Potential applications of bulk GaN and AlN crystals have made possible single and multilayer allotropes of these III-V compounds to be a focus of interest recently. As of 2005, the theoretical studies have predicted that GaN and AlN can form two-dimensional (2D) stable, single-layer (SL) structures being wide band gap semiconductors and showing electronic and optical properties different from those of their bulk parents. Research on these 2D structures have gained importance with recent experimental studies achieving the growth of ultrathin 2D GaN and AlN on substrates. It is expected that these two materials will open an active field of research like graphene, silicene, and transition metal dichalcogenides. This topical review aims at the evaluation of previous experimental and theoretical works until 2018 in order to provide input for further research attempts in this field. To this end, starting from three-dimensional (3D) GaN and AlN crystals, we review 2D SL and multilayer (ML) structures, which were predicted to be stable in free-standing states. These are planar hexagonal (or honeycomb), tetragonal, and square-octagon structures. First, we discuss earlier results on dynamical and thermal stability of these SL structures, as well as the predicted mechanical properties. Next, their electronic and optical properties with and without the effect of strain are reviewed and compared with those of the 3D parent crystals. The formation of multilayers, hence prediction of new periodic layered structures and also tuning their physical properties with the number of layers are other critical subjects that have been actively studied and discussed here. In particular, an extensive analysis pertaining to the nature of perpendicular interlayer bonds causing planar GaN and AlN to buckle is presented. In view of the fact that SL GaN and AlN can be fabricated only on a substrate, the question of how the properties of free-standing, SL structures are affected if they are grown on a substrate is addressed. We also examine recent works treating the composite structures of GaN and AlN joined commensurately along their zigzag and armchair edges and forming heterostructures, δ-doping, single, and multiple quantum wells, as well as core/shell structures. Finally, outlooks and possible new research directions are briefly discussed.

1.
J.
Bardeen
and
W. H.
Brattain
,
Phys. Rev.
74
,
230
(
1948
).
2.
W.
Shockley
,
Bell Labs Tech. J.
28
(
3
),
344
366
(
1949
).
3.
S.
Nakamura
,
M.
Takashi
, and
S.
Masayuki
,
Appl. Phys. Lett.
64
,
1687
(
1994
).
4.
S.
Nakamura
,
S.
Pearton
, and
G.
Fasol
,
The Blue Laser Diode
, 2nd ed. (
Springer
,
New York
,
2000
), pp.
230
235
.
5.
S.
Nakamura
,
M.
Senoh
,
S-i.
Nagahama
,
N.
Iwasa
,
T.
Matsushita
, and
T.
Mukai
,
Appl. Phys. Lett.
76
,
22
(
2000
).
6.
H.
Morkoc
,
Handbook of Nitride Semiconductors and Devices
(
WILEY-VCH Verlag
,
Weinheim
,
2008
), Vol.
1
.
7.
O.
Ambacher
,
J. Phys. D: Appl. Phys.
31
,
2653
(
1998
).
8.
S.
Mokkapati
and
C.
Jagadish
, “
III-V compound SC for optoelectronic devices
,”
Mater. Today
12
(
4
),
22
32
(
2009
).
9.
S.
Nakamura
,
Rev. Mod. Phys.
87
(
4
),
1139
(
2015
).
10.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
11.
K.
Watanabe
,
T.
Taniguchi
, and
H.
Kanda
,
Nat. Mater.
3
,
404
(
2004
).
12.
K.
Kim
,
A.
Hsu
,
X.
Jia
,
S. M.
Kim
,
Y.
Shi
,
M.
Hofmann
,
D.
Nezich
,
J. F.
Rodriguez-Nieva
,
M.
Dresselhaus
,
T.
Palacios
, and
J.
Kong
,
Nano Lett.
12
,
161
(
2012
).
13.
Y.
Gao
,
W.
Ren
,
T.
Ma
,
Z.
Liu
,
Y.
Zhang
,
W. B.
Liu
,
L. P.
Ma
,
X.
Ma
, and
H. M.
Cheng
,
ACS Nano
7
,
5199
(
2013
).
14.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
,
Nano Lett.
10
,
1271
(
2010
).
15.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
16.
G.
Eda
,
H.
