardiac tissue engineering
,”
Int. Mater. Rev.
61
(
1
),
1
19
(
2016
).
15.
D.
Beski
,
T.
Dufour
,
F.
Gelaude
,
A.
Ilankovan
,
M.
Kvasnytsia
,
M.
Lawrenchuk
,
I.
Lukyanenko
,
M.
Mir
,
L.
Neumann
,
A.
Nguyen
,
A.
Soares
,
E.
Sauvage
,
K.
Vanderperren
, and
D.
Vangeneugden
, “
Software for biofabrication
,” in
Essentials of 3D Biofabrication and Translation
, edited by
A.
Atala
and
J. J.
Yoo
(
Academic Press
,
Boston
,
2015
), Chap. 2, pp.
19
41
.
16.
S.
Junk
and
C.
Kuen
, “
Review of open source and freeware CAD systems for use with 3D-printing
,”
Procedia CIRP
50
,
430
435
(
2016
).
17.
B. K.
Gu
,
D. J.
Choi
,
S. J.
Park
,
M. S.
Kim
,
C. M.
Kang
, and
C. H.
Kim
, “
3-dimensional bioprinting for tissue engineering applications
,”
Biomater. Res.
20
,
12
(
2016
).
18.
A. B.
Dababneh
and
I. T.
Ozbolat
, “
Bioprinting technology: A current state-of-the-art review
,”
J. Manuf. Sci. Eng.
136
(
6
),
061011–
061016
(
2014
).
19.
S. V.
Murphy
and
A.
Atala
, “
3D bioprinting of tissues and organs
,”
Nat. Biotechnol.
32
(
8
),
773
785
(
2014
).
20.
Y.-J.
Seol
,
H.-W.
Kang
,
S. J.
Lee
,
A.
Atala
, and
J. J.
Yoo
, “
Bioprinting technology and its applications
,”
Eur. J. Cardio-Thoracic Surg.
46
(
3
),
342
348
(
2014
).
21.
C.
Mandrycky
,
Z.
Wang
,
K.
Kim
, and
D. H.
Kim
, “
3D bioprinting for engineering complex tissues
,”
Biotechnol. Adv.
34
(
4
),
422
434
(
2016
).
22.
J.
Gopinathan
and
I.
Noh
, “
Recent trends in bioinks for 3D printing
,”
Biomater. Res.
22
,
11
(
2018
).
23.
M.
Hospodiuk
,
M.
Dey
,
D.
Sosnoski
, and
I. T.
Ozbolat
, “
The bioink: A comprehensive review on bioprintable materials
,”
Biotechnol. Adv.
35
(
2
),
217
239
(
2017
).
24.
S.
Ji
and
M.
Guvendiren
, “
Recent advances in bioink design for 3D bioprinting of tissues and organs
,”
Front. Bioeng. Biotechnol.
5
,
23
(
2017
).
25.
H.
Katja
,
L.
Shengmao
,
T.
Liesbeth
,
V.
Sandra Van
,
G.
Linxia
, and
O.
Aleksandr
, “
Bioink properties before, during and after 3D bioprinting
,”
Biofabrication
8
(
3
),
032002
(
2016
).
26.
D.
Chimene
,
K. K.
Lennox
,
R. R.
Kaunas
, and
A. K.
Gaharwar
, “
Advanced bioinks for 3D printing: A materials science perspective
,”
Ann. Biomed. Eng.
44
(
6
),
2090
2102
(
2016
).
27.
P. S.
Gungor-Ozkerim
,
I.
Inci
,
Y. S.
Zhang
,
A.
Khademhosseini
, and
M. R.
Dokmeci
, “
Bioinks for 3D bioprinting: An overview
,”
Biomater. Sci.
6
,
915
946
(
2018
).
28.
T.
Jungst
,
W.
Smolan
,
K.
Schacht
,
T.
Scheibel
, and
J.
Groll
, “
Strategies and molecular design criteria for 3D printable hydrogels
,”
Chem. Rev.
