Today, Focused Ion Beam (FIB) processing is nearly exclusively based on gallium Liquid Metal Ion Sources (LMIS). But, many applications in the μm- or nm range could benefit from ion species other than gallium: local ion implantation, ion beam mixing, ion beam synthesis, or Focused Ion Beam Lithography (IBL). Therefore, Liquid Metal Alloy Ion Sources (LMAIS) represent a promising alternative to expand the remarkable application fields for FIB. Especially, the IBL process shows potential advantages over, e.g., electron beam or other lithography techniques: direct, resistless, and three-dimensional patterning, enabling a simultaneous in-situ process control by cross-sectioning and inspection. Taking additionally into account that the used ion species influences significantly the physical and chemical nature of the resulting nanostructures—in particular, the electrical, optical, magnetic, and mechanic properties leading to a large potential application area which can be tuned by choosing a well suited LMAIS. Nearly half of the elements of the periodic table are recently available in the FIB technology as a result of continuous research in this area during the last forty years. Key features of a LMAIS are long life-time, high brightness, and stable ion current. Recent developments could make these sources feasible for nano patterning issues as an alternative technology more in research than in industry. The authors will review existing LMAIS, LMIS other than Ga, and binary and ternary alloys. These physical properties as well as the fabrication technology and prospective domains for modern FIB applications will similarly be reviewed. Other emerging ion sources will be also presented and their performances discussed.

1.
P. D.
Prewett
and
G. L. R.
Mair
,
Focused Ion Beams from Liquid Metal Ion Sources
(
Research Studies Press
,
Taunton, Somerset
,
1991
).
2.
Handbook of Charged Particle Optics
, 2nd ed., edited by
J.
Orloff
(
CRC Press
,
Boca Raton, USA
,
2009
), Chap. 2, pp.
29
86
, ISBN 1-4200-4554-7.
3.
W.
Gilbert
,
De Magnete
(English translation of the original Latin document,
Dover Publishing, Inc.
,
New York
), ISBN 0-486-26761-x.
4.
S.
Gray
, “
A letter concerning the electricity of water
,”
Philos. Trans. R. Soc. London
37
(
227–230
),
260
(
1732
) (available via JSTOR).
5.
F. R. S.
Rayleigh
,
Proc. R. Soc. London
29
,
71
(
1879
).
6.
J.
Zeleny
, “
The electrical discharge from liquid points and a hydrostatic method of measuring the electric intensity at their surfaces
,”
Phys. Rev.
3
(
2
),
69
91
(
1914
).
7.
V. E.
Krohn
, “
Liquid metal droplets for heavy particle propulsion
,”
Prog. Astronaut. Rocketry
5
,
73
80
(
1961
).
8.
G. I.
Taylor
, “
Disintegration of water droplets in an electric field
,”
Proc. R. Soc. London, A
280
,
383
397
(
1964
).
9.
V. E.
Krohn
and
G. R.
Ringo
, “
Ion source of high brightness using liquid metal
,”
Appl. Phys. Lett.
27
(
9
),
479
481
(
1975
);
V. E.
Krohn
and
G. R.
Ringo
,
“Microprobe design using a liquid gallium metal ion source,”
Int. J. Mass. Spectrom. Ion Phys.
22
,
307
308
(
1976
).
10.
R.
Clampitt
,
K. L.
Aitken
, and
D. K.
Jeffries
, “
Intense field emission ion source of liquid metals
,”
J. Vac Sci. Technol.
12
(
6
),
1208
(
1975
).
11.
R. L.
Seliger
,
J. W.
Ward
,
V.
Wang
, and
R. L.
Kubena
, “
A high intensity scanning ion probe with submicrometer spot size
,”
Appl. Phys. Lett.
34
,
310
312
(
1979
).
12.
G.
Ben Assayag
,
P.
Sudraud
, and
B.
Jouffrey
, “
In situ high voltage TEM observation of an electrohydrodynamic (EHD) ion source
,”
Ultramicroscopy
16
(
1
),
1
8
(
1985
).
13.
L. W.
Swanson
, “
Use of liquid metal ion source for focused ion beam applications
,”
Appl. Surf. Sci.
76/77
,
80
88
(
1994
).
14.
J.
Van de Walle
and
P.
Joyes
, “
Study of Binp+ ions formed in liquid-metal ion source
,”
Phys. Rev. B
35
(
11
),
5509
5513
(
1987
).
15.
T.
Ishitani
,
K.
Umemura
,
S.
Hosoki
,
S.
Takayama
, and
H.
Tamura
, “
Development of boron liquid–metal–ion source,”
J. Vac. Sci. Technol. A
2
,
1365
1369
(
1984
).
16.
T.
Ishitani
,
K.
Umemura
, and
H.
Tamura
, “
Development of phosphorus liquid-metal-ion source
,”
Jpn. J. Appl. Phys., Part 2
23
,
L330
L332
(
1984
).
17.
W. M.
Clark
,
R. L.
Seliger
,
M. W.
Utlaut
,
A. E.
Bell
,
L. W.
Swanson
,
G. A.
Schwind
, and
J. B.
Jergenson
, “
Long-lifetime, reliable liquid metal ion sources for boron, arsenic, and phosphorus
,”
J. Vac. Sci. Technol., B
5
(
1
),
197
202
(
1987
).
18.
Ch.
Akhmadaliev
,
L.
Bischoff
, and
B.
Schmidt
, “
CoSi2 nanostructures by writing FIB ion beam synthesis
,”
Mater. Sci. Eng. C
26
,
818
821
(
2006
).
19.
M.
Aouassa
,
A.
Ronda
,
L.
Favre
,
A.
Delobbe
,
P.
Sudraud
, and
I.
Berbezier
, “
Engineered core-shell Si1-x Gex/Ge nanowires fabricated by focused ion beam and oxido-reduction
,”
J. Appl. Phys.
114
(
3
),
034301
(
2013
).
20.
L. C.
Chao
and
A. J.
Steckl
, “
Room-temperature visible and infrared photoluminescence from Pr-implanted GaN films by focused-ion-beam direct write
,”
Appl. Phys. Lett.
74
(
16
),
2364
2366
(
1999
).
21.
J.
Fassbender
,
L.
Bischoff
,
R.
Mattheis
, and
P.
Fischer
, “
Magnetic domains and magnetization reversal of ion-induced magnetically patterned Ruderman-Kittel-Kasuya-Yoshida-coupled Ni81Fe19/Ru/Co90Fe10 films
,”
J. Appl. Phys.
99
,
08G301
(
2006
).
22.
B. W.
Ward
,
J. A.
Notte
, and
N. P.
Economou
, “
Helium ion microscope: A new tool for nanoscale microscopy and metrology
,”
J. Vac. Sci. Technol., B
24
(
6
),
2871
2874
(
2006
).
23.
L.
Bischoff
and
Ch.
Akhmadaliev
, “
An alloy liquid metal ion source for lithium
,”
J. Phys. D: Appl. Phys.
41
,
052001
(
2008
).
24.
R. M.
Langford
,
P. M.
Nellen
,
J.
Gierak
, and
Y.
Fu
, “
Focused ion beam micro- and nanoengineering
,”
MRS Bull.
32
,
417
423
(
2007
).
25.
L.
Bischoff
,
W.
Pilz
,
P.
Mazarov
, and
A. D.
Wieck
, “
Comparison of bismuth emitting liquid metal ion sources
,”
Appl. Phys. A
99
,
145
150
(
2010
).
26.
L.
Bischoff
,
K.-H.
Heinig
,
B.
Schmidt
,
S.
Facsko
, and
W.
Pilz
, “
Self-organization of Ge nanopattern under erosion with heavy Bi monomer and cluster ions
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
272
,
198
201
(
2012
).
27.
J.
Orloff
,
M.
Utlaut
, and
L. W.
Swanson
,
High Resolution Ion Beams: FIB and its Applications
(
Kluwer Academic/Plenum Publishers
,
New York
,
2003
).
28.
L.
Bischoff
, “
Alloy liquid metal ion sources and their application in mass separated focused ion beams
,”
Ultramicroscopy
103
,
59
66
(
2005
).
29.
A. D.
Wieck
, see http://www.rub.de/afp/ for “Ausstattung” → “FIB” → “Ionensorten.”
30.
P.
Sudraud
, “
Historic and principles of focused ion beam
,” in
3rd FIB Workshop
, Luzern, Switzerland, July 3–4,
2008
.
31.
E.
Hesse
,
W.
Driesel
,
Ch.
Dietzsch
,
L.
Bischoff
, and
J.
Teichert
, “
Shape of a Co-Nd liquid alloy ion source
,”
Jpn. J. Appl. Phys., Part 1
35
(
10
),
5564
5570
(
1996
).