Yamaguchi
,
D.
Voiry
,
T.
Fujita
,
M.
Chen
, and
M.
Chhowalla
,
Nano Lett.
11
,
5111
(
2011
).
17.
E.
Durgun
,
S.
Tongay
, and
S.
Ciraci
,
Phys. Rev. B
72
,
075420
(
2005
).
18.
S.
Cahangirov
,
M.
Topsakal
,
E.
Akturk
,
H.
Sahin
, and
S.
Ciraci
,
Phys. Rev. Lett.
102
,
236804
(
2009
).
19.
S.
Cahangirov
,
M.
Topsakal
, and
S.
Ciraci
,
Phys. Rev. B
81
(
19
),
195120
(
2010
).
20.
H.
Sahin
,
S.
Cahangirov
,
M.
Topsakal
,
E.
Bekaroglu
,
E.
Akturk
,
R. T.
Senger
, and
S.
Ciraci
,
Phys. Rev. B
80
,
155453
(
2009
).
21.
C. L.
Freeman
,
F.
Claeyssens
,
N. L.
Allan
, and
J. H.
Harding
,
Phys. Rev. Lett.
96
,
066102
(
2006
).
22.
Y.
Wang
and
S.
Shi
,
Solid State Commun.
150
,
1473
(
2010
).
23.
Y.
Ma
 et al.,
Appl. Surf. Sci.
257
,
7845
(
2011
).
24.
A. K.
Singh
and
R. G.
Hennig
,
Appl. Phys. Lett.
105
,
051604
(
2014
).
25.
A. K.
Singh
,
H. L.
Zhuang
, and
R. G.
Hennig
,
Phys. Rev. B
89
,
245431
(
2014
).
26.
Q.
Chen
,
H.
Hu
,
X.
Chen
, and
J.
Wang
,
Appl. Phys. Lett.
98
,
053102
(
2011
).
27.
Y.
Gao
,
T.
Yayama
, and
S.
Okada
,
Appl. Phys. Express
9
,
095201
(
2016
).
28.
A. V.
Kolobov
,
P.
Fons
,
J.
Tominaga
,
B.
Hyot
, and
B.
Andre
,
Nano Lett.
16
,
4849
(
2016
).
29.
D.
Wu
,
M. G.
Lagally
, and
F.
Liu
,
Phys. Rev. Lett.
107
,
236101
(
2011
).
30.
H. L.
Zhuang
,
A. K.
Singh
, and
R. G.
Hennig
,
Phys. Rev. B
87
,
165415
(
2013
).
31.
D. V.
Fakhrabad
,
N.
Shahtahmasebi
, and
M.
Ashhadi
,
Superlattices Microstruct.
79
,
38
(
2015
).
32.
C.
Bacaksiz
,
H.
Sahin
,
H. D.
Ozaydin
,
S.
Horzum
,
R. T.
Senger
, and
F. M.
Peeters
,
Phys. Rev. B
91
,
085430
(
2015
).
33.
D.
Kecik
,
C.
Bacaksiz
,
R. T.
Senger
, and
E.
Durgun
,
Phys. Rev. B
92
,
165408
(
2015
).
34.
A.
Onen
,
D.
Kecik
,
E.
Durgun
, and
S.
Ciraci
,
Phys. Rev. B
93
,
085431
(
2016
).
35.
A.
Onen
,
D.
Kecik
,
E.
Durgun
, and
S.
Ciraci
,
Phys. Rev. B
95
,
155435
(
2017
).
36.
A.
Onen
,
D.
Kecik
,
E.
Durgun
, and
S.
Ciraci
,
J. Phys. Chem. C
121
,
27098
(
2017
).
37.
N.
Sanders
,
D.
Bayerl
,
G.
Shi
,
K. A.
Mengle
, and
E.
Kioupakis
,
Nano Lett.
17
,
7345
(
2017
).
38.
Z.
Liliental-Weber
,
Y.
Chen
,
S.
Ruvimov
, and
J.
Washburn
,
Phys. Rev. Lett.
79
,
2835
(
1997
).
39.
J.
Goldberger
,
R.
He
,
Y.
Zhang
,
S.
Lee
,
H.
Yan
,
H.