116
(
3
),
1496
1539
(
2016
).
29.
B.
Guillotin
,
M.
Ali
,
A.
Ducom
,
S.
Catros
,
V.
Keriquel
,
A.
Souquet
,
M.
Remy
,
J.-C.
Fricain
, and
F.
Guillemot
, “
Laser-assisted bioprinting for tissue engineering
,” in
Biofabrication
(
William Andrew Publishing
,
Boston
,
2013
), Chap. 6, pp.
95
118
.
30.
L.
Koch
,
M.
Gruene
,
C.
Unger
, and
B.
Chichkov
, “
Laser assisted cell printing
,”
Curr. Pharm. Biotechnol.
14
(
1
),
91
97
(
2013
).
31.
B.
Guillotin
and
F.
Guillemot
, “
Cell patterning technologies for organotypic tissue fabrication
,”
Trends Biotechnol.
29
(
4
),
183
190
(
2011
).
32.
H.
Gudapati
,
M.
Dey
, and
I.
Ozbolat
, “
A comprehensive review on droplet-based bioprinting: Past, present and future
,”
Biomaterials
102
,
20
42
(
2016
).
33.
R. E.
Saunders
and
B.
Derby
, “
Inkjet printing biomaterials for tissue engineering: Bioprinting
,”
Int. Mater. Rev.
59
(
8
),
430
448
(
2014
).
34.
C. C.
Chang
,
E. D.
Boland
,
S. K.
Williams
, and
J. B.
Hoying
, “
Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies
,”
J. Biomed. Mater. Res. B
98
(
1
),
160
170
(
2011
).
35.
J.
Li
,
M.
Chen
,
X.
Fan
, and
H.
Zhou
, “
Recent advances in bioprinting techniques: Approaches, applications and future prospects
,”
J. Transl. Med.
14
,
271
(
2016
).
36.
I. T.
Ozbolat
and
M.
Hospodiuk
, “
Current advances and future perspectives in extrusion-based bioprinting
,”
Biomaterials
76
,
321
343
(
2016
).
37.
J. K.
Placone
and
A. J.
Engler
, “
Recent advances in extrusion-based 3D printing for biomedical applications
,”
Adv. Healthc. Mater.
7
(
8
),
1701161
(
2018
).
38.
J.
Malda
,
J.
Visser
,
F. P.
Melchels
,
T.
Jungst
,
W. E.
Hennink
,
W. J.
Dhert
,
J.
Groll
, and
D. W.
Hutmacher
, “
25th anniversary article: Engineering hydrogels for biofabrication
,”
Adv. Mater.
25
(
36
),
5011
5028
(
2013
).
39.
The structure and properties of alginate
,” in
Pseudomonas Infection and Alginates: Biochemistry, Genetics and Pathology
, edited by
P.
Gacesa
and
N. J.
Russell
(
Springer Netherlands
,
Dordrecht
,
1990
), pp.
29
49
.
40.
J.
Sun
and
H.
Tan
, “
Alginate-based biomaterials for regenerative medicine applications
,”
Mater. (Basel)
6
(
4
),
1285
1309
(
2013
).
41.
M.
Szekalska
,
A.
Puciłowska
,
E.
Szymańska
,
P.
Ciosek
, and
K.
Winnicka
, “
Alginate: Current use and future perspectives in pharmaceutical and biomedical applications
,”
Int. J. Polym. Sci.
2016
,
17
.
42.
N. E.
Fedorovich
,
W.
Schuurman
,
H. M.
Wijnberg
,
H. J.
Prins
,
P. R.
van Weeren
,
J.
Malda
,
J.
Alblas
, and
W. J.
Dhert
, “
Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
,”
Tissue Eng. C
18
(
1
),
33
44
(
2012
).
43.
R.
Chang
,
J.
Nam
, and
W.
Sun
, “
Direct cell writing of 3D microorgan for in vitro pharmacokinetic model
,”
Tissue Eng. C
14
(
2
),
157
166
(
2008
).
