A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO2/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

1.
T.
Kimoto
and
J. A.
Cooper
,
Fundamentals of Silicon Carbide Technology
(
John Wiley & Sons, Singapore Pte. Ltd.
,
2014
), pp.
301
352
.
2.
W. L.
Pribble
,
J. W.
Palmour
,
S. T.
Sheppard
,
R. P.
Smith
,
S. T.
Allen
,
T. J.
Smith
,
Z.
Ring
,
J. J.
Sumakeris
,
A. W.
Saxler
, and
J. W.
Milligan
, in
IEEE MTT-S International Microwave Symposium Digest
(
2002
), Vol.
1813
, pp.
1819
1822
.
3.
L.
Sang
,
M.
Liao
, and
M.
Sumiya
,
Sensors
13
(
8
),
10482
10518
(
2013
).
4.
C.-M.
Zetterling
,
L.
Lanni
,
R.
Ghandi
,
B. G.
Malm
, and
M.
Östling
,
Phys. Status Solidi C
9
(
7
),
1647
1650
(
2012
).
5.
R.
Ghandi
,
C. P.
Chen
,
L.
Yin
,
X. G.
Zhu
,
L. C.
Yu
,
S.
Arthur
,
F.
Ahmad
, and
P.
Sandvik
,
IEEE Electron Device Lett.
35
(
12
),
1206
1208
(
2014
).
6.
D. K.
Gaskill
, in
Handbook of Crystal Growth: Thin Films and Epitaxy
, edited by
T.
Kuech
(
Elsevier Science
,
2014
), p.
755
.
7.
F.
Wang
,
G.
Liu
,
S.
Rothwell
,
M.
Nevius
,
A.
Tejeda
,
A.
Taleb-Ibrahimi
,
L. C.
Feldman
,
P. I.
Cohen
, and
E. H.
Conrad
,
Nano Lett.
13
(
10
),
4827
4832
(
2013
).
8.
C. E.
Weitzel
,
J. W.
Palmour
,
C. H.
Carter
,
K.
Moore
,
K. J.
Nordquist
,
S.
Allen
,
C.
Thero
, and
M.
Bhatnagar
,
IEEE Trans. Electron Devices
43
(
10
),
1732
1741
(
1996
).
9.
B. J.
Baliga
,
Fundamentals of Power Semiconductor Devices
(
Springer Publishing Company, Incorporated
,
2008
).
10.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Phys. Status Solidi A
211
(
1
),
21
26
(
2014
).
11.
M.
Su
(
Rutgers University
,
2010
).
12.
X.
Zhu
(
Auburn University
,
2008
).
13.
T. S.
Sudarshan
and
S. I.
Maximenko
,
Microelectron. Eng.
83
(
1
),
155
159
(
2006
).
14.
P.
Friedrichs
,
T.
Kimoto
,
L.
Ley
, and
G.
Pensl
,
Silicon Carbide: Volume 1: Growth, Defects, and Novel Applications
(
Wiley
,
2011
).
15.
C. M.
Zetterling
and
I. o. E.
Engineers
,
Process Technology for Silicon Carbide Devices
(
INSPEC
,
2002
).
16.
A.
Los
and
M.
Mazzola
,
J. Electron. Mater.
30
(
3
),
235
241
(
2001
).
17.
E.
Arnold
,
IEEE Trans. Electron Devices
46
(
3
),
497
503
(
1999
).
18.
M.
Holz
,
G.
Hultsch
,
T.
Scherg
, and
R.
Rupp
,
Microelectron. Reliab.
47
(
9–11
),
1741
1745
(
2007
).
19.
H.
KATO
,
A–Tip News Article
(
The Asian Technology Information Program (ATIP)
,
2008
).
20.
Rohm, Semiconportal,
2010
.
21.
Cree, DURHAM, N.C.,
2011
.
22.
The world market for silicon carbide and gallium nitride power semiconductors, IMS research,
2013
.
23.
Y.
Kondo
,
T.
Takahashi
,
K.
Ishii
,
Y.
Hayashi
,
E.
Sakuma
,
S.
Misawa
,
H.
Daimon
,
M.
Yamanaka
, and
S.
Yoshida
,
IEEE Electron Device Lett.
7
(
7
),
404
406
(
1986
).
24.
J. N.
Shenoy
,
J. A.
Cooper
, and
M. R.
Melloch
,
IEEE Electron Device Lett.
18
(
3
),
93
95
(
1997
).
25.
J. W.
Palmour
,
L.
Cheng
,
V.
Pala
,
E. V.
Brunt
,
D. J.
Lichtenwalner
,
G. Y.
Wang
,
J.
Richmond
,
M.
O'Loughlin
,
S.