Choi
, and
P.
Yang
,
Nature
422
,
599
(
2003
).
40.
V. N.
Tondare
,
C.
Balasubramanian
,
S.
Shende
,
D. S.
Joag
,
V. P.
Godbale
, and
S. V.
Bhoraskar
,
Appl. Phys. Lett.
80
,
4813
(
2002
).
41.
Y.
Mei
,
D. J.
Thurmer
,
C.
Deneke
,
S.
Kiravittaya
,
Y.-F.
Chen
,
A.
Dadgar
 et.al.,
ACS Nano
3
,
1663
(
2009
).
42.
Z. J.
Reitmeier
,
S.
Einfeldt
,
R. F.
Davis
,
X.
Zhang
,
X.
Fang
, and
S.
Mahajan
,
Acta Mater.
57
,
4001
(
2009
).
43.
V.
Kladko
,
A.
Kuchuk
,
P.
Lytvyn
,
O.
Yefanov
,
N.
Safriuk
,
A.
Belyaev
,
Y. I.
Mazur
,
E. A.
Decuir
, Jr.
,
M. E.
Ware
, and
G. J.
Salamo
,
Nanoscale Res. Lett.
7
,
289
(
2012
).
44.
T.
Araki
,
S.
Uchimura
,
J.
Sakaguchi
,
Y.
Nanishi
,
T.
Fujishima
,
A.
Hsu
,
K. K.
Kim
,
T.
Palacios
,
A.
Pesquera
,
A.
Centeno
, and
A.
Zurutuza
,
Appl. Phys. Express
7
,
071001
(
2014
).
45.
P.
Motamedi
,
N.
Dalili
, and
K.
Cadien
,
J. Mater. Chem. C
3
,
7428
(
2015
).
46.
T. H.
Seo
,
A. H.
Park
,
S.
Park
,
Y. H.
Kim
,
G. H.
Lee
,
M. J.
Kim
,
M. S.
Jeong
,
Y. H.
Lee
,
Y. B.
Hahn
, and
E. K.
Suh
,
Sci. Rep.
5
,
7747
(
2015
).
47.
P.
Tsipas
,
S.
Kassavetis
,
D.
Tsoutsou
,
E.
Xenogiannopoulou
,
E.
Golias
,
S. A.
Giamini
,
C.
Grazianetti
,
D.
Chiappe
,
A.
Molle
,
M.
Fanciulli
, and
A.
Dimoulas
,
Appl. Phys. Lett.
103
,
251605
(
2013
).
48.
V.
Mansurov
,
T.
Malin
,
Y.
Galitsyn
, and
K.
Zhuravlev
,
J. Cryst. Growth
428
,
93
(
2015
).
49.
Z. Y.
Al Balushi
,
K.
Wang
,
R. K.
Ghosh
,
R. A.
Vila
,
S. M.
Eichfeld
,
J. D.
Caldwell
,
X.
Qin
,
Y.-C.
Lin
,
P. A.
DeSario
,
G.
Stone
,
S.
Subramanian
,
D. F.
Paul
,
R. M.
Wallace
,
S.
Datta
,
J. M.
Redwing
, and
J. A.
Robinson
,
Nature Mater.
15
,
1166
(
2016
).
50.
M.
Magnuson
,
M.
Mattesini
,
C.
Hoglund
,
J.
Birch
, and
L.
Hultman
,
Phys. Rev. B
81
,
085125
(
2010
).
51.
H.
Schulz
and
K. H.
Thiemann
,
Solid State Commun.
23
,
815
(
1977
).
52.
I.
Vurgaftman
and
J. R.
Meyer
,
J. Appl. Phys.
94
,
3675
(
2003
).
53.
H.
Xia
,
Q.
Xia
, and
A. L.
Ruoff
,
Phys. Rev. B
47
,
12925
(
1993
).
54.
M.
Ueno
,
M.
Yoshida
,
A.
Onodera
,
O.
Shimomura
, and
K.
Takemura
,
Phys. Rev. B
49
,
14
(
1994
).
55.
P.
Perlin
,
C.
Jauberthie-Carillon
,
J. P.
Itie
,
A.
San Miguel
,
I.
Grzegory
, and
A.