44.
Z.
Wu
,
X.
Su
,
Y.
Xu
,
B.
Kong
,
W.
Sun
, and
S.
Mi
, “
Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation
,”
Sci. Rep.
6
,
24474
(
2016
).
45.
Y. S.
Zhang
,
A.
Arneri
,
S.
Bersini
,
S. R.
Shin
,
K.
Zhu
,
Z.
Goli-Malekabadi
,
J.
Aleman
,
C.
Colosi
,
F.
Busignani
,
V.
Dell'Erba
,
C.
Bishop
,
T.
Shupe
,
D.
Demarchi
,
M.
Moretti
,
M.
Rasponi
,
M. R.
Dokmeci
,
A.
Atala
, and
A.
Khademhosseini
, “
Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
,”
Biomaterials
110
,
45
59
(
2016
).
46.
W.
Jia
,
P. S.
Gungor-Ozkerim
,
Y. S.
Zhang
,
K.
Yue
,
K.
Zhu
,
W.
Liu
,
Q.
Pi
,
B.
Byambaa
,
M. R.
Dokmeci
,
S. R.
Shin
, and
A.
Khademhosseini
, “
Direct 3D bioprinting of perfusable vascular constructs using a blend bioink
,”
Biomaterials
106
,
58
68
(
2016
).
47.
A. G.
Tabriz
,
M. A.
Hermida
,
N. R.
Leslie
, and
W.
Shu
, “
Three-dimensional bioprinting of complex cell laden alginate hydrogel structures
,”
Biofabrication
7
(
4
),
045012
(
2015
).
48.
L.
Lorand
and
R. M.
Graham
, “
Transglutaminases: Crosslinking enzymes with pleiotropic functions
,”
Nat. Rev. Mol. Cell Biol.
4
(
2
),
140
156
(
2003
).
49.
B.
Ahvazi
and
P. M.
Steinert
, “
A model for the reaction mechanism of the transglutaminase 3 enzyme
,”
Exp. Mol. Med.
35
(
4
),
228
242
(
2003
).
50.
L.
Lorand
and
S. M.
Conrad
, “
Transglutaminases
,”
Mol. Cell. Biochem.
58
(
1
),
9
35
(
1984
).
51.
S. A.
Smith
,
R. J.
Travers
, and
J. H.
Morrissey
, “
How it all starts: Initiation of the clotting cascade
,”
Crit. Rev. Biochem. Mol. Biol.
50
(
4
),
326
336
(
2015
).
52.
J. T.
Crawley
,
S.
Zanardelli
,
C. K.
Chion
, and
D. A.
Lane
, “
The central role of thrombin in hemostasis
,”
J. Thromb. Haemostasis
5
(
Suppl. 1
),
95
101
(
2007
).
53.
A. S.
Wolberg
, “
Thrombin generation and fibrin clot structure
,”
Blood Rev.
21
(
3
),
131
142
(
2007
).
54.
R. A.
Ariens
,
T. S.
Lai
,
J. W.
Weisel
,
C. S.
Greenberg
, and
P. J.
Grant
, “
Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms
,”
Blood
100
(
3
),
743
754
(
2002
).
55.
B.
Hoppe
, “
Fibrinogen and factor XIII at the intersection of coagulation, fibrinolysis and inflammation
,”
Thromb. Haemostasis
112
(
10
),
649
658
(
2014
).
56.
D. B.
Kolesky
,
K. A.
Homan
,
M. A.
Skylar-Scott
, and
J. A.
Lewis
, “
Three-dimensional bioprinting of thick vascularized tissues
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
12
),
3179
3184
(
2016
).
57.
X.
Dai
,
L.
Liu
,
J.
Ouyang
,
X.
Li
,
X.
Zhang
,
Q.
Lan
, and
T.
Xu
, “
Coaxial 3D bioprinting of self-assembled multicellular heterogeneous tumor fibers
,”
Sci. Rep.
7
(
1
),
1457
(
2017
).