Ryu
,
S. T.
Allen
,
A. A.
Burk
, and
C.
Scozzie
, “
Silicon carbide power MOSFETs: Breakthrough performance from 900 V up to 15 kV
,” in
IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD)
(
2014
), pp.
79
82
.
26.
H. F.
Li
,
S.
Dimitrijev
,
H. B.
Harrison
, and
D.
Sweatman
,
Appl. Phys. Lett.
70
(
15
),
2028
2030
(
1997
).
27.
G. Y.
Chung
,
C. C.
Tin
,
J. R.
Williams
,
K.
McDonald
,
R. K.
Chanana
,
R. A.
Weller
,
S. T.
Pantelides
,
L. C.
Feldman
,
O. W.
Holland
,
M. K.
Das
, and
J. W.
Palmour
,
IEEE Electron Device Lett.
22
(
4
),
176
178
(
2001
).
28.
S. T.
Pantelides
,
G.
Duscher
,
M.
Di Ventra
,
R.
Buczko
,
K.
McDonald
,
M. B.
Huang
,
R. A.
Weller
,
I.
Baumvol
,
F. C.
Stedile
,
C.
Radtke
,
S. J.
Pennycook
,
G.
Chung
,
C. C.
Tin
,
J. R.
Williams
,
J. H.
Won
, and
L. C.
Feldman
, in
Silicon Carbide and Related Materials - 1999 Pts, 1 & 2
, edited by
C. H.
Carter
,
R. P.
Devaty
, and
G. S.
Rohrer
(
Trans Tech Publications, Inc.
,
2000
), Vol.
338–343
, pp.
1133
1136
.
29.
X.
Shen
,
B. R.
Tuttle
, and
S. T.
Pantelides
,
J. Appl. Phys.
114
(
3
),
033522
(
2013
).
30.
S. T.
Pantelides
,
S. W.
Wang
,
A.
Franceschetti
,
R.
Buczko
,
M.
Di Ventra
,
S. N.
Rashkeev
,
L.
Tsetseris
,
M. H.
Evans
,
I. G.
Batyrev
,
L. C.
Feldman
,
S.
Dhar
,
K.
McDonald
,
R. A.
Weller
,
R. D.
Schrimpf
,
D. M.
Fleetwood
,
X. J.
Zhou
,
J. R.
Williams
,
C. C.
Tin
,
G. Y.
Chung
,
T.
Isaacs-Smith
,
S. R.
Wang
,
S. J.
Pennycook
,
G.
Duscher
,
K.
van Benthem
, and
L. M.
Porter
, in
Silicon Carbide and Related Materials 2005, Pts 1 and 2
, edited by
R. P.
Devaty
(
Trans Tech Publications, Inc.
,
2006
), Vol.
527–529
, pp.
935
948
.
31.
R.
Buczko
,
S. J.
Pennycook
, and
S. T.
Pantelides
, in
Structure and Electronic Properties of Ultrathin Dielectric Films on Silicon and Related Structures
, edited by
D. A.
Buchanan
,
A. H.
Edwards
,
H. J.
VonBardeleben
, and
T.
Hattori
(
Cambridge University Press
,
2000
), Vol.
592
, pp.
227
232
.
32.
Y.
Tu
and
J.
Tersoff
,
Phys. Rev. Lett.
84
(
19
),
4393
4396
(
2000
).
33.
M.
Di Ventra
and
S. T.
Pantelides
,
Phys. Rev. Lett.
83
(
8
),
1624
1627
(
1999
).
34.
P.
Deak
,
A.
Gali
,
J.
Knaup
,
Z.
Hajnal
,
T.
Frauenheim
,
P.
Ordejon
, and
J. W.
Choyke
,
Physica B
340
,
1069
1073
(
2003
).
35.
J. M.
Knaup
,
P.
Deak
,
T.
Frauenheim
,
A.
Gali
,
Z.
Hajnal
, and
W. J.
Choyke
,
Phys. Rev. B
71
(
23
),
235321
(
2005
).
36.
P.
Deak
,
J. M.
Knaup
,
T.
Hornos
,
C.
Thill
,
A.
Gali
, and
T.
Frauenheim
,
J. Phys. D: Appl. Phys.
40
(
20
),
6242
6253
(
2007
).
37.
J. J.
Wang
,
L. T.
Zhang
,
Q. F.
Zeng
,
V. L.
Gerard
, and
G.
Alain
,
Chin. Sci. Bull.
54
(
9
),
1487
1494
(
2009
).
38.
A.
Gavrikov
,
A.
Knizhnik
,
A.
Safonov
,
A.
Scherbinin
,
A.
Bagatur'yants
,
B.
Potapkin
,
A.
Chatterjee
, and
K.