Polian
,
Phys. Rev. B
45
,
83
(
1992
).
56.
C.
Bungaro
,
K.
Rapcewicz
, and
J.
Bernholc
,
Phys. Rev. B
61
,
6720
(
2000
).
57.
A.
Wright
and
J.
Nelson
,
Phys. Rev. B
50
,
2159
(
1994
);
A.
Wright
and
J.
Nelson
,
Phys. Rev. B
51
,
7866
(
1995
).
58.
A.
Polian
,
M.
Grimsditch
, and
I.
Grzegory
,
J. Appl. Phys.
79
,
3343
(
1996
).
59.
F. A.
Ponce
and
D. P.
Bour
,
Nature
386
,
351
(
1997
).
60.
L.
Hultman
,
S.
Benhenda
,
G.
Radnoczi
,
J.-E.
Sundgren
,
J. E.
Greene
, and
I.
Petrov
,
Thin Solid Films
215
,
152
(
1992
).
61.
M.
Ueno
,
A.
Onodera
,
O.
Shimomura
, and
K.
Takemura
,
Phys. Rev. B
45
,
10123
(
1992
).
62.
Q.
Xia
,
H.
Xia
, and
A. L.
Ruoff
,
J. Appl. Phys.
73
,
8198
(
1993
).
63.
A. V.
Virkar
,
T. B.
Jackson
, and
R. A.
Cutler
,
J. Am. Ceram. Soc.
72
,
2031
(
1989
).
64.
A. W.
Weimer
,
G. A.
Cochran
,
G. A.
Eisman
,
J. P.
Henley
,
B. D.
Hook
,
L. K.
Mills
,
T. A.
Guiton
,
A. K.
Knudsen
,
N. R.
Nicholas
,
J. E.
Volmering
, and
W. G.
Moor
,
J. Am. Ceram. Soc.
77
,
3
(
1994
).
65.
G. A.
Slack
,
R. A.
Tanzilli
, and
R. O.
Pohl
,
J. Phys. Chem. Solids
48
,
141
(
1987
).
66.
I. H.
Nwigboji
,
J. I.
Ejembi
,
Y.
Malozovsky
,
B.
Khamala
,
L.
Franklin
,
G.
Zhao
,
C. E.
Ekuma
, and
D.
Bagayoko
,
Mater. Chem. Phys.
157
,
80
86
(
2015
).
67.
F.
Litimein
,
B.
Bouhafs
,
Z.
Dridi
, and
P.
Ruterana
,
New J. Phys.
4
,
64
(
2002
).
68.
P.
Vashishta
,
R. K.
Kalia
,
A.
Nakano
, and
J. P.
Rino
,
J. Appl. Phys.
109
,
033514
(
2011
).
69.
I.
Akasaki
and
H.
Amano
,
Jpn. J. Appl. Phys., Part 1
36
,
5393
(
1997
).
70.
J.
Han
,
M. H.
Crawford
,
R. J.
Shul
,
J. J.
Figiel
,
M.
Banas
,
L.
Zhang
,
Y. K.
Song
,
H.
Zhou
, and
A. V.
Nurmikko
,
Appl. Phys. Lett.
73
,
1688
(
1998
).
71.
T.
Nishida
and
N.
Kobayashi
,
Phys. Status Solidi A
176
,
45
(
1999
).
72.
V.
Adivarahan
,
W. H.
Sun
,
A.
Chitnis
,
M.
Shatalov
,
S.
Wu
,
H. P.
Maruska
, and
M. A.
Khan
,
Appl. Phys. Lett.
85
,
2175
(
2004
).
73.
H.
Hirayama
,
J. Appl. Phys.
97
,
091101
(
2005
).
74.
A.
Khan
,
K.
Balakrishnan
, and
T.
Katona
,
Nature Photon.
2
,
77
(
2008
).
75.
G.
Ramirez-Flores
,
H.
Navarro-Contreras
,
A.
Lastras-Martinez
,
R. C.
Powell
, and
J. E.
Greene
,
Phys. Rev. B
50
,
8433
(
1994
).
76.
M. E.
Sherwin
and
T. J.
Drummond
,
J. Appl. Phys.
69
,
8423
(
1991
).
