Water wave energy widely distributed in the globe is one of the most promising renewable energy sources. However, it has not been effectively exploited by current energy harvesting technologies which primarily rely on electromagnetic generator (EMG). EMG's have various limitations, especially when operating in environment with irregular and/or low frequencies (<5Hz) wave motions. Triboelectric nanogenerators (TENGs) exhibit obvious advantages over EMG in harvesting energy from low-frequency water wave motions. The networking of TENGs has been regarded as a potential method towards large-scale blue energy harvesting. In this review, recent progress of the TENG technology for blue energy harvesting is presented, including a comparison between TENG and EMG in physics and engineering design, and the fundamental mechanism of nanogenerator based on Maxwell's displacement currents is systematically introduced. The review of hydrodynamic TENG, liquid-solid contact electrification TENG, hybrid (dual-modes) TENG, fully enclosed TENG, and TENG network for blue energy harvesting is discussed. The TENG networks are expected to harvest large-scale blue energy from the ocean, which will be a feasible approach for realizing the blue energy dream. Moreover, the energy harvested by TENG from various sources, such as human motion and vibration, is not only new energy, but more importantly, energy using for the new era-the era of internet of things.

At the request of the authors, this article is being retracted effective 15 May 2019.

1.
O.
Ellabban
,
H.
Abu-Rub
, and
F.
Blaabjerg
,
Renewable Sustainable Energy Rev.
39
,
748
(
2014
).
2.
G. S.
Bhuyan
, “
World-wide status for harnessing ocean renewable resources
,” in
Proceedings of the 2010 IEEE Power and Energy Society General Meeting
, Providence, RI, USA (
2010
).
3.
A.
Khaligh
and
O. C.
Onar
,
Energy Harvesting: Solar Wind, and Ocean Energy Conversion Systems
(
CRC Press
,
Boca Raton, FL
,
2009
).
4.
Z. L.
Wang
,
Nature
542
,
159
(
2017
).
5.
J.
Falnes
,
Mar. Struct.
20
,
185
(
2007
).
6.
N. N.
Panicker
, “
Power resource potential of ocean surface waves
,” in
Proceedings of the Wave and Salinity Gradient Workshop
, Newark, Delaware, USA (1976).
7.
D.
Ross
,
Power From Sea Waves
, 1st ed. (
Oxford University Press
,
United Kingdom
,
1995
).
8.
S. H.
Salter
,
Nature
249
,
720
(
1974
).
9.
Y.
Li
and
Y. H.
Yu
,
Renewable Sustainable Energy Rev.
16
,
4352
(
2012
).
10.
See http://www.oceanpowertechnologies.com for Ocean Power Technologies, May
2011
.
11.
See http://www.wavebob.com/home/ for Wavebob, May
2011
.
12.
See http://wavestarenergy.com/ for Wavestar.
13.
See http://www.wavedragon.net/fir for Wave Dragon.
14.
See http://www.iea-oceans.org/index.asp for IEA-OES for International Energy Agency Ocean Energy System, May
2011
.
15.
IEC, International Electrotechnical Commission Marine Energy Technical Committee, May
2011
, see http://www.bsigroup.com/en/Standardsand-Publications/CommitteeMembers/Committee-membernews/Summer-2007/New-Committee-IECTC-114-Marine-Energy/.
16.
J. N.
Newman
,
J. Ship Res.
6
,
10
(
1962
).
17.
R. W.
Yeung
,
Appl. Ocean Res.
3
,
119
(
1981
).
18.
A.
Hulme
,
J. Fluid Mech.
121
,
443
(
1982
).
19.
P.
Mclver
,
J. Eng. Math.
18
,
273
(
1984
).
20.
P.
Siddorn
and
R. E.
Taylor
,
Ocean Eng.
35
,
1289
(
2008
).
21.
Y.
Kim
,
D.
Kring
, and
P.
Sclavounos
,
Appl. Ocean Res.