32.
G. A.
Schwind
and
L. W.
Swanson
, “
Emission characteristics of Au60Be40 and Au62Si23Be15 liquid metal ion sources
,”
J. Vac. Sci. Technol., B
25
,
2586
2592
(
2007
).
33.
L.
Bischoff
,
W.
Pilz
,
Th.
Ganetsos
,
R. G.
Forbes
, and
Ch.
Akhmadaliev
, “
GaBi alloy liquid metal ion source for microelectronics research
,”
Ultramicroscopy
107
,
865
868
(
2007
).
34.
R. G.
Forbes
, “
Field-evaporation theory: A review of basic ideas
,”
Surf. Sci.
61
,
221
240
(
1976
).
35.
D. G.
Brandon
, “
The structure of field-evaporated surfaces
,”
Surf. Sci.
3
,
1
18
(
1965
).
36.
W.
Knauer
, “
Energy broadening in field emitted electron and ion beams
,”
Optik
59
,
335
354
(
1981
).
37.
Y. G.
Kim
,
Y. S.
Kim
,
E. H.
Choi
,
S. O.
Kang
,
G.
Cho
, and
H. S.
Uhm
, “
Temperature effects on the energy spreads in liquid metal ion sources
,”
J. Phys. D: Appl. Phys.
31
,
3463
3468
(
1998
).
38.
L.
Bischoff
, “
Application of mass-separated focused ion beams in nano-technology
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
266
,
1846
1851
(
2008
).
39.
G. L. R.
Mair
, “
Electrohydrodynamic instabilities and the energy spread of ions drawn from liquid metals
,”
J. Phys. D: Appl. Phys.
29
,
2186
2192
(
1996
).
40.
L.
Bischoff
,
J.
Teichert
,
S.
Hausmann
,
Th.
Ganetsos
, and
G. L. R.
Mair
, “
Investigation and optimization of the emission parameters of alloy liquid metal ion sources
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
161–163
,
1128
1131
(
2000
).
41.
P.
Mazarov
,
A. D.
Wieck
,
L.
Bischoff
, and
W.
Pilz
, “
Alloy liquid metal ion source for carbon focused ion beams
,”
J. Vac. Sci. Technol., B
27
(
6
),
L47
L49
(
2009
).
42.
L.
Bischoff
and
J.
Teichert
, “
Liquid metal ion source working with an Er70Fe22Cr5Ni3 alloy
,”
J. Phys. D: Appl. Phys.
33
,
L69
L72
(
2000
).
43.
E.
Hesse
,
L.
Bischoff
, and
J.
Teichert
, “
Development of a cobalt liquid alloy ion source
,”
J. Phys. D: Appl. Phys.
27
,
427
428
(
1994
).
44.
L.
Bischoff
,
Ch.
Akhmadaliev
,
A. W. R.
Mair
,
G. L. R.
Mair
,
Th.
Ganetsos
, and
C. J.
Aidinis
, “
Investigation of a tin liquid metal ion source
,”
Appl. Phys. A
79
,
89
92
(
2004
).
45.
G. L. R.
Mair
, “
Theoretical determination of current-voltage curves for liquid metal ion sources
,”
J. Phys. D: Appl. Phys.
17
,
2323
2330
(
1984
).
46.
Handbook of Charged Particle Optics
, 2nd ed., edited by
J.
Orloff
(
CRC Press
,
Boca Raton, USA
,
2009
), Chap. 11, pp.
523
600
, ISBN 1-4200-4554-7.
47.
B.
Schmidt
and
K.
Wetzig
,
Ion Beams in Material Processing and Analysis
(
Springer
,
Wien
,
2013
), p.
104
.
48.
J.
Melngailis
, “
Focused ion beam technology and applications
,”
J. Vac. Sci. Technol., B
5
,
469
595
(
1987
).
49.
L.
Bischoff
,
R.
Böttger
,
P.
Philipp
, and
B.
Schmidt
, “
Nanostructures by mass-separated FIB
,” in
FIB Nanostructures
, Lecture Notes on Nanoscale Science and Technology Vol. 20, edited by
Z.
Wang
(
Springer
,
2013
).
50.
C. W.
Hagen
,
E.
Fokkema
, and
P.
Kruit
, “
Brightness measurements of a gallium liquid metal ion source
,”
J. Vac. Sci. Technol., B
26
,
2091
2096
(
2008
).
51.
E.
Hesse
,
L.
Bischoff
, and
J.
Teichert
, “
Angular distribution and energy spread of a lithium liquid metal ion source
,”
J. Phys. D: Appl. Phys.
28
,
1707
1709
(
1995
).
52.
Y.
Saito
and
T.
Noda
, “
Cluster cations ejected from liquid metal ion source: Alkali metals (Li, Na) and group IV elements (Si, Ge, Sn, Pb)
,”
Z. Phys. D: At., Mol. Clusters
12
,
225
227
(
1989
).
53.
E.
Hesse
and
F.
Naehring
, “
Narrow angle emission from a lithium liquid metal ion source
,”
J. Phys. D: Appl. Phys.
26
,
717
718
(
1993
).
54.
P. M.
Read
,
J. T.
Maskrey
, and
G. D.
Alton
, “
Development of a lithium liquid metal ion source for MeV ion beam analysis
,” in
Proceedings of the 1st European Particle Accelerator Conference EPAC
, Rome, Italy, 7–11 June
1988
, p.
1332
.
55.
M.
Breese
,
J.
Cookson
,
J.
Cole
, and
A.
Ledbury
, “
A high brightness lithium metal ion source for nuclear microprobe applications
,”
Nucl. Instrum. Method Phys. Res., Sect. B
54
,
12
16
(
1991
).
56.
Y.
Saito
and
T.
Noda
, “
Bimetallic cluster cations ejected from a liquid metal ion source: Li-Na and Li-Mg
,”
Z. Phys. D: At. Mol. Clusters
19
,
129
131
(
1991
).
57.
Y.
Saito
, “
Cluster ions ejected from an LiMg alloy liquid metal ion source: observation of Mg2+2 and Mg2+3
,”
J. Am. Soc. Mass Spectrom.
2
,
76
80
(
1991
).
58.
H.
Arimoto
,
E.
Miyauchi
,
H.
Hashimoto
, and
M.
Komuro
, “
Energy distributions of liquid metal alloy ion sources
,”
J. Vac. Sci. Technol., B
6
(
3
),
919
922
(
1988
).
59.
K.
Umemura
,
Y.
Kawanami
, and
T.
Ishitani
, “
Emission of doubly charged dimer ions from liquid-metal ion sources
,”
Jpn. J. Appl. Phys. Part 2
27
,
L2392
L2394
(
1988
).
60.
K.
Umemura
,
Y.
Kawanami
, and
T.
Ishitani
, “
Development of an arsenic liquid-metal ion source
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
37
,
208
211
(
1989
).
61.
V.
Wang
,
J. W.
Ward
, and
R. L.
Seliger
, “
A mass-separating focused-ion-beam system for maskless ion implantation
,”
J. Vac. Sci. Technol.
19
(
4
),
1158
1163
(
1981
).
62.
K.
Umemura
,
T.
Ishitani
, and
H.
Tamura
, “
Boron and phosphorus ion emissions from a Cu–P–Pt–B liquid metal ion source
,”
Jpn. J. Appl. Phys., Part 2
25
,
L885
L887
(
1986
).
63.
L. W.
Swanson
,
A. E.
Bell
, and
G. A.
Schwind
, “
A comparison of boron emission characteristics for liquid metal ion sources of PtB, PdB, and NiB
,”
J. Vac. Sci. Technol., B
6
(
1
),
491
495
(
1988
).
64.
T.
Ishitani
,
K.
Umemura
,
Y.
Kawanami
, and
H.
Tamura
, “
Development of boron and phosphorus liquid-metal-ion sources
,”
J. Phys. Colloq.
45
,
C9
191
(
1984
).
65.
T.
Ishitani
,
K.
Umemura
, and
T.
Aida
, “
Movable needle type of liquid
metal-ion sources for boron and phosphorus ions
,”
J. Vac. Sci. Technol. A
5
(
5
),
2907
2911
(
1987
).
66.
T.
Ishitani
,
K.
Umemura
, and
Y.
Kawanami
, “
Favorable source material in liquid-metal-ion-sources for focused beam applications
,”
J. Vac. Sci. Technol., B
6
,
931
935
(
1988
).
67.
K.
Gamo
,
T.
Ukegawa
,
Y.
Inomoto
,
Y.
Ochiai
, and
S.