77.
R. C.
Weast
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
Boca Raton, Florida
,
1988
), Vol.
68
.
78.
E.
Sanville
,
S. D.
Kenny
,
R.
Smith
, and
G.
Henkelman
,
J. Comput. Chem.
28
,
899
(
2007
).
79.
Q.
Yan
,
P.
Rinke
,
A.
Janotti
,
M.
Scheffler
, and
C. G.
Van de Walle
,
Phys. Rev. B
90
,
125118
(
2014
).
80.
L. C.
de Carvalho
,
A.
Schleife
, and
F.
Bechstedt
,
Phys. Rev. B
84
,
195105
(
2011
).
81.
K.
Karch
,
J. M.
Wagner
, and
F.
Bechstedt
,
Phys. Rev. B
57
,
7043
(
1998
).
82.
F.
Bernardini
,
V.
Fiorentini
, and
D.
Vanderbilt
,
Phys. Rev. B
56
(
16
),
R10024
(
1997
).
83.
F.
Bechstedt
,
U.
Grossner
, and
J.
Furthmüller
,
Phys. Rev. B
62
,
8003
(
2000
).
84.
M. A.
Caro
,
S.
Schulz
, and
E. P.
O'Reilly
,
Phys. Rev. B
88
,
214103
(
2013
).
85.
Z.
Dridi
,
B.
Bouhafs
, and
P.
Ruterana
,
Semicond. Sci. Technol.
18
,
850
(
2003
).
86.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
, and
R. L.
Martin
,
J. Chem. Phys.
123
,
174101
(
2005
).
87.
A.
Punya
and
W. R. L.
Lambrecht
,
Phys. Rev. B
85
,
195147
(
2012
).
88.
P.
Rinke
,
M.
Winkelnkemper
,
A.
Qteish
,
D.
Bimberg
,
J.
Neugebauer
, and
M.
Scheffler
,
Phys. Rev. B
77
,
075202
(
2008
).
89.
Y.
Du
,
B.
Chang
,
X.
Fu
,
X.
Wang
, and
M.
Wang
,
Optik
123
,
2208
(
2012
).
90.
X.-Z.
Li
,
R.
Gomez-Abal
,
H.
Jiang
,
C.
Ambrosch-Draxl
, and
M.
Scheffler
,
New J. Phys.
14
,
023006
(
2012
).
91.
M.
Rohlfing
,
P.
Kruger
, and
J.
Pollmann
,
Phys. Rev. B
57
,
6485
(
1998
).
92.
P.
Rinke
,
A.
Qteish
,
J.
Neugebauer
,
C.
Freysoldt
, and
M.
Scheffler
,
New J. Phys.
7
,
126
(
2005
).
93.
F.
Bechstedt
,
K.
Seino
,
P.
Hahn
, and
W.
Schmidt
,
Phys. Rev. B
72
(
24
),
245114
(
2005
).
94.
Y. C.
Cheng
,
X. L.
Wu
,
J.
Zhu
,
L. L.
Xu
,
S. H.
Li
, and
P. K.
Chu
,
J. Appl. Phys.
103
,
073707
(
2008
).
95.
W.
Yong-Liang
,
A.
Qiong
,
C.
Xiang-Rong
, and
C.
Ling-Cang
,
Chin. Phys.
16
(
12
),
3783
(
2007
).
96.
R.
Mohammad
and
Ş.
Katircioglu
,
Turk. J. Phys.
40
,
219
230
(
2016
).
97.
R.
Thokala
and
J.
Chaudhuri
,
Thin Solid Films
266
(
2
),
189
191
(
1995
).
98.
A.
Bakhtatou
and
A.
Meddour
,
Phys. Status Solidi B
253
,
442
(
2016
).
99.
N. E.
Christensen
and
I.
Gorczyca
,
Phys. Rev. B
50
,
4397
(
1994
).
100.
U. P.
Verma
and
P. S.
Bisht
,
Solid State Sci.
12
,
665
(
2010
).
101.
J.
Serrano
,
A.
Rubio
,
E.
Hernandez
, and
A.
Munoz
,
Phys. Rev. B
62
,
16612
(
2000
).
102.
S.
Bagci
,
S.