19
,
235
(
1997
).
22.
X.
Chen
,
Y.
Ding
,
J.
Zhang
,
P.
Liagre
,
J.
Niedzwecki
, and
P.
Teigen
,
Ocean Eng.
33
,
93
(
2006
).
23.
W.
Bai
and
R. E.
Taylor
,
Appl. Ocean Res.
28
,
247
(
2006
).
24.
V.
Vinayan
and
S.
Kinnas
,
J. Fluid Mech.
658
,
383
(
2010
).
25.
A.
McCabe
,
T.
Stallard
,
N.
Baker
, and
H.
Yavuz
,
Ocean Eng.
34
,
1371
(
2007
).
26.
P.
Vicente
,
A.
Falcão
,
L.
Gato
, and
P.
Justino
,
Appl. Ocean Res.
31
,
267
(
2009
).
27.
R. V.
Wilson
,
P. M.
Carrica
, and
F.
Stern
,
Comput. Fluids
35
,
501
(
2006
).
28.
S. V.
Patankar
and
D. B.
Spalding
,
Int. J. Heat Mass Transfer
15
,
1787
(
1972
).
29.
J.
Lara
,
N.
Garcia
, and
I.
Losada
,
Coastal Eng.
53
,
395
(
2006
).
30.
C.
Farhat
,
P.
Geuzaine
, and
C.
Grandmont
,
J. Comput. Phys.
174
,
669
(
2001
).
31.
W. M.
Chan
,
Comput. Fluids
38
,
496
(
2009
).
32.
C. S.
Peskin
,
Acta Numerica
11
,
479
(
2002
).
33.
O.
Moctar
,
T.
Schellin
,
T.
Jahnke
, and
M.
Peric
,
J. Offshore Mech. Arct. Eng.
131
,
021602
(
2009
).
34.
E.
Agamloh
,
A.
Wallace
, and
A. V.
Jouanne
,
Renewable Energy
33
,
748
(
2008
).
35.
A. F.
de O. Falcao
,
Renewable Sustainable Energy Rev.
14
,
899
(
2010
).
36.
A.
Clément
,
P.
McCullen
,
A.
Falcão
,
A..
Fiorentino
,
F.
Gardner
,
K.
Hammarlund
, et al,
Renew. Sust. Energ. Rev.
6
,
405
(
2002
).
37.
Z. L.
Wang
,
T.
Jiang
, and
L.
Xu
,
Nano Energy
39
,
9
(
2017
).
38.
J.
Tollefson
,
Nature
508
,
302
(
2014
).
39.
J. P.
Kofoed
,
P.
Frigaard
,
E.
Friis-Madsen
, and
H. C.
Sørensen
,
Renewable Energy
31
,
181
(
2006
).
40.
A.
Wolfbrandt
,
IEEE Trans. Magn.
42
,
1812
(
2006
).
41.
R.
Henderson
,
Renewable Energy
31
,
271
(
2006
).
42.
A. V.
Jouanne
,
Mech. Eng. Mag.
128
,
24
(
2006
).
43.
F. R.
Fan
,
Z. Q.
Tian
, and
Z. L.
Wang
,
Nano Energy
1
,
328
(
2012
).
44.
Z. L.
Wang
and
J. H.
Song
,
Science
312
,
242
(
2006
).
45.
Y.
Yang
,
H. L.
Zhang
,
J.
Chen
,
Q. S.
Jing
,
Y. S.
Zhou
,
X. N.
Wen
, and
Z. L.
Wang
,
ACS Nano
7
,
7342
(
2013
).
46.
C.
Zhang
,
T.
Zhou
,
W.
Tang
,
C. B.
Han
,
L. M.
Zhang
, and
Z. L.
Wang
,
Adv. Energy Mater.
4
,
1301798
(
2014
).
47.
Y. N.
Xie
,
S. H.
Wang
,
S. M.
Niu
,
L.
Lin
,
J.