Namba
, “
Liquid metal alloy ion sources for B, Sb, and Si
,”
J. Vac. Sci. Technol.
19
(
4
),
1182
1185
(
1981
).
68.
R. H.
Higuchi-Rusli
,
K. C.
Cadien
,
J. C.
Corelli
, and
A. J.
Steckl
, “
Development of boron liquid metal ion source for focused ion beam system
,”
J. Vac. Sci. Technol., B
5
(
1
),
190
194
(
1987
).
69.
Y.
Saito
,
K.
Minami
,
T.
Ishida
, and
T.
Noda
, “
Abundance of Na cluster ions ejected from a liquid metal ion source
,”
Z. Phys. D: At. Mol. Clusters
11
,
87
91
(
1989
).
70.
J.
Cheng
and
A. J.
Steckl
, “
Mg–Ga liquid metal ion source for implantation doping of GaN
,”
J. Vac. Sci. Technol., B
19
,
2551
2554
(
2001
).
71.
H.
Yamada
and
Y.
Torii
, “
Reservoir-type liquid metal ion source of Al
,”
Rev. Sci. Instrum.
57
,
1282
1285
(
1986
).
72.
A. E.
Bell
,
G. A.
Schwind
, and
L. W.
Swanson
, “
The emission characteristics of an aluminum liquid metal ion source
,”
J. Appl. Phys.
53
,
4602
4605
(
1982
).
73.
Ji.
Cheng
, “
Focused ion beam fabrication of photonic structures for optical communications
,” Ph.D. thesis (
University of Cincinnati
,
2002
).
74.
J.
Van de Walle
,
R. J.
Tarento
, and
P.
Joyes
, “
Experimental (LMIS) and theoretical study of SinAump+ and GenAump+
,”
Z. Phys. D: At. Mol. Clusters
20
,
17
19
(
1991
).
75.
G. L. R.
Mair
,
L.
Bischoff
,
C. A.
Londos
,
Th.
Ganetsos
,
Ch.
Akhmadaliev
, and
C. J.
Aidinis
, “
An in-depth investigation into the temperature dependence of the mass spectra of an Au82Si18 liquid metal field emitter
,”
Appl. Phys. A
81
,
385
388
(
2005
).
76.
L.
Bischoff
,
G. L. R.
Mair
,
C. J.
Aidinis
,
C. A.
Londos
,
Ch.
Akhmadaliev
, and
Th.
Ganetsos
, “
A Au82Si18 liquid metal field-ion emitter for the production of Si ions: Fundamental properties and mechanisms
,”
Ultramicroscopy
100
,
1
7
(
2004
).
77.
C. J.
Aidinis
,
L.
Bischoff
,
G. L. R.
Mair
,
C. A.
Londos
,
Th.
Ganetsos
, and
Ch.
Akhmadaliev
, “
Study of a liquid metal field emitter for the production of Si ions
,”
Microelectron. Eng.
73–74
,
116
119
(
2004
).
78.
R.
Higuchi-Rusli
, “
Characteristics of AuSi liquid metal alloy ion source with coupling extractor electrodes
,”
Rev. Sci. Instrum.
67
(
10
),
3501
3506
(
1996
).
79.
F.
Machalett
and
R.
Muhle
, “
Liquid alloy ion sources for Pd and Cu
,”
J. Phys. D: Appl. Phys.
27
,
1286
1290
(
1994
).
80.
R.
Higuchi-Rusli
and
J.
Corelli
, “
Characterization of phosphorus liquid-metal ion source as a dopant source in focused ion beam systems
,”
J. Appl. Phys.
63
(
3
),
603
610
(
1988
).
81.
K.
Umemura
,
Y.
Madokoro
,
S.
Shukuri
,
T.
Ohnishi
, and
T.
Ishitani
, “
Phosphorus liquid metal ion source using a Pt–P–Sb alloy
,”
J. Vac. Sci. Technol. A
6
,
2457
2461
(
1988
).
82.
Th.
Ganetsos
,
G. L. R.
Mair
,
C. J.
Aidinis
, and
L.
Bischoff
, “
Characteristics of erbium-ions-producing liquid metal ions sources
,”
Physica B
340–342
,
1166
1170
(
2003
).
83.
L.
Bischoff
,
G. L. R.
Mair
,
C. J.
Aidinis
, and
Th.
Ganetsos
, “
Fundamental properties of erbium-ions-producing liquid metal alloy ion sources
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
197
,
282
287
(
2002
).
84.
F. M.
Greene
,
F.
Kollmer
,
E.
Niehuis
,
I. S.
Gilmore
, and
M. P.
Seah
, “
Imaging G-SIMS: A novel bismuth-manganese source emitter
,”
Rapid Commun. Mass Spectrom.
22
,
2602
2608
(
2008
).
85.
Ch.
Akhmadaliev
,
W.
Pilz
, and
L.
Bischoff
, “
Mn containing alloy LMIS for spintronics
,” in
European Focused Ion Beam Users Group EFUG
, Annual Meeting, Wuppertal, Germany, October 02,
2006
.
86.
C. H.
Chu
,
D. L.
Barr
,
L. R.
Harriott
, and
H. H.
Wade
, “
FeGe liquid metal ion source for maskless isolation implants in InP
,”
J. Vac Sci. Technol., B
10
,
1273
1276
(
1992
).
87.
R.
Mühle
,
M.
Döbeli
, and
A.
Melnikov
, “
Investigations on a Co-Dy alloy ion source
,”
J. Phys. D: Appl. Phys.
40
,
2594
2602
(
2007
).
88.
W.
Driesel
,
Ch.
Dietzsch
,
E.
Hesse
,
L.
Bischoff
, and
J.
Teichert
, “
In situ observation of the tip shape of Co-Ge liquid alloy ion sources in a high voltage transmission electron microscope
,”
J. Vac. Sci. Technol., B
14
(
3
),
1621
1629
(
1996
).
89.
L.
Bischoff
,
J.
Teichert
,
E.
Hesse
,
P. D.
Prewett
, and
J. G.
Watson
, “
Cluster beams from a Co-Nd liquid alloy ion source
,”
Microelectron. Eng.
30
,
245
248
(
1996
).
90.
L.
Bischoff
,
J.
Teichert
,
S.
Hausmann
,
T.
Ganetsos
, and
G. L. R.
Mair
, “
Temperature and energy spread investigations of alloy LMIS
,”
Microelectron. Eng.
53
,
613
616
(
2000
).
91.
L. C.
Chao
and
A. J.
Steckl
, “
Development of an Er–Ni liquid alloy ion source
,”
J. Vac. Sci. Technol., B
17
(
3
),
1056
1058
(
1999
).
92.
L. C.
Chao
,
B. K.
Lee
,
C. J.
Chi
,
J.
Cheng
,
I.
Chyr
, and
A. J.
Steckl
, “
Rare earth focused ion beam implantation utilizing Er and Pr liquid alloy ion sources
,”
J. Vac. Sci. Technol., B
17
(
6
),
2791
2794
(
1999
).
93.
A.
Melnikov
,
M.
Hillmann
,
I.
Kamphausen
,
W.
Oswald
,
P.
Stauche
,
R.
Wernhardt
, and
A. D.
Wieck
, “
Dy–Ni alloy metal ion source for focused ion beam implantation
,”
Vacuum
67
,
249
251
(
2002
).
94.
H.
Arimoto
,
E.
Miyauchi
,
A.
Furuya
,
K.
Ishida
,
T.
Takamori
,
H.
Nakashima
, and
H.
Hashimoto
, “
Au-Zn-Si liquid metal ion source emitting multiple p- and n-type ion species for compositional disordering of GaAs-AlGaAs multi quantum wells
,”
J. Vac. Sci. Technol., B
6
,
230
233
(
1988
).
95.
H.
Arimoto
,
E.
Miyauchi
, and
H.
Hashimoto
, “
Zinc and silicon ion emission from gold-zinc-silicon liquid metal ion source
,”
Jpn. J. Appl. Phys., Part 2
26
,
L253
L254
(
1987
).
96.
K.
Minami
,
Y.
Saito
,
T.
Noda
, and
T.
Matsuo
, “
Cluster abundance spectra of germanium ions ejected from a liquid-metal ion source
,”
Rapid Commun. Mass Spectrom.
2
,
115
117
(
1988
).
97.
L.
Bischoff
,
W.
Pilz
,
Th.
Ganetsos
,
Ch.
Akhmadaliev
,
C. J.
Aidinis
, and
C. A.
Londos
, “
On the temperature dependence of the mass spectra of AuGe and AuGeSi liquid metal alloy ion sources
,”
J. Phys.: Conf. Ser.
10
,
214
217
(
2005
).
98.
S.
Georgieva
,
W.