58.
Y.
Zhao
,
R.
Yao
,
L.
Ouyang
,
H.
Ding
,
T.
Zhang
,
K.
Zhang
,
S.
Cheng
, and
W.
Sun
, “
Three-dimensional printing of Hela cells for cervical tumor model in vitro
,”
Biofabrication
6
(
3
),
035001
(
2014
).
59.
X.
Dai
,
C.
Ma
,
Q.
Lan
, and
T.
Xu
, “
3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility
,”
Biofabrication
8
(
4
),
045005
(
2016
).
60.
S.
England
,
A.
Rajaram
,
D. J.
Schreyer
, and
X.
Chen
, “
Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration
,”
Bioprinting
5
,
1
9
(
2017
).
61.
J. L.
Ifkovits
and
J. A.
Burdick
, “
Review: Photopolymerizable and degradable biomaterials for tissue engineering applications
,”
Tissue Eng.
13
(
10
),
2369
2385
(
2007
).
62.
H.
Yao
,
J.
Wang
, and
S.
Mi
, “
Photo processing for biomedical hydrogels design and functionality: A review
,”
Polymers
10
(
1
),
11
(
2018
).
63.
K.
Yue
,
G.
Trujillo-de Santiago
,
M. M.
Alvarez
,
A.
Tamayol
,
N.
Annabi
, and
A.
Khademhosseini
, “
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels
,”
Biomaterials
73
,
254
271
(
2015
).
64.
W.
Schuurman
,
P. A.
Levett
,
M. W.
Pot
,
P. R.
van Weeren
,
W. J. A.
Dhert
,
D. W.
Hutmacher
,
F. P. W.
Melchels
,
T. J.
Klein
, and
J.
Malda
, “
Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs
,”
Macromol. Biosci.
13
(
5
),
551
561
(
2013
).
65.
B. J.
Klotz
,
D.
Gawlitta
,
A.
Rosenberg
,
J.
Malda
, and
F. P. W.
Melchels
, “
Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair
,”
Trends Biotechnol.
34
(
5
),
394
407
(
2016
).
66.
D. B.
Kolesky
,
R. L.
Truby
,
A. S.
Gladman
,
T. A.
Busbee
,
K. A.
Homan
, and
J. A.
Lewis
, “
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
,”
Adv. Mater.
26
(
19
),
3124
3130
(
2014
).
67.
T.
Billiet
,
E.
Gevaert
,
T.
De Schryver
,
M.
Cornelissen
, and
P.
Dubruel
, “
The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
,”
Biomaterials
35
(
1
),
49
62
(
2014
).
68.
S.
Agarwala
,
J. M.
Lee
,
W. L.
Ng
,
M.
Layani
,
W. Y.
Yeong
, and
S.
Magdassi
, “
A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform
,”
Biosens. Bioelectron.
102
,
365
371
(
2018
).
69.
J. T.
Oliveira
,
L.
Martins
,
R.
Picciochi
,
P. B.
Malafaya
,
R. A.
Sousa
,
N. M.
Neves
,
J. F.
Mano
, and
R. L.
Reis
, “
Gellan gum: A new biomaterial for cartilage tissue engineering applications
,”
J. Biomed. Mater. Res. A
93
(
3
),
852
863
(
2010
).
70.
R.
Levato
,
J.
Visser
,
J. A.
Planell
,
E.
Engel
,
J.
Malda
, and
M. A.
Mateos-Timoneda
, “
Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers
,”
Biofabrication
6
(
3
),
035020
(
2014
).
71.
L.
Ouyang
,
C. B.
Highley
,
C. B.
Rodell
,
W.
Sun
, and
J. A.
Burdick
, “
3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking
,”
ACS Biomater. Sci. Eng.
2
(
10
),
1743
1751
(
2016
).
72.
M.
Taylor
,
P.
Tomlins
, and
T.
Sahota
, “
Thermoresponsive gels
,”
Gels
3
(
1
),
4
(
2017
).
73.