Duman
,
H. M.
Tütüncü
, and
G. P.
Srivastava
,
Diamond Relat. Mater.
18
,
1057
(
2009
).
103.
I.
Petrov
,
E.
Mojab
,
R. C.
Powell
,
J. E.
Greene
,
L.
Hultman
, and
J. E.
Sundgren
,
Appl. Phys. Lett.
60
(
20
),
2491
(
1992
).
104.
M.
Röppischer
,
R.
Goldhahn
,
G.
Rossbach
,
P.
Schley
,
C.
Cobet
,
N.
Esser
,
T.
Schupp
,
K.
Lischka
, and
D. J.
As
,
J. Appl. Phys.
106
,
076104
(
2009
).
105.
Z.
Wei
,
C.
Xiang-Rong
,
C.
Ling-Cang
, and
G.
Qing-Quan
,
Commun. Theor. Phys.
50
,
990
(
2008
).
106.
R.
Pandey
,
A.
Sutjianto
,
M.
Seel
, and
J. E.
Jaffe
,
J. Mater. Res.
8
,
1922
(
1993
).
107.
D.
Xu
,
H.
He
,
R.
Pandey
, and
S. P.
Karna
,
J. Phys.: Condens. Matter
25
,
345302
(
2013
).
108.
D. C.
Camacho-Mojica
and
F.
Lopez-Urias
,
Sci. Rep.
5
,
17902
(
2015
).
109.
E.
Gürbüz
,
S.
Cahangirov
,
E.
Durgun
, and
S.
Ciraci
,
Phys. Rev. B
96
,
205427
(
2017
).
110.
H.
Zhang
,
F.-S.
Meng
, and
Y.-B.
Wu
,
Solid State Commun.
250
,
18
(
2017
).
111.
Q.
Fang
,
Y.
Huang
,
Y.
Miao
,
K.
Xu
,
Y.
Li
, and
F.
Ma
,
J. Phys. Chem. C
121
,
6605
(
2017
).
112.
Q.
Peng
,
C.
Liang
,
W.
Ji
, and
S.
De
,
Appl. Phys. A
113
,
483
(
2013
).
113.
C.
Attaccalite
,
A.
Nguer
,
E.
Cannuccia
, and
M.
Gruning
,
Phys. Chem. Chem. Phys.
17
,
9533
(
2015
).
114.
M. S.
Prete
,
A. M.
Conte
,
P.
Gori
,
F.
Bechstedt
, and
O.
Pulci
,
Appl. Phys. Lett.
110
,
012103
(
2017
).
115.
R. B.
dos Santos
,
F. de
Brito Mota
,
R.
Rivelino
,
A.
Kakanakova-Georgieva
, and
G. K.
Gueorguiev
,
Nanotechnology
27
,
145601
(
2016
).
116.
C.-J.
Tong
,
H.
Zhang
,
Y.-N.
Zhang
,
H.
Liu
, and
L.-M.
Liu
,
J. Mater. Chem. A
2
,
17971
(
2014
).
117.
P. A.
Brown
and
K. L.
Shuford
,
Nanoscale
8
,
19287
(
2016
).
118.
F.
Ersan
,
A.
Akcay
,
G.
Gokoglu
, and
E.
Akturk
,
Chem. Phys.
455
,
73
80
(
2015
).
119.
A. V.
Kolobov
,
P.
Fons
,
Y.
Saito
,
J.
Tominaga
,
B.
Hyot
, and
B.
Andre
,
Phys. Rev. Mater.
1
,
024003
(
2017
).
120.
H.
Shi
,
H.
Pan
,
Y.-W.
Zhang
, and
B. I.
Yakobson
,
Phys. Rev. B
87
,
155304
(
2013
).
121.
C.
Kittel
,
Introduction to Solid State Physics
, 7th ed. (
John Wiley & Sons Inc
.,
New York
,
1986
).
122.
S.
Cahangirov
,
V. O.
Ozcelik
,
L.
Xian
,
J.
Avila
,
S.
Cho
,
M. C.
Asensio
,
S.
Ciraci
, and
A.
Rubio
,
Phys. Rev. B
90
,
035448
(
2014
).
123.
S.