Tzvetkov
,
R.
Vitchev
, and
N.
Drandarov
, “
Emission characteristics of an Au-Ge liquid metal ion source
,”
Vacuum
5
(
2
),
99
102
(
1998
).
99.
N. D.
Bhaskar
,
R. P.
Frueholz
,
C. M.
Klimcak
, and
R. A.
Cook
, “
Evidence of electronic shell structure in RbN+ (N = 1–100) produced in a liquid-metal ion source
,”
Phys. Rev. B
36
,
4418
(
1987
).
100.
T.
Noda
,
T.
Okutani
,
K.
Yagi
,
H.
Tamura
,
H.
Okano
, and
H.
Watanabe
, “
An electrohydrodynamic ion source with a reservoir and an emitter tip heated by electron bombardment
,”
Int. J. Mass Spectrom. Ion Phys.
46
,
15
18
(
1983
).
101.
B. L.
Sheu
and
Y. L.
Wang
, “
Emission properties of a dual ion-electron source based on Au–In alloy
,”
Appl. Phys. Lett.
80
,
1480
1482
(
2002
).
102.
W.-P.
Hsieh
,
B. L.
Sheu
, and
Y. L.
Wang
, “
Emission properties of a dual ion/electron point emitter based on In–Bi alloy
,”
Appl. Phys. Lett.
83
,
2277
2279
(
2003
).
103.
L.
Bischoff
,
G. L. R.
Mair
,
A. W. R.
Mair
,
Th.
Ganetsos
, and
Ch.
Akhmadaliev
, “
The mass spectrum of a tin liquid metal ion source
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
222
,
622
626
(
2004
).
104.
A.
Dixon
,
C.
Colliex
,
R.
Ohana
,
P.
Sudraud
, and
J.
Van de Walle
, “
Field-ion emission from liquid tin
,”
Phys. Rev. Lett.
46
(
13
),
865
868
(
1981
).
105.
W.
Driesel
and
C.
Dietzsch
, “
In situ HVTEM observation of the tip shape of tin liquid metal ion sources
,”
Appl. Surf. Sci.
93
(
2
),
179
190
(
1996
).
106.
W.
Pilz
and
L.
Bischoff
,
“Emitter for an ion source and method of producing same,” European patent application 04017894.9
(
2004
).
107.
T.
Ishitani
,
K.
Umemura
,
Y.
Kawanami
, and
T.
Ohnishi
, “
Development of liquid-metal-ion sources for focused-ion-beam, applications
,”
J. Electrochem. Soc.
136
(
11
),
3502
3505
(
1989
).
108.
K.
Umemura
,
H.
Shichi
, and
S.
Nomura
, “
Cesium liquid metal ion source for secondary ion mass spectrometry
,”
Rev. Sc. Instrum.
65
,
2276
2280
(
1994
).
109.
K.
Umemura
, “
Measurement of energy spread and angular intensity of a caesium liquid metal ion source
,”
Appl. Phys. A
54
,
115
119
(
1992
).
110.
C.
Bartoli
,
H.
von Rhoden
,
S. P.
Thompson
, and
J.
Blommers
, “
A liquid caesium field ion source for space propulsion
,”
J. Phys. D: Appl. Phys.
17
,
2473
2483
(
1984
).
111.
R.
Clampitt
and
D. K.
Jefferies
, “
Miniature ion sources for analytical instruments
,”
Nucl. Instrum. Methods
149
,
739
742
(
1978
).
112.
M.
Kagami
,
T.
Shiokawa
,
Y.
Segawa
,
Y.
Aoyagi
,
S.
Namba
,
H.
Okada
, and
T.
Ito
, “
Maskless ion implantation of cerium by focused ion beam
,”
Jpn. J. Appl. Phys., Part 2
27
(
6
),
L1157
L1159
(
1988
).
113.
F.
Machalett
,
P.
Seidel
, and
R.
Mühle
, “
Praseodymium alloy ion source for focused ion beam implantation in superconductors
,”
Rev. Sci. Instrum.
67
,
1015
1017
(
1996
).
114.
F.
Machalett
,
W.
Wesch
,
R.
Mühle
, and
S.
Barth
, “
Investigations on liquid alloy ion sources for rare-earth elements
,”
Rev. Sci. Instrum.
69
,
1336
1339
(
1998
).
115.
A.
Melnikov
,
T.
Gerya
,
M.
Hillmann
,
I.
Kamphausen
,
W.
Oswald
,
P.
Stauche
,
R.
Wernhardt
, and
A. D.
Wieck
, “
Development of an Au–Dy–Si liquid alloy ion source for focused ion beam implantation
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
195
,
422
425
(
2002
).
116.
P.
Sudraud
,
C.
Colliex
, and
J.
van de Walle
, “
Energy distribution of EHD emitted gold ions
,”
J. Phys. Lett.
40
,
207
211
(
1979
).
117.
A.
Wagner
and
T. M.
Hall
, “
Liquid gold ion source
,”
J. Vac. Sci. Technol.
16
,
1871
1874
(
1979
).
118.
L.
Bischoff
,
G. L. R.
Mair
,
Ch.
Akhmadaliev
,
A. W. R.
Mair
, and
Th.
Ganetsos
, “
The post-ionization of Pb ions from a molten Sn host field-ion emitter
,”
Appl. Phys. A
80
,
205
207
(
2005
).
119.
P.
Mazarov
,
A.
Melnikov
,
R.
Wernhardt
, and
A. D.
Wieck
, “
Long-life bismuth liquid metal ion source for focused ion beam
,”
Appl. Surf. Sci.
254
,
7401
7404
(
2008
).
120.
L. W.
Swanson
,
G. A
.
Schwind
,
A. E.
Bell
, and
J. E.
Brady
, “
Emission characteristics of gallium and bismuth liquid metal ion sources
,”
J. Vac. Sci. Technol.
16
(
6
),
1864
1867
(
1979
).
121.
J.
van de Walle
and
P.
Sudraud
, “
Realization and properties of an uranium LMIS
,” in
Proceedings of the 29th International Field Emission Symposium (IFES)
(
1982
), pp.
341
347
.
122.
W. J.
Tegart
,
The Electrolytic and Chemical Polishing of Metals
(
Pergamon Press Ltd.
,
1959
), p.
140
.
123.
M.
Tajmar
,
C.
Scharlemann
,
A.
Genovese
,
N.
Buldrini
,
W.
Steiger
, and
I.
Vasiljevich
, “
Liquid-metal-ion source development for space propulsion at ARC
,”
Ultramicroscopy
109
,
442
446
(
2009
).
124.
E.
Miyauchi
,
H.
Arimoto
,
H.
Hashimoto
, and
T.
Utsumi
, “
Selective Si and Be implantation in GaAs using a 100 kV mass-separating focused ion beam system with Au-Si-Be liquid metal ion source
,”
J. Vac. Sci. Technol.
1
,
1113
1116
(
1983
).
125.
R.
Mimura
,
H.
Takayama
, and
M.
Takai
, “
Nanometer resolution three-dimensional microprobe RBS ba using a 200 keV focused ion beam system
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
210
,
104
107
(
2003
).
126.
S.
Bauerdick
,
L.
Bruchhaus
,
P.
Mazarov
,
A.
Nadzeyka
,
R.
Jede
,
J.
Fridmann
,
J. E.
Sanabia
,
B.
Gila
, and
B. R.
Appleton
, “
Multispecies focused ion beam lithography system and its applications
,”
J. Vac. Sci. Technol., B
31
(
6
),
06F404
(
2013
).
127.
R. L.
Seliger
, “
ExB mass-separator design
,”
J. Appl. Phys.
43
,
2352
2357
(
1972
).
128.
L.
Bischoff
,
J.
Teichert
,
Th.
Ganetsos
, and
G. L. R.
Mair
, “
Effect of temperature on the emission characteristics of liquid metal alloy ion sources
,”
J. Vac. Sci. Technol., B
19
,
76
78
(
2001
).
129.
C. A.
Croxton
,
Statistical Mechanics of the Liquid Surface
(
Wiley
,
Chichester
,
1980
), p.
161ff
.
130.
V.
Zamudio-Bayer
,
L.
Leppert
,
K.
Hirsch
,
A.
Langenberg
,
J.
Rittmann
,
M.
Kossick
,
M.
Vogel
,
R.
Richter
,
A.
Terasaki
,
T.
Möller
,
B. v.
Issendorff
,
S.
Kümmel
, and
J. T.
Lau
, “
Coordination-driven magnetic-to-nonmagnetic transition in manganese-doped silicon clusters
,”
Phys. Rev. B
88
,
115425
(
2013
).
131.
S.
Basu
,
D. Y.
Inamdar
,
S.