Yang
,
Z. Y.
Wu
, and
Z. L.
Wang
,
Adv. Mater.
26
,
6599
(
2014
).
48.
T.
Jiang
,
X.
Chen
,
C. B.
Han
,
W.
Tang
, and
Z. L.
Wang
,
Adv. Funct. Mater.
25
,
2928
(
2015
).
49.
T.
Jiang
,
W.
Tang
,
X.
Chen
,
C. B.
Han
,
L.
Lin
,
Y.
Zi
, and
Z. L.
Wang
,
Adv. Mater. Technol.
1
,
1600017
(
2016
).
50.
T.
Jiang
,
X.
Chen
,
K.
Yang
,
C. B.
Han
,
W.
Tang
, and
Z. L.
Wang
,
Nano Res.
9
,
1057
(
2016
).
51.
S. H.
Wang
,
L.
Lin
, and
Z. L.
Wang
,
Nano Energy
11
,
436
(
2015
).
52.
G.
Zhu
,
J.
Chen
,
T. J.
Zhang
,
Q. S.
Jing
, and
Z. L.
Wang
,
Nat. Commun.
5
,
3426
(
2014
).
53.
F. R.
Fan
,
L.
Lin
,
G.
Zhu
,
W. Z.
Wu
,
R.
Zhang
, and
Z. L.
Wang
,
Nano Lett.
12
,
3109
(
2012
).
54.
W.
Tang
,
T.
Jiang
,
F. R.
Fan
,
A. F.
Yu
,
C.
Zhang
,
X.
Cao
, and
Z. L.
Wang
,
Adv. Funct. Mater.
25
,
3718
(
2015
).
55.
G.
Zhu
,
Y. S.
Zhou
,
P.
Bai
,
X. S.
Meng
,
Q. S.
Jing
,
J.
Chen
, and
Z. L.
Wang
,
Adv. Mater.
26
,
3788
(
2014
).
56.
S. H.
Wang
,
Y. N.
Xie
,
S. M.
Niu
,
L.
Lin
, and
Z. L.
Wang
,
Adv. Mater.
26
,
2818
(
2014
).
57.
S. H.
Wang
,
S. M.
Niu
,
J.
Yang
,
L.
Lin
, and
Z. L.
Wang
,
ACS Nano
8
,
12004
(
2014
).
58.
C. B.
Han
,
W. M.
Du
,
C.
Zhang
,
W.
Tang
,
L. M.
Zhang
, and
Z. L.
Wang
,
Nano Energy
6
,
59
(
2014
).
59.
J.
Bae
,
J.
Lee
,
S.
Kim
,
J.
Ha
,
B. S.
Lee
,
Y.
Park
,
C.
Choong
,
J. B.
Kim
,
Z. L.
Wang
,
H. Y.
Kim
,
J. J.
Park
, and
U. I.
Chung
,
Nat. Commun.
5
,
4929
(
2014
).
60.
Z.
Quan
,
C. B.
Han
,
T.
Jiang
, and
Z. L.
Wang
,
Adv. Energy Mater.
6
,
1501799
(
2016
).
61.
W. Q.
Yang
,
J.
Chen
,
G.
Zhu
,
J.
Yang
,
P.
Bai
,
Y. J.
Su
,
Q. S.
Jing
,
X.
Cao
, and
Z. L.
Wang
,
ACS Nano
7
,
11317
(
2013
).
62.
G.
Zhu
,
P.
Bai
,
J.
Chen
, and
Z. L.
Wang
,
Nano Energy
2
,
688
(
2013
).
63.
J.
Chen
,
G.
Zhu
,
W.
Yang
,
Q.
Jing
,
P.
Bai
,
Y.
Yang
,
T. C.
Hou
, and
Z. L.
Wang
,
Adv. Mater.
25
,
6094
(
2013
).
64.
Z. L.
Wang
,
L.
Lin
,
J.
Chen
,
S.
Niu
, and
Y.