H.
Dominique
and
D.
Madeleine
, “
Physically and chemically crosslinked gelatin gels
,”
Macromol. Symp.
241
(
1
),
23
27
(
2006
).
74.
B.
Duan
,
L. A.
Hockaday
,
K. H.
Kang
, and
J. T.
Butcher
, “
3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
,”
J. Biomed. Mater. Res. A
101
(
5
),
1255
1264
(
2013
).
75.
M. J.
Rodriguez
,
J.
Brown
,
J.
Giordano
,
S. J.
Lin
,
F. G.
Omenetto
, and
D. L.
Kaplan
, “
Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments
,”
Biomaterials
117
,
105
115
(
2017
).
76.
M.
Tako
, “
The principle of polysaccharide gels
,”
Adv. Biosci. Biotechnol.
6
(
01
),
53542
(
2015
).
77.
A.
Nadernezhad
,
N.
Khani
,
G. A.
Skvortsov
,
B.
Toprakhisar
,
E.
Bakirci
,
Y.
Menceloglu
,
S.
Unal
, and
B.
Koc
, “
Multifunctional 3D printing of heterogeneous hydrogel structures
,”
Sci. Rep.
6
,
33178
(
2016
).
78.
Y.
Fu
,
X.
Fan
,
C.
Tian
,
J.
Luo
,
Y.
Zhang
,
L.
Deng
,
T.
Qin
, and
Q.
Lv
, “
Decellularization of porcine skeletal muscle extracellular matrix for the formulation of a matrix hydrogel: A preliminary study
,”
J. Cell Mol. Med.
20
(
4
),
740
749
(
2016
).
79.
D. O.
Freytes
,
J.
Martin
,
S. S.
Velankar
,
A. S.
Lee
, and
S. F.
Badylak
, “
Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix
,”
Biomaterials
29
(
11
),
1630
1637
(
2008
).
80.
T. L.
Sellaro
,
A.
Ranade
,
D. M.
Faulk
,
G. P.
McCabe
,
K.
Dorko
,
S. F.
Badylak
, and
S. C.
Strom
, “
Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels
,”
Tissue Eng. A
16
(
3
),
1075
1082
(
2010
).
81.
D. A. Y. B.
Vaibhav
and
C. K.
L
, “
Award winner for outstanding research in the PhD category
,” in
2014 Society for Biomaterials Annual Meeting and Exposition, Denver, Colorado, April 16–19, 2014: Decellularized Adipose Matrix Hydrogels Stimulate In Vivo Neovascularization and Adipose Formation
[
J. Biomed. Mater. Res. A
102
(
6
),
1641
1651
(2014)]
.
82.
J. M.
Singelyn
,
J. A.
DeQuach
,
S. B.
Seif-Naraghi
,
R. B.
Littlefield
,
P. J.
Schup-Magoffin
, and
K. L.
Christman
, “
Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering
,”
Biomaterials
30
(
29
),
5409
5416
(
2009
).
83.
J. D.
O'Neill
,
D. O.
Freytes
,
A.
Anandappa
,
J. A.
Oliver
, and
G.
Vunjak-Novakovic
, “
The regulation of growth and metabolism of kidney stem cell with regional specificity using extracellular matrix derived from kidney
,”
Biomaterials
34
(
38
),
9830
9841
(
2013
).
84.
S.
Michal
,
Z.
Rotem
,
A.
Alona
,
F.
Sharon
,
S.
Assaf
, and
D.
Tal
, “
Omentum ECM-based hydrogel as a platform for cardiac cell delivery
,”
Biomed. Mater.
10
(
3
),
034106
(
2015
).
85.
E. E.
Antoine
,
P. P.
Vlachos
, and
M. N.
Rylander
, “
Review of collagen I hydrogels for bioengineered tissue microenvironments: Characterization of mechanics, structure, and transport
,”
Tissue Eng. B
20
(
6
),
683
696
(
2014
).
86.
G.
Gao
,
J. H.
Lee
,
J.