Mahamuni
,
A.
Chakrabarti
,
C.
Kamal
,
G.
Ravi Kumar
,
S. N.
Jha
, and
D.
Bhattacharyya
, “
Local structure investigation of cobalt and manganese doped ZnO nanocrystals and its correlation with magnetic properties
,”
J. Phys. Chem. C
118
(
17
),
9154
9164
(
2014
).
132.
M.
Ito
,
M.
Kasai
,
T.
Kimura
,
J.
Yanagisawa
,
F.
Wakaya
,
Y.
Yuba
, and
K.
Gamo
, “
Maskless Mn implantation in GaAs using focused Mn ion Beam
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
206
,
1013
1017
(
2003
).
133.
J. M.
Kikkawa
,
J. J.
Baumberg
,
D. D.
Awschalom
,
D.
Leonard
, and
P. M.
Petroff
, “
Optical studies of locally implanted magnetic ions in GaAs
,”
Phys. Rev. B
50
(
3
),
2003
2006
(
1994
).
134.
J. F.
Graham
,
C. D.
Kell
,
J. L.
Gray
,
S. A.
Wolf
,
J. A.
Floro
,
L.
Bischoff
, and
R.
Hull
, “
Focused ion beam engineering of semiconductor quantum dots
,”
MRS Fall Meeting 2008
, MM 4, Boston, MA, December 01–05 (
2008
), p.
24
.
135.
T.
Alzanki
,
R.
Gwilliam
,
N. G.
Emerson
, and
B. J.
Sealy
, “
Low-temperature processing of antimony-implanted silicon
,”
J. Electron. Mater.
33
(
7
),
767
769
(
2004
).
136.
F.
Kollmer
, “
Cluster primary ion bombardment of organic materials
,”
Appl. Surf. Sci.
231–232
,
153
158
(
2004
).
137.
L.
Bischoff
,
W.
Pilz
, and
B.
Schmidt
, “
Amorphous solid foam structures on germanium by heavy ion irradiation
,”
Appl. Phys. A
104
,
1153
1158
(
2011
).
138.
R.
Böttger
,
L.
Bischoff
,
K.-H.
Heinig
,
W.
Pilz
, and
B.
Schmidt
, “
From sponge to dot arrays on (100)Ge by increasing the energy of ion impacts
,”
J. Vac. Sci. Technol., B
30
(
6
),
06FF12
(
2012
).
139.
S.
Papadopoulos
,
D. L.
Barr
, and
W. L.
Brown
, “
On the energy distribution of clusters from liquid metal ion sources
,”
J. Phys. Colloques
47
,
C2-101
C2-106
(
1986
).
140.
T.
Radlicka
and
B.
Lencova
, “
Influence of clusters on Bi LMIS properties
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
645
,
124
129
(
2011
).
141.
V. V.
Vladimirov
,
V. E.
Badan
,
V. N.
Gorshkov
, and
I. A.
Soloshenko
, “
Liquid metal microdroplet source for deposition purposes
,”
Appl. Surf. Sci.
65/66
,
1
12
(
1993
).
142.
M. B. H.
Breese
,
G. W.
Grime
, and
F.
Watt
, “
MeV ion beam lithography of PMMA
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
77
,
169
174
(
1993
).
143.
D.
Winston
,
V. R.
Manfrinato
,
S. M.
Nicaise
,
L. L.
Cheong
,
H.
Duan
,
D.
Ferranti
,
S.
McVey
,
L.
Stern
,
J.
Notte
, and
K. K.
Berggren
, “
Neon ion beam lithography (NIBL)
,”
Nano Lett.
11
,
4343
4347
(
2011
).
144.
R.
Clampitt
and
D. K.
Jefferies
,
Institute of Physics AQ2, Conference Series
(
Institute of Physics Publishing
,
Bristol
,
1979
), Vol. 38, p.
12
.
145.
Y.
Saito
,
M.
Watanabe
,
T.
Hagiwara
,
S.
Nishigaki
, and
T.
Noda
, “
Magic number in a mass spectrum of lithium clusters emitted from a liquid metal ion source
,”
Jpn. J. Appl. Phys., Part 1
27
,
424
427
(
1988
).
146.
E.
Hesse
,
F. K.
Naehring
, and
J.
Teichert
, “
A lithium liquid metal ion source with a narrow angle emission for writing beam lithography
,”
Microelectron. Eng.
23
,
111
114
(
1994
).
147.
S.
Seki
,
H.
Tamura
,
T.
Akiba
, and
H.
Sumiya
, “
A lithium liquid metal ion source with a sealed- cone-type reservoir
,”
Jpn. J. Appl. Phys., Part 2
40
,
L78
L80
(
2001
).
148.
J. A.
Panitz
,
A. L.
Pregenzer
, and
R. A.
Gerber
, “
Electrohydrodynamic ion emission from molten lithium nitrate
,”
J. Vac. Sci. Technol. A
7
,
64
68
(
1989
).
149.
A. L.
Pregenzer
and
B. M.
Marder
, “
Liquid lithium ion source: Nonlinear behavior of liquid surface in electric field
,”
J. Appl. Phys.
60
(
11
),
3821
3824
(
1986
).
150.
L.
Bischoff
and
Ch.
Akhmadaliev
, “
Liquid metal ion source for producing lithium-ion beams
,”
German patent DE102007027097A1
(18 December
2008
).
151.
R. G.
Forbes
,
T.
Ganetsos
,
G. L. R.
Mair
, and
V. G.
Suvorov
, “
Liquid metal ion sources at Aston in the 1980s and what followed
,”
Proc. R. Microsc. Soc.
39
(
3
),
1
9
(
2004
).
152.
A.
Joshi-Imre
and
S.
Bauerdick
, “
Direct-write ion beam lithography,”
J. Nanotechnol.
2014
,
170415
.
153.
A.
Nadzeyka
,
L.
Petoa
,
S.
Bauerdick
,
M.
Mayer
,
K.
Keskinbora
,
C.
Grévent
,
M.
Weigand
,
M.
Hirscher
, and
G.
Schütz
, “
Ion beam lithography for direct patterning of high accuracy large area X- ray elements in gold on membranes
,”
Microelectron. Eng.
98
,
198
201
(
2012
).
154.
J.
Melngailis
,
A. A.
Mondelli
,
I. L.
Berry
, and
R.
Mohondro
, “
A review of ion projection lithography
,”
J. Vac. Sci. Technol., B
16
,
927
957
(
1998
).
155.
S. E.
Kapl
,
H.
Loeschner
,
W.
Piller
,
M.
Witt
,
W.
Pilz
,
F.
Letzkus
,
M.
Jurisch
,
M.
Irmscher
, and
E.
Platzgummer
, “
Characterization of CMOS programmable multi-beam blanking arrays as used for programmable multi-beam projection lithography and resistless nanopatterning
,”
J. Micromech. Microeng.
21
,
045038
(
2011
).
156.
IUPAC Compendium of Chemical Terminology
,
The Gold Book
, 2nd ed., edited by
A. D.
McNaught
and
A.
Wilkinson
(
Blackwell Scientific Publications
,
Oxford
,
1997
).
157.
P.
Kumar
,
A
.
Kashyap
,
B.
Balamurugan
,
J. E.
Shield
,
D. J.
Sellmyer
, and
R.
Skomsk
, “
Permanent magnetism of intermetallic compounds between light and heavy transition-metal Elements
,”
J. Phys.: Condens. Matter
26
,
064209
(
2014
).
158.
S. P.
Murarka
, “
Silicide thin films and their applications in microelectronics
,”
Intermetallics
3
(
3
),
173
186
(
1995
).
159.
A.
King
,
J. C.
Soares
, and
M. F.
da Silva
, “
Optical and structural properties of chromium implanted lithium niobate—Cluster formation and substitutional incorporation
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
148
,
1044
1048
(
1999
).
160.
N.
Hong
, see http://www.marketwatch.com for Rare Earths Offer a Bumpy Road to Riches, 15 November
2011
.
161.
A. E. Ray, Cobalt (1), 3–20 (1974) in T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed. (ASM International, 1996) ISBN: 978-0-87170-403-0.
162.
L.
Bischoff
and
G. L. R.
Mair
, “
Alloy liquid metal ion sources for mass separated focused ion beams
,” Transworld Research Network, 37/661 (2) Fort P.O., Trivandrum-695 023, Kerala, India (2003), ISBN: 81-7895-085-5.
163.
J.
Teichert
,
L.
Bischoff
, and
S.
Hausmann
, “
Fabrication of MSM detector structures on silicon by focused ion beam implantation
,”
Microelectron. Eng.
35
,
455
458
(
1997
).