Zi
, “
Triboelectric nanogenerators
,” in
Green Energy and Technology
(
Springer
,
2016
).
65.
Z. L.
Wang
,
Faraday Discuss.
176
,
447
(
2014
).
66.
Z. L.
Wang
,
Mater. Today
20
,
74
(
2017
).
67.
H.
Kulah
and
K.
Najafi
, “
An electromagnetic micro power generator for low-frequency environmental vibrations
,” in
Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Maastricht
, The Netherlands (
2004
).
68.
M. F.
Abu Riduan
and
C. G.
Sang
,
J. Semicond.
33
,
074001
(
2012
).
69.
X. F.
Wang
,
S. M.
Niu
,
Y. J.
Yin
,
F.
Yi
,
Z.
You
, and
Z. L.
Wang
,
Adv. Energy Mater.
5
,
1501467
(
2015
).
70.
L.
Lin
,
Y. N.
Xie
,
S. M.
Niu
,
S. H.
Wang
,
P. K.
Yang
, and
Z. L.
Wang
,
ACS Nano
9
,
922
(
2015
).
71.
Y. L.
Zi
,
H.
Guo
,
Z.
Wen
,
M. H.
Yeh
,
C.
Hu
, and
Z. L.
Wang
,
ACS Nano
10
,
4797
(
2016
).
72.
J. C.
Maxwell
,
Philos. Mag. J. Sci., Fourth Series
(
Edinburg and Dubline
,
London
,
1870
).
73.
T.
Ikeda
,
Fundamentals of Piezoelectricity
(
Oxford University Press
,
Oxford, UK
,
1996
).
74.
G. A.
Maugin
,
Continuum Mechanics of Electromagnetic Solids
(
North-Holland
,
Amsterdam
,
1988
).
75.
R. W.
Soutas-Little
,
Elasticity, XVI
(
Dover Publications
,
Mineola, NY
,
1999
), Vol.
431
.
76.
S.
Niu
,
S.
Wang
,
L.
Lin
,
Y.
Liu
,
Y. S.
Zhou
,
Y.
Hua
, and
Z. L.
Wang
,
Energy Environ. Sci.
6
,
3576
(
2013
).
77.
S.
Niu
,
S.
Wang
,
Y.
Liu
,
Y. S.
Zhou
,
L.
Lin
,
Y.
Hu
,
K. C.
Pradela
, and
Z. L.
Wang
,
Energy Environ. Sci.
7
,
2339
(
2014
).
78.
S.
Niu
,
Y.
Liu
,
X.
Chen
,
S.
Wang
,
Y. S.
Zhou
,
L.
Lin
,
Y.
Xie
, and
Z. L.
Wang
,
Nano Energy
12
,
760
(
2015
).
79.
C.
Zhang
,
W.
Tang
,
C. B.
Han
,
F. R.
Fan
, and
Z. L.
Wang
,
Adv. Mater.
26
,
3580
(
2014
).
80.
L.
Lin
,
S. H.
Wang
,
Y. N.
Xie
,
Q. S.
Jing
,
S. M.
Niu
,
Y. F.
Hu
, and
Z. L.
Wang
,
Nano Lett.
13
,
2916
(
2013
).
81.
P.
Bai
,
G.
Zhu
,
Z. H.
Lin
,
Q. S.
Jing
,
J.
Chen
,
G.
Zhang
,
J.
Ma
, and
Z. L.
Wang
,
ACS Nano
7
,
3713
(
2013
).
82.
Y.
Xie
,
S.
Wang
,
S.
Niu
,
L.
Lin
,
Q.
Jing
,
Y.
Su
,
Z.
Wu
, and
Z. L.
Wang
,
Nano Energy
6
,
129
(
2014
).
83.
Z. L.
Wang
,
ACS Nano
7
,
9533
(
2013
).
84.
S. H.
Wang
,
L.
Lin
, and
Z. L.
Wang
,
Nano Lett.
12
,
6339
(
2012
).
85.