Cahangirov
,
V. O.
Ozcelik
,
A.
Rubio
, and
S.
Ciraci
,
Phys. Rev. B
90
,
085426
(
2014
).
124.
A. K.
Geim
and
I. V.
Grigorieva
,
Nature
499
,
419
425
(
2013
).
125.
V.
Tran
,
R.
Soklaski
,
Y.
Liang
, and
L.
Yang
,
Phys. Rev. B
89
,
235319
(
2014
).
126.
D. Y.
Qiu
,
F. H.
Jornada
, and
S. G.
Louie
,
Phys. Rev. Lett.
111
,
216805
(
2013
).
127.
L.
Wirtz
,
A.
Marini
, and
A.
Rubio
,
Phys. Rev. Lett.
96
,
126104
(
2006
).
128.
J.
Li
,
K. B.
Nam
,
M. L.
Nakarmi
,
J. Y.
Lin
,
H. X.
Jiang
,
P.
Carrier
, and
S.-H.
Wei
,
Appl. Phys. Lett.
83
,
5163
(
2003
).
129.
E.
Silveira
,
J. A.
Freitas
, Jr.
,
M.
Kneissl
,
D. W.
Treat
,
N. M.
Johnson
,
G. A.
Slack
, and
L. J.
Schowalter
,
Appl. Phys. Lett
84
(
18
),
3501
(
2004
).
130.
M.
Feneberg
,
M. F.
Romero
,
M.
Roppischer
,
C.
Cobet
,
N.
Esser
,
B.
Neuschl
,
K.
Thonke
,
M.
Bickermann
, and
R.
Goldhahn
,
Phys. Rev. B
87
,
235209
(
2013
).
131.
A.
Riefer
,
F.
Fuchs
,
C.
Rodl
,
A.
Schleife
, and
F.
Bechstedt
,
Phys. Rev. B
84
,
075218
(
2011
).
132.
S.
Ismail-Beigi
,
Phys. Rev. B
77
,
035306
(
2008
).
133.
K. S.
Thygesen
,
2D Mater.
4
,
022004
(
2017
).
134.
X. Y.
Cui
,
B.
Delley
, and
C.
Stampfl
,
J. Appl. Phys.
108
,
103701
(
2010
).
135.
N.
Nepal
,
V. D.
Wheeler
,
T. J.
Anderson
,
F. J.
Kub
,
M. A.
Mastro
,
R. L.
Myers-ward
,
S. B.
Qadri
 et al.,
Appl. Phys. Express
6
,
061003
(
2013
).
136.
D.
Bayerl
,
S.
Islam
,
C. M.
Jones
,
V.
Protasenko
,
D.
Jena
, and
E.
Kioupakis
,
Appl. Phys. Lett.
109
,
241102
(
2016
).
137.
H.
Sevincli
,
M.
Topsakal
, and
S.
Ciraci
,
Phys. Rev. B
78
,
245402
(
2008
).
138.
M.
Topsakal
,
H.
Sevincli
, and
S.
Ciraci
,
Appl. Phys. Lett.
92
,
173118
(
2008
).
139.
V. O.
Ozcelik
,
E.
Durgun
, and
S.
Ciraci
,
J. Phys. Chem. C
119
,
13248
(
2015
).
140.
V. O.
Ozcelik
and
S.
Ciraci
,
Phys. Rev. B
91
,
195445
(
2015
).
141.
M.
Aras
,
C.
Kilic
, and
S.
Ciraci
,
Phys. Rev. B
95
,
075434
(
2017
).
142.
G.-X.
Chen
,
X.-G.
Li
,
Y.-P.
Wang
,
J. N.
Fry
, and
H.-P.
Cheng
,
Phys. Rev. B
95
,
045302
(
2017
).
143.
P.
Strak
,
P.
Kempisty
,
M.
Ptasinska
, and
S.
Krukowsk
,
J. Appl. Phys.
113
,
193706
(
2013
).
144.
Q.
Chen
,
R.
Song
,
C.
Chen
, and
X.
Chen
,
Solid State Commun.
172
,
24
(
2013
).
145.
Y.
Mu
,
J. Phys. Chem. C
119
,
20911
20916
(
2015
).
You do not currently have access to this content.