164.
A.
Polman
, “
Erbium implanted thin film photonic materials
,”
J. Appl. Phys.
82
,
1
39
(
1997
).
165.
Smithell’s Metals Reference Book
, 5th ed. (
Butterworth
,
London
,
1976
).
166.
R. H.
Schum
,
D. D.
Wagman
,
S.
Bailey
,
W. H.
Evans
, and
V. B.
Parker
, National Bureau of Standards (USA) Technical Notes 270-1 to 270-8,
1973
.
167.
See http://en.wikipedia.org/wiki/Tin for physical and chemical properties information of tin.
168.
C. M.
Abreu
,
M. J.
Cristobal
,
X. R.
Novoa
,
G.
Pena
, and
M. C.
Perez
, “
Characterisation of the electrochemical behavior of cerium implanted stainless steels
,”
Electrochim. Acta
47
(
13
),
2215
2222
(
2002
).
169.
G. L. R.
Mair
and
A.
von Engel
, “
Gallium-field-ion emission from liquid point anodes
,”
J. Appl. Phys.
50
(
9
),
5592
5595
(
1979
).
170.
G. L. R.
Mair
, “
On the origin of fast current fluctuations in liquid-metal-ion sources
,”
J. Phys. D: Appl. Phys.
21
,
1654
1656
(
1988
).
171.
Ch.
Akhmadaliev
,
G. L. R.
Mair
,
C. J.
Aidinis
, and
L.
Bischoff
, “
Frequency spectra and eletrohydrodynamic phenomena in a liquid gallium field ion emission source
,”
J. Phys. D: Appl. Phys.
35
,
L91
L93
(
2002
).
172.
Ch.
Akhmadaliev
,
L.
Bischoff
,
G. L. R.
Mair
,
C. J.
Aidinis
,
Th.
Ganetsos
, and
M.
Anagnostakis
, “
Temperature dependence of emission frequency of a liquid metal anode
,”
J. Phys. D: Appl. Phys.
36
,
L18
L20
(
2003
).
173.
Ch.
Akhmadaliev
,
L.
Bischoff
,
G. L. R.
Mair
,
C. J.
Aidinis
, and
Th.
Ganetsos
, “
Investigation of emission instabilities of liquid metal alloy ion sources
,”
Microelectron. Eng.
73–74
,
120
125
(
2004
).
174.
E. W.
Müller
, “
Das Feldionenmikroskop
,”
Z. Phys.
131
,
136
142
(
1951
).
175.
R.
Gomer
,
Field Emission and Field Ionization
, Harvard Monographs in Applied Science Vol. 9 (
Harvard University Press
,
Cambridge, Massachusetts
,
1961
), pp.
134
136
.
176.
Handbook of Charged Particle Optics
, 2nd ed., edited by
J.
Orloff
(
CRC Press
,
Boca Raton, USA
,
2009
), Chap. 3, pp.
87
128
, ISBN 1-4200-4554-7.
177.
F.
Aramaki
,
T.
Kozakai
,
O.
Matsuda
,
O.
Takaoka
,
Y.
Sugiyama
,
H.
Oba
,
K.
Aita
, and
A.
Yasaka
, “
Photomask repair technology by using gas field ion source
,”
Proc. SPIE
29
,
2
6
(
2013
); available at https://spie.org/Documents/ConferencesExhibitions/PM12-Abstracts.pdf.
178.
G.
Hlawacek
,
V.
Veligura
,
R.
van Gastel
, and
B.
Poelsema
, “
Helium ion microscopy
,”
J. Vac. Sci. Technol., B
32
(
2
),
020801
(
2014
).
179.
R.
Borret
,
K.
Bohringer
, and
S.
Kalbitzer
, “
Current-voltage characteristics of a gas field ion source with a supertip
,”
J. Phys. D: Appl. Phys.
23
,
1271
127
(
1990
).
180.
S.
Kalbitzer
and
V. A.
Zhukov
, “
The development of ion nano-beams—A review
,”
Appl. Phys. Res.
4
,
211
221
(
2012
).
181.
H.-S.
Kuo
,
I.-S.
Hwang
,
T.-Y.
Fu
,
Y.-S.
Hwang
,
Y.-H.
Lu
,
C.-Y.
Lin
,
J.-L.
Hou
, and
T. T.
Tson
, “
A single-atom sharp iridium tip as an emitter of gas field ion source
,”
Nanotechnology
20
,
335701
(
2009
).
182.
E. W.
Müller
,
J. A.
Panitz
, and
S. B.
McLane
, “
The atom-probe field ion microscope
,”
Rev. Sci. Instrum.
39
(
1
),
83
86
(
1968
).
183.
T. F.
Kelly
and
D. J.
Larson
, “
Atom probe tomography 2012
,”
Annu. Rev. Mater. Res.
42
,
1
31
(
2012
).
184.
S.
Guilet
,
C.
Perez-Martinez
,
P.
Jegou
,
P.
Lozano
, and
J.
Gierak
, “
Ionic liquid ion sources for silicon reactive machining
,”
Microelectron. Eng.
88
(
8
),
1968
1971
(
2011
).
185.
A. B.
Tolstogouzov
,
S. F.
Belykh
,
V. S.
Gurov
,
A. A.
Lozovan
,
A. I.
Taganov
,
O. M. N. D.
Teodoro
,
A. A.
Trubitsyn
, and
S. P.
Chenakin
, “
Ion-beam sources based on room-temperature ionic liquids for aerospace applications, nanotechnology, and microprobe analysis (review)
,”
Instrum. Exp. Tech.
58
,
1
14
(
2015
).
186.
C.
Perez-Martinez
,
S.
Guilet
,
N.
Gogneau
,
P.
Jegou
,
J.
Gierak
, and
P.
Lozano
, “
Development of ion sources from ionic liquids for microfabrication
,”
J. Vac. Sci. Technol., B
28
(
3
),
L25
(
2010
).
187.
A.
Corbin
,
P.
Sudraud
, and
R.
Sailer
, “
High brightness point ion sources using liquid ionic compounds
,” U.S. patent 6,337,540 B1 (8 January
2002
).
188.
I.
Romero-Sanz
,
R.
Bocanegra
,
J.
Fernandez de la Mora
, and
M.
Gamero-Castano
, “
Source of heavy molecular ions based on Taylor cones of ionic liquids operating in the pure on evaporation regime
,”
J. Appl. Phys.
94
,
3599
3605
(
2003
).
189.
A. N.
Zorzos
and
P.
Lozano
, “
The use of ionic liquid ion sources in focused ion beam applications
,”
J. Vac. Sci. Technol., B
26
(
6
),
2097
2102
(
2008
).
190.
N.
Toyoda
,
H.
Kitani
,
N.
Hagiwara
,
J.
Matsuo
, and
I.
Yamada
, “
Surface smoothing effects with reactive cluster ion beams
,”
Mater. Chem. Phys.
54
(
1–3
),
106
110
(
1998
).
191.
C.
Bartoli
,
H.
von Rohden
,
S. P.
Thompson
, and
J.
Blommers
, “
A liquid caesium field ion source for space propulsion
,”
J. Phys. D: Appl. Phys.
17
,
2472
2483
(
1984
).
192.
N.
Brikner
and
P. C.
Lozano
, “
The role of upstream distal electrodes in mitigating electrochemical degradation of ionic liquid ion sources
,”
Appl. Phys. Lett.
101
,
193504
(
2012
).
193.
C.
Escher
,
S.
Thomann
,
C.
Andreoli
,
H.
Fink
,
J.
Toquant
, and
D. W.
Pohl
, “
Vacuum ion emission from solid electrolytes: An alternative source
,”
Appl. Phys. Lett.
89
,
053513
053515
(
2006
).
194.
L. W.
Swanson
and
G. A.
Schwind
, “
Electron emission from a liquid metal
,”
J. Appl. Phys.
49
,
5655
5662
(
1978
).
195.
L. W.
Chen
and
Y. L.
Wang
, “
Stable field-induced electron emission from a solidified liquid metal ion source
,”
Appl. Phys. Lett.
72
(
3
),
389
391
(
1998
).
196.
W.
Knapp
,
L.
Bischoff
, and
J.
Teichert
, “
Electron emission characteristics of solidified gold alloy liquid metal ion sources
,”
Appl. Surf. Sci.
146
,
134
137
(
1999
).
197.
K. A.
Rao
,
A. E.
Bell
,
G. A.
Schwind
, and
L. W.
Swanson
, “
A combination electron/ion field emission source
,”
J. Vac. Sci. Technol., B
7
(
6
),
1793
1797
(
1989
).
198.
K.
Hata
,
S.
Nishigaki
,
M.