G.
Zhu
,
J.
Chen
,
Y.
Liu
,
P.
Bai
,
Y. S.
Zhou
,
Q. S.
Jing
,
C. F.
Pan
, and
Z. L.
Wang
,
Nano Lett.
13
,
2282
(
2013
).
86.
Z. H.
Lin
,
G.
Cheng
,
L.
Lin
,
S.
Lee
, and
Z. L.
Wang
,
Angew. Chem., Int. Ed.
52
,
5065
(
2013
).
87.
Z. H.
Lin
,
G.
Cheng
,
S.
Lee
,
K. C.
Pradel
, and
Z. L.
Wang
,
Adv. Mater.
26
,
4690
(
2014
).
88.
G.
Zhu
,
Y. J.
Su
,
P.
Bai
,
J.
Chen
,
Q. S.
Jing
,
W. Q.
Yang
, and
Z. L.
Wang
,
ACS Nano
8
,
6031
(
2014
).
89.
Z. H.
Lin
,
G.
Cheng
,
W.
Wu
,
K. C.
Pradel
, and
Z. L.
Wang
,
ACS Nano
8
,
6440
(
2014
).
90.
G.
Cheng
,
Z. H.
Lin
,
Z.
Du
, and
Z. L.
Wang
,
ACS Nano
8
,
1932
(
2014
).
91.
Y. J.
Su
,
X. N.
Wen
,
G.
Zhu
,
J.
Yang
,
J.
Chen
,
P.
Bai
,
Z. M.
Wu
,
Y. D.
Jiang
, and
Z. L.
Wang
,
Nano Energy
9
,
186
(
2014
).
92.
Z. L.
Wang
,
J.
Chen
, and
L.
Lin
,
Energy Environ. Sci.
8
,
2250
(
2015
).
93.
X. N.
Wen
,
W. Q.
Yang
,
Q. S.
Jing
, and
Z. L.
Wang
,
ACS Nano
8
,
7405
(
2014
).
94.
L.
Zhang
,
C. B.
Han
,
T.
Jiang
,
T.
Zhou
,
X.
Li
,
C.
Zhang
, and
Z. L.
Wang
,
Nano Energy
22
,
87
(
2016
).
95.
T.
Jiang
,
L. M.
Zhang
,
X. Y.
Chen
,
C. B.
Han
,
W.
Tang
,
C.
Zhang
,
L.
Xu
, and
Z. L.
Wang
,
ACS Nano
9
,
12562
(
2015
).
96.
Y.
Yao
,
T.
Jiang
,
L.
Zhang
,
X.
Chen
,
Z.
Gao
, and
Z. L.
Wang
,
ACS Appl. Mater. Interfaces
8
,
21398
(
2016
).
97.
Y.
Yang
,
H. L.
Zhang
,
R. Y.
Liu
,
X. N.
Wen
,
T. C.
Hou
, and
Z. L.
Wang
,
Adv. Energy Mater.
3
,
1563
(
2013
).
98.
H. L.
Zhang
,
Y.
Yang
,
Y. J.
Su
,
J.
Chen
,
K.
Adams
,
S.
Lee
,
C. G.
Hu
, and
Z. L.
Wang
,
Adv. Funct. Mater.
24
,
1401
(
2014
).
99.
F.
Yi
,
L.
Lin
,
S. M.
Niu
,
J.
Yang
,
W. Z.
Wu
,
S. H.
Wang
,
Q. L.
Liao
,
Y.
Zhang
, and
Z. L.
Wang
,
Adv. Funct. Mater.
24
,
7488
(
2014
).
100.
Y. J.
Su
,
Y.
Yang
,
X. D.
Zhong
,
H. L.
Zhang
,
Z. M.
Wu
,
Y. D.
Jiang
, and
Z. L.
Wang
,
ACS Appl. Mater. Interfaces
6
,
553
(
2014
).
101.
A.
Ahmed
,
Z.
Saadatnia
,
I.