Jang
,
D. H.
Lee
,
J.-S.
Kong
,
B. S.
Kim
,
Y.-J.
Choi
,
W. B.
Jang
,
Y. J.
Hong
,
S.-M.
Kwon
, and
D.-W.
Cho
, “
Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3D coaxial cell printing technique: A novel therapy for ischemic disease
,”
Adv. Funct. Mater.
27
(
33
),
1700798
(
2017
).
87.
F. Y.
Hsieh
,
H. H.
Lin
, and
S. H.
Hsu
, “
3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair
,”
Biomaterials
71
,
48
57
(
2015
).
88.
C.-W.
Ou
,
C.-H.
Su
,
U. S.
Jeng
, and
S.-h.
Hsu
, “
Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion
,”
ACS Appl. Mater. Interfaces
6
(
8
),
5685
5694
(
2014
).
89.
M.
Kesti
,
M.
Muller
,
J.
Becher
,
M.
Schnabelrauch
,
M.
D'Este
,
D.
Eglin
, and
M.
Zenobi-Wong
, “
A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation
,”
Acta Biomater.
11
,
162
172
(
2015
).
90.
M. J.
Sawkins
,
P.
Mistry
,
B. N.
Brown
,
K. M.
Shakesheff
,
L. J.
Bonassar
, and
J.
Yang
, “
Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair
,”
Biofabrication
7
(
3
),
035004
(
2015
).
91.
R.
Suntornnond
,
J.
An
, and
C. K.
Chua
, “
Roles of support materials in 3D bioprinting—Present and future
,”
Int. J. Bioprinting
3
(
1
),
83
–86 (
2017
).
92.
L.
Klouda
and
A. G.
Mikos
, “
Thermoresponsive hydrogels in biomedical applications
,”
Eur. J. Pharm. Biopharm.
68
(
1
),
34
45
(
2008
).
93.
S.
Ratima
,
A.
Jia
, and
C. C.
Kai
, “
Bioprinting of thermoresponsive hydrogels for next generation tissue engineering: A review
,”
Macromol. Mater. Eng.
302
(
1
),
1600266
(
2017
).
94.
G.
Dumortier
,
J. L.
Grossiord
,
F.
Agnely
, and
J. C.
Chaumeil
, “
A review of poloxamer 407 pharmaceutical and pharmacological characteristics
,”
Pharm. Res.
23
(
12
),
2709
2728
(
2006
).
95.
R.
Suntornnond
,
E. Y. S.
Tan
,
J.
An
, and
C. K.
Chua
, “
A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures
,”
Sci. Rep.
7
(
1
),
16902
(
2017
).
96.
E.
Malikmammadov
,
T. E.
Tanir
,
A.
Kiziltay
,
V.
Hasirci
, and
N.
Hasirci
, “
PCL and PCL-based materials in biomedical applications
,”
J. Biomater. Sci., Polym. Ed.
29
(
7-9
),
863
893
(
2018
).
97.
M. A.
Woodruff
and
D. W.
Hutmacher
, “
The return of a forgotten polymer—Polycaprolactone in the 21st century
,”
Prog. Polym. Sci.
35
(
10
),
1217
1256
(
2010
).
98.
W.
Schuurman
,
V.
Khristov
,
M. W.
Pot
,
P. R.
van Weeren
,
W. J.
Dhert
, and
J.
Malda
, “
Bioprinting of hybrid tissue constructs with tailorable mechanical properties
,”
Biofabrication
3
(
2
),
021001
(
2011
).
99.
F.
Pati
,
J.
Jang
,
D. H.
Ha
,
S.
Won Kim
,
J. W.
Rhie
,
J. H.
Shim
,
D. H.
Kim
, and
D. W.
Cho
, “
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
,”
Nat. Commun.
5
,
3935
(
2014
).
100.
H. W.
Kang
,
S. J.
Lee
,
I. K.
Ko
,
C.
Kengla
,
J. J.
Yoo
, and
A.