Inoue
, and
T.
Noda
, “
Properties of DC mode field emission of electrons from liquid lithium cathode
,”
J. Phys. C Colloques
49
,
C6-125
C6-130
(
1988
).
199.
K.
Hata
,
S.
Nishigaki
,
M.
Ionue
,
T.
Noda
, and
H.
Tamura
, “
Steady and explosion modes in electron emission from liquid metal ion source
,”
J. Phys. Colloq.
48
,
C6
177-182
(
1987
).
200.
F.
Ullmann
,
F.
Großmann
,
V. P.
Ovsyannikov
,
J.
Gierak
,
E.
Bourhis
,
J.
Ferre
,
J. P.
Jamet
,
A.
Mougin
, and
G.
Zschornack
, “
Production of noble gas ion beams in a focused ion beam machine using an electron beam ion trap
,”
J. Vac. Sci. Technol., B
25
,
2162
2167
(
2007
).
201.
M. A.
Levine
,
R. E.
Marrs
,
J. R.
Henderson
,
D. A.
Knapp
, and
M. B.
Schneider
, “
The Electron beam ion trap: A new instrument for atomic physics measurements
,”
Phys. Scr., T
22
,
157
163
(
1988
).
202.
A.
Thorn
,
E.
Ritter
,
F.
Ullmann
,
W.
Pilz
,
L.
Bischoff
, and
G.
Zschornack
, “
Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source
,”
Rev. Sci. Instrum.
83
,
02A511
(
2012
).
203.
M.
Schmidt
,
J.
König
,
L.
Bischoff
,
W.
Pilz
, and
G.
Zschornack
, “
Surface and material analytics based on Dresden-EBIS platform technology
,”
AIP Conf. Proc.
1640
,
88
93
(
2015
).
204.
A. V.
Steele
,
B.
Knuffman
,
J. J.
McClelland
, and
J.
Orloff
, “
Focused chromium ion beam
,”
J. Vac. Sci. Technol., B
28
(
6
),
C6F1
C6F5
(
2010
).
205.
B.
Knuffman
,
A. V.
Steele
,
J.
Orloff
, and
J. J.
McClelland
, “
Nanoscale focused ion beam from laser-cooled lithium atoms
,”
New J. Phys.
13
,
103035
(
2011
).
206.
K. A.
Twedt
,
L.
Chen
, and
J. J.
McClelland
, “
Scanning ion microscopy with low energy lithium ions
,”
Ultramicroscopy
142
,
24
31
(
2014
).
207.
B.
Knuffman
,
A. V.
Steele
, and
J. J.
McClelland
, “
Cold atomic beam ion source for focused ion beam applications
,”
J. Appl. Phys.
114
,
044303
(
2013
).
208.
A.
Delobbe
,
O.
Salord
, and
P.
Sudraud
, see http://www.imec.be/efug/EFUG20o.html for The ECR–FIB, The European Focused Ion Beam Users Group (EFUG) Annual Meeting
2011
.
209.
R.
Kelley
,
K.
Song
,
B.
Van Leer
,
D.
Wall
, and
L.
Kwakman
, “
Xe+ FIB milling and measurement of amorphous silicon damage
,”
Microsc. Microanal.
19
,
862
863
(
2013
).
References

Pool of further interesting references related to LMAIS, LMIS, and FIB

Ordered by years:

E. W.
Müller
, “
Field ion microscopy
,”
Science
149
,
591
601
(
1965
).
R. G.
Forbes
, “
A generalized theory of standard field ion appearance energies
,”
Surf. Sci.
61
,
221
240
(
1976
).
P.
Sudraud
,
C.
Colliex
, and
J.
van de Walle
, “
Energy distribution of EHD emitted gold ions
,”
J. Phys.
40
,
L207
L211
(
1979
).
L. W.
Swanson
, “
Liquid metal ion sources: Mechanism and applications
,”
Nucl. Instrum. Methods
218
,
347
353
(
1983
).
D. R.
Kingham
and
L. W.
Swanson
, “
A dynamic model including fluid flow and space-charge effects
,”
Appl. Phys. A
34
,
123
134
(
1984
).
J.
Ishikawa
and
T.
Takagi
, “
Impregnated-electrode-type liquid metal ion source
,”
J. Appl. Phys.
56
,
3050
3056
(
1984
).
G. L. R.
Mair
,
T.
Mulvey
, and
R. G.
Forbes
, “
Energy spreads in field evaporation and liquid metal ion source
,”
J. Phys. C
9
,
179
182
(
1984
).
T.
Ishitani
,
K.
Umemura
, and
Y.
Kawanami
, “
isotope effect on boron ions emitted from a liquid-metal ion source
,”
J. Phys. D: Appl. Phys.
18
,
163
168
(
1985
).
D. R.
Kingham
and
L. W.
Swanson
, “
Theoretical investigation of liquid metal ion sources: Field and temperature dependence of ion emission
,”
Appl. Phys. A
41
,
157
169
(
1986
).
A. E.
Bell
and
L. W.
Swanson
, “
The influence of substrate geometry on the emission properties of a liquid metal ion source
,”
Appl. Phys. A
41
,
335
346
(
1986
).
P.
Sudraud
,
G.
Ben Assayag
, and
M.
Bon
, “
Focused-ion-beam milling, scanning-electron microscopy, and focused-droplet deposition in a single microcircuit surgery tool
,”
J. Vac. Sci. Technol., B
6
(
1
),
234
(
1988
).
J.
Ward
,
R.
Kubena
, and
M.
Utlaut
,
Transverse Thermal Broadening of Focused Beams from Liquid Metal Ion Sources
(
Hughes Research Laboratories
,
Malibu, California
,
1988
).
S. F.
Belykh
,
R. N.
Evtukhov
,
U. Kh.
Rasulev
, and
I. V.
Redina
, “
Application of the liquid-metal ion source in thin film deposition
,”
Surf. Coat. Technol.
53
,
289
292
(
1992
).
B.
Wolf
,
Handbook of Ion Sources
(
CRC Press
,
Boca Raton, Florida, USA
,
1995
).
E.
Hesse
,
G. L. R.
Mair
,
L.
Bischoff
, and
J.
Teichert
, “
Parametric investigation of current pulses in a liquid metal ion emitter
,”
J. Phys. D: Appl. Phys.
29
,
2193
2197
(
1996
).
J. C.
Beckman
,
T. H. P.
Chang
,
A.
Wagner
, and
R. F. W.
Pease
, “
Energy spread in liquid metal ion sources at low currents
,”
J. Vac. Sci. Technol., B
14
,
3911
3915
(
1996
).
R. G.
Forbes
, “
Understanding how the liquid-metal ion source works
,”
Vacuum
48
,
85
97
(
1997
).
P.
Rai-Choudhury
,
Handbook of Microlithography, Micromachining and Microfabrication
(
SPIE Optical Engineering Press
,
Washington, USA
,
1997
), Vol.
1
.
L.
Wang
,
Design Optimization for Two Lens Focused Ion Beam Columns
(
Schlumberger Technologies
,
San Jose, California
,
1997
).
H.
Zhang
,
Ion Source
(
Science Press Beijing; Springer-Verlag Berlin
,
Beijing, China; Berlin
,
1999
).
S. T.
Purcell
and
V. T.
Binh
, “
Realization of an axially aligned Au-ion source of atomic size
,”
Appl. Phys. Lett.
75
(
9
),
1332
1334
(
1999
).
L.
Bischoff
,
Th.
Ganetsos
,
J.
Teichert
, and
G. L. R.
Mair
, “
Temperature dependence of emission spectra of liquid metal alloy ion sources
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
164–165
,
999
1003
(
2000
).
R. G.
Forbes
, “
Liquid-metal ion sources and electrosprays operating in cone-jet mode: Some theoretical comparisons and comments
,”
J. Aerosol Sci.
31
,
97
120
(
2000
).
Y.
Gotoh
,
H.
Tsuji
, and
J.
Ishikawa
, “
Molecular ion implanter equipped with liquid-metal alloy ion source
,”
Rev. Sci. Instrum.
71
(
2
),
780
782
(
2000
).
L.
Bischoff
,
J.
Teichert
,
Th.
Ganetsos
, and
G. L. R.
Mair
, “
Temperature dependence of the electric characteristics of liquid metal alloy ion sources
,”
J. Phys. D: Appl. Phys.
33
,
692
695
(
2000
).
G. L. R.
Mair
,
Th.
Ganetsos
,
L.
Bischoff
, and
J.
Teichert
, “
Doubly charged ions from liquid metal alloy ion sources: direct field-evaporation or post-ionization?
,”
J. Phys. D: Appl. Phys.
33
,
L86
L89
(
2000
).