Hassan
,
Y.
Zi
,
Y.
Xi
,
X.
He
,
J.
Zu
, and
Z. L.
Wang
,
Adv. Energy Mater.
7
,
1601705
(
2016
).
102.
J.
Lucas
,
S. H.
Salter
,
J.
Cruz
,
J.
Taylor
, and
I.
Bryden
, in
Proceedings of the 8th European Wave and Tidal Energy Conference
, Uppsala, Sweden (
2009
).
103.
A.
Pecher
,
J. P.
Kofoed
, and
T.
Larsen
,
Energies
5
,
1001
(
2012
).
104.
L.
Xu
,
Y.
Pang
,
C.
Zhang
,
T.
Jiang
,
X.
Chen
,
J.
Luo
,
W.
Tang
,
X.
Cao
, and
Z. L.
Wang
,
Nano Energy
31
,
351
(
2017
).
105.
T.
Jiang
,
Y.
Yao
,
L.
Xu
,
L.
Zhang
,
T.
Xiao
, and
Z. L.
Wang
,
Nano Energy
31
,
560
(
2017
).
106.
H.
Guo
,
Z.
Wen
,
Y.
Zi
,
M. H.
Yeh
,
J.
Wang
,
L.
Zhu
,
C.
Hu
, and
Z. L.
Wang
,
Adv. Energy Mater.
6
,
1501593
(
2016
).
107.
Z.
Wen
,
H.
Guo
,
Y.
Zi
,
M. H.
Yeh
,
X.
Wang
,
J.
Deng
,
J.
Wang
,
S.
Li
,
C.
Hu
,
L.
Zhu
, and
Z. L.
Wang
,
ACS Nano
10
,
6526
(
2016
).
108.
Y.
Xi
,
H.
Guo
,
Y.
Zi
,
X.
Li
,
J.
Wang
,
J.
Deng
,
S.
Li
,
C.
Hu
,
X.
Cao
, and
Z. L.
Wang
,
Adv. Energy Mater.
7
,
1602397
(
2017
).
109.
X.
Wang
,
Z.
Wen
,
H.
Guo
,
C.
Wu
,
X.
He
,
L.
Lin
,
X.
Cao
, and
Z. L.
Wang
,
ACS Nano
10
,
11369
(
2016
).
110.
J.
Chen
,
J.
Yang
,
Z. L.
Li
,
X.
Fan
,
Y. L.
Zi
,
Q. S.
Jing
,
H. Y.
Guo
,
Z.
Wen
,
K. C.
Pradel
,
S. M.
Niu
, and
Z. L.
Wang
,
ACS Nano
9
,
3324
(
2015
).
111.
L.
Xu
,
T.
Jiang
,
P.
Lin
,
J. J.
Shao
,
C.
He
,
W.
Zhong
,
X. Y.
Chen
, and
Z. L.
Wang
,
ACS Nano
12
,
1849
(
2018
).
112.
X.
Xiao
,
X.
Liang
,
T.
Jiang
,
L.
Xu
,
J. J.
Shao
,
J. H.
Nie
,
Y.
Bai
,
W.
Zhong
, and
Z. L.
Wang
, “
Spherical Triboelectric Nanogenerators Based on Spring-Assisted Multilayered Structure for Efficient Water Wave Energy Harvesting
,” Adv. Funct. Mater. (published online 2018).
113.
D. Y.
Kim
,
H. S.
Kim
,
D. S.
Kong
,
M.
Choi
,
H. B.
Kim
,
J.-H.
Lee
,
G.
Murillo
,
M.
Lee
,
S. S.
Kim
, and
J. H.
Jung
,
Nano Energy
45
,
247
(
2018
).
114.
X.
Li
,
J.
Tao
,
X.
Wang
,
J.
Zhu
,
C. F.
Pan
, and
Z. L.
Wang
,
Adv. Energy Mater.
25
,
1800705
(
2018
).
You do not currently have access to this content.