Atala
, “
A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
,”
Nat. Biotechnol.
34
(
3
),
312
319
(
2016
).
101.
F.
Yang
,
W.
Neeley
,
M.
Moore
,
J.
Karp
,
A.
Shukla
, and
R.
Langer
,
Tissue Engineering: The Therapeutic Strategy of the Twenty-First Century
(
CRC Press
,
Taylor & Francis Group
,
2014
), pp.
3
38
.
102.
C. S.
O'Bryan
,
T.
Bhattacharjee
,
S. R.
Niemi
,
S.
Balachandar
,
N.
Baldwin
,
S. T.
Ellison
,
C. R.
Taylor
,
W. G.
Sawyer
, and
T. E.
Angelini
, “
Three-dimensional printing with sacrificial materials for soft matter manufacturing
,”
MRS Bull.
42
(
8
),
571
577
(
2017
).
103.
C.
Norotte
,
F. S.
Marga
,
L. E.
Niklason
, and
G.
Forgacs
, “
Scaffold-free vascular tissue engineering using bioprinting
,”
Biomaterials
30
(
30
),
5910
5917
(
2009
).
104.
J. S.
Miller
,
K. R.
Stevens
,
M. T.
Yang
,
B. M.
Baker
,
D. H.
Nguyen
,
D. M.
Cohen
,
E.
Toro
,
A. A.
Chen
,
P. A.
Galie
,
X.
Yu
,
R.
Chaturvedi
,
S. N.
Bhatia
, and
C. S.
Chen
, “
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
,”
Nat. Mater.
11
(
9
),
768
774
(
2012
).
105.
L. E.
Bertassoni
,
M.
Cecconi
,
V.
Manoharan
,
M.
Nikkhah
,
J.
Hjortnaes
,
A. L.
Cristino
,
G.
Barabaschi
,
D.
Demarchi
,
M. R.
Dokmeci
,
Y.
Yang
, and
A.
Khademhosseini
, “
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
,”
Lab Chip
14
(
13
),
2202
2211
(
2014
).
106.
B.
Andreotti
,
O.
Baumchen
,
F.
Boulogne
,
K. E.
Daniels
,
E. R.
Dufresne
,
H.
Perrin
,
T.
Salez
,
J. H.
Snoeijer
, and
R. W.
Style
, “
Solid capillarity: When and how does surface tension deform soft solids?
,”
Soft Matter
12
(
12
),
2993
2996
(
2016
).
107.
R. G.
Larson
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
(
3
),
595
611
(
2015
).
108.
H. A.
Barnes
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
(
1
),
1
33
(
1997
).
109.
T.
Bhattacharjee
,
S. M.
Zehnder
,
K. G.
Rowe
,
S.
Jain
,
R. M.
Nixon
,
W. G.
Sawyer
, and
T. E.
Angelini
, “
Writing in the granular gel medium
,”
Sci. Adv.
1
(
8
),
e1500655
(
2015
).
110.
W.
Wu
,
A.
DeConinck
, and
J. A.
Lewis
, “
Omnidirectional printing of 3D microvascular networks
,”
Adv. Mater.
23
(
24
),
H178
H183
(
2011
).
111.
J. A.
Burdick
and
G. D.
Prestwich
, “
Hyaluronic acid hydrogels for biomedical applications
,”
Adv. Mater.
23
(
12
),
H41
H56
(
2011
).
112.
C. B.
Highley
,
C. B.
Rodell
, and
J. A.
Burdick
, “
Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels
,”
Adv. Mater.
27
(
34
),
5075
5079
(
2015
).
113.
T. J.
Hinton
,
Q.
Jallerat
,
R. N.
Palchesko
,
J. H.
Park
,
M. S.
Grodzicki
,
H. J.
Shue
,
M. H.
Ramadan
,
A. R.
Hudson
, and
A. W.
Feinberg
, “
Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
,”
Sci. Adv.
1
(
9
),
e1500758
(
2015
).
You do not currently have access to this content.