Th.
Ganetsos
,
C.
Aidinis
,
L.
Bischoff
,
G. L. R.
Mair
,
J.
Teichert
,
D.
Panknin
, and
I.
Papadopoulos
, “
Liquid metal ion source-produced germanium ions for maskless ion implantation
,”
J. Phys. D: Appl. Phys.
34
,
L11
L13
(
2001
).
C. J.
Aidinis
,
G. L. R.
Mair
,
L.
Bischoff
, and
I.
Papadopoulos
, “
A study of the temperature dependence of the energy spread and energy deficit of a Ge++ ion beam produced by a liquid metal alloy ion source
,”
J. Phys. D: Appl. Phys.
34
,
L14
L16
(
2001
).
M.
Hillmann
, “
3-dimensionale Nanostrukturierung mittels fokussierter Ionenstrahllithographie
,” Ph.D. dissertation (
Ruhr-Universität-Bochum
, Fakultät für Physik und Astronomie, Bochum,
2001
).
G. L. R.
Mair
,
L.
Bischoff
,
A. W. R.
Mair
,
C. J.
Aidinis
,
Th.
Ganetsos
, and
Ch.
Akhmadaliev
, “
An in-depth investigation of the energy distribution of doubly charged ions emitted from a liquid metal alloy ion source
,”
J. Phys. D: Appl. Phys.
35
,
L33
L36
(
2002
).
Ch.
Akhmadaliev
,
G. L. R.
Mair
,
C. J.
Aidinis
, and
L.
Bischoff
, “
Frequency spectra and eletrohydrodynamic phenomena in a liquid gallium field ion emission source
,”
J. Phys. D: Appl. Phys.
35
,
L91
L93
(
2002
).
Ch.
Akhmadaliev
,
L.
Bischoff
,
G. L. R.
Mair
,
C. J.
Aidinis
,
Th.
Ganetsos
, and
M.
Anagnostakis
, “
Temperature dependence of emission frequency of a liquid metal anode
,”
J. Phys. D: Appl. Phys.
36
,
L18
L20
(
2003
).
G. L. R.
Mair
,
Ch.
Akhmadaliev
,
L.
Bischoff
,
Th
.
Ganetsos
, and
C. J.
Aidinis
, “
Electrohydrodynamic instabilities on a liquid anode displaying an anomalous surface tension coefficient
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
211
,
556
561
(
2003
).
Ch.
Akhmadaliev
,
L.
Bischoff
,
G. L. R
Mair
,
C. J.
Aidinis
, and
Th.
Ganetsos
, “
Investigation of emission instabilities of liquid metal alloy ion sources
,”
Microelectron. Eng.
73–74
,
120
125
(
2004
).
G. L. R.
Mair
,
Ch.
Akhmadaliev
,
L.
Bischoff
,
Th.
Ganetsos
,
C. J.
Aidinis
, and
E. A.
Anagnostakis
, “
The effect of electrode geometry on the stability of a liquid metal ion emitter
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
217
,
347
351
(
2004
).
L.
Bischoff
,
G. L. R.
Mair
,
Ch.
Akhmadaliev
,
A. W. R.
Mair
, and
Th.
Ganetsos
, “
The post-ionisation of Pb ions from a molten Sn host field-ion emitter
,”
Appl. Phys. A
80
,
205
207
(
2005
).
V. N.
Tondare
, “
Quest for high brightness, monochromatic noble gas ion sources
,”
J. Vac. Sci. Technol. A
23
,
1498
1508
(
2005
).
J.
Gierak
,
D.
Mailly
,
P.
Hawkes
 et al., “
Exploration of the ultimate patterning potential achievable with high resolution focused ion beams
,”
Appl. Phys. A
80
,
187
194
(
2005
).
L. A.
Giannuzzi
and
F. A.
Stevie
,
Introduction to Focused Ion Beams
(
Springer Science + Business Media LLC
,
New York, USA
,
2005
).
Th.
Ganetsos
,
A. W. R.
Mair
,
G. L. R.
Mair
,
L.
Bischoff
,
Ch.
Akhmadaliev
, and
C. J.
Aidinis
, “
Can direct field-evaporation of doubly charged ions and post-ionization from the singly charged state co-exist?
,”
Surf. Interface Anal.
39
,
128
131
(
2007
).
J. M.
Makela
and
L. B.
King
, “
Progress on re-generable field emission cathodes for low-power electric propulsion
,”
30th International Electric Propulsion Conference
, Florence, Italy September 17–20,
2007
, Paper No. IEPC-2007-152.
B.
Bhushan
,
Springer Handbook of Nanotechnology
, 2nd ed. (
Springer Science + Business Media
,
Berlin, Heidelberg, New York
,
2007
).
H. S.
Kuo
,
I. S.
Hwang
,
T. Y.
Fu
,
Y. H.
Lu
,
C. Y.
Lin
, and
T. T.
Tsong
, “
Gas field ion source from an Ir/W(111) single-atom tip
,”
Appl. Phys. Lett.
92
,
063106
(
2008
).
J.
Gierak
, “
Focused ion beam technology and ultimate applications
,”
Semicond. Sci. Technol.
24
,
043001
(
2009
).
B. R.
Appleton
,
S.
Tongay
,
M.
Lemaitre
,
B. P.
Gila
,
J.
Fridmann
,
P.
Mazarov
,
J. E.
Sanabia
,
S.
Bauerdick
,
L.
Bruchhaus
,
R.
Mimura
, and
R.
Jede
, “
Materials modifications using a multi-ion beam processing and lithography system
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
272
,
153
157
(
2011
).
S. J.
Pearton
,
B. P.
Gila
,
B. R.
Appleton
,
D.
Hays
,
F.
Ren
,
J.
Fridmann
, and
P.
Mazarov
, “
Nanoengineering of semiconductor nanowires-synthesis, processing and sensing applications
,”
J. Nanoeng. Nanomanuf.
1
,
35
49
(
2011
).
H. D.
Wanzenboeck
and
S.
Waid
, “
Focused ion beam lithography
,” in
Recent Advances in Nanofabrication Techniques and Applications
, edited by
B.
Cui
(
InTech, Rijeka
,
Croatia
,
2011
).
L.
Bruchhaus
, “
An ion beam complement to electron beam writers
,” Ph. D. dissertation (
TU Dortmund
, Lehrstuhl Experimentelle Physik l, Dortmund,
2012
).
I.
Utke
,
S.
Moshkalev
, and
P.
Russell
,
Nanofabrication Using Focused Ion and Electron Beams
(
Oxford University Press
,
Oxford, England
,
2012
).
S.
Tongay
,
M.
Lemaitre
,
J.
Fridmann
,
A. F.
Hebard
,
B. P.
Gila
, and
B. R.
Appleton
, “
Drawing grapheme nanoribbons on SiC by ion implantation
,”
Appl. Phys. Lett.
100
,
073501
(
2012
).
A.
Benkouider
,
I.
Berbezier
,
A.
Ronda
,
L.
Favre
,
E.
Ruiz Gomes
,
I. C.
Marcus
,
I.
Alonso
,
A.
Delobbe
, and
P.
Sudraud
, “
Ultimate nanopatterning of Si substrate using filtered liquid metal alloy ion source-focused ion beam
,”
Thin Solid Films
543
,
69
73
(
2013
).
I.
Berbezier
,
M.
Aouassa
,
A.
Ronda
,
L.
Favre
,
M.
Bollani
,
R.
Sordan
,
A.
Delobbe
, and
P.
Sudraud
, “
Ordered arrays of Si and Ge nanocrystals via dewetting of pre-patterned thin films
,”
J. Appl. Phys.
113
,
064908
(
2013
).
B. P.
Gila
, “
Applications of new focused ion beams in nanofabrication and material studies
,”
Microsc. Anal.
27
,
7
10
(
2013
).
M.
Lesik
,
P.
Spinicelli
,
S.
Pezzagna
,
P.
Happel
,
V.
Jacques
,
O.
Salord
,
B.
Rasser
,
A.
Delobbe
,
P.
Sudraud
,
A.
Tallaire
,
J.
Meijer
, and
J.-F.
Roch
, “
Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology
,”
Phys. Status Solidi A
210
(
10
),
2055
2059
(
2013
).
N. S.
Smith
,
J. A.
Notte
, and
A. V.
Steele
, “
Advances in source technology for focused ion beam instruments
,”
MRS Bull.
39
,
329
335
(
2014
).
N.
Bassim
,
K.
Scott
, and
L. A.
Giannuzzi
, “
Recent advances in focused ion beam technology and applications
,”
MRS Bull.
39
,
317
325
(
2014
).
You do not currently have access to this content.