Matocha
,
J. Appl. Phys.
104
(
9
),
093508
(
2008
).
39.
W. B.
Li
,
J. J.
Zhao
,
Q. Z.
Zhu
, and
D. J.
Wang
,
Phys. Rev. B
87
(
8
),
085320
(
2013
).
40.
Y.
Xu
,
X.
Zhu
,
H. D.
Lee
,
C.
Xu
,
S. M.
Shubeita
,
A. C.
Ahyi
,
Y.
Sharma
,
J. R.
Williams
,
W.
Lu
,
S.
Ceesay
,
B. R.
Tuttle
,
A.
Wan
,
S. T.
Pantelides
,
T.
Gustafsson
,
E. L.
Garfunkel
, and
L. C.
Feldman
,
J. Appl. Phys.
115
(
3
),
033502
(
2014
).
41.
F.
Devynck
,
A.
Alkauskas
,
P.
Broqvist
, and
A.
Pasquarello
,
Phys. Rev. B
84
(
23
),
235320
(
2011
).
42.
X.
Shen
and
S. T.
Pantelides
, in
Silicon Carbide and Related Materials 2011, Pts 1 and 2
, edited by
R. P.
Devaty
,
M.
Dudley
,
T. P.
Chow
, and
P. G.
Neudeck
(
Trans Tech Publications, Inc.
,
2012
), Vol.
717–720
, pp.
445
448
.
43.
X. G.
Zhu
,
H. D.
Lee
,
T. A.
Feng
,
A. C.
Ahyi
,
D.
Mastrogiovanni
,
A.
Wan
,
E.
Garfunkel
,
J. R.
Williams
,
T.
Gustafsson
, and
L. C.
Feldman
,
Appl. Phys. Lett.
97
(
7
),
071908
(
2010
).
44.
A.
Modic
,
Y. K.
Sharma
,
Y.
Xu
,
G.
Liu
,
A. C.
Ahyi
,
J. R.
Williams
,
L. C.
Feldman
, and
S.
Dhar
,
J. Electron. Mater.
43
(
4
),
857
862
(
2014
).
45.
C. J.
Cochrane
,
P. M.
Lenahan
, and
A. J.
Lelis
,
J. Appl. Phys.
109
(
1
),
014506
(
2011
).
46.
J.
Rozen
,
S.
Dhar
,
M. E.
Zvanut
,
J. R.
Williams
, and
L. C.
Feldman
,
J. Appl. Phys.
105
(
12
),
124506
(
2009
).
47.
V. V.
Afanas'ev
and
A.
Stesmans
,
Phys. Rev. Lett.
78
(
12
),
2437
2440
(
1997
).
48.
B. R.
Tuttle
,
X.
Shen
, and
S. T.
Pantelides
,
Appl. Phys. Lett.
102
(
12
),
123505
(
2013
).
49.
E.
Pippel
,
J.
Woltersdorf
,
H. O.
Olafsson
, and
E. O.
Sveinbjornsson
,
J. Appl. Phys.
97
(
3
),
034302
(
2005
).
50.
V. V.
Afanas'ev
,
A.
Stesmans
,
F.
Ciobanu
,
G.
Pensl
,
K. Y.
Cheong
, and
S.
Dimitrijev
,
Appl. Phys. Lett.
82
(
4
),
568
570
(
2003
).
51.
J. M.
Knaup
,
P.
Deák
,
T.
Frauenheim
,
A.
Gali
,
Z.
Hajnal
, and
W. J.
Choyke
,
Phys. Rev. B
72
(
11
),
115323
(
2005
).
52.
A.-M.
El-Sayed
,
M. B.
Watkins
,
A. L.
Shluger
, and
V. V.
Afanas'ev
,
Microelectron. Eng.
109
,
68
71
(
2013
).
53.
B. R.
Tuttle
and
S. T.
Pantelides
,
Phys. Rev. B
79
(
11
),
115206
(
2009
).
54.
P. E.
Blöchl
,
Phys. Rev. B
62
(
10
),
6158
6179
(
2000
).
55.
E.
Rosenbaum
and
L. F.
Register
,
IEEE Trans. Electron Devices
44
(
2
),
317
323
(
1997
).
56.
M.
Städele
,
B. R.
Tuttle
, and
K.
Hess
,
J. Appl. Phys.
89
(
1
),
348
363
(
2001
).
57.
J.
Rozen
,
A. C.
Ahyi
,
Z.
Xingguang
,
J. R.
Williams
, and
L. C.
Feldman
,
IEEE Trans. Electron Devices
58
(
11
),
3808
3811
(
2011
).
58.
Z.
Chen
,
Y.
Xu
,
E.
Garfunkel
,
L. C.
Feldman
,
T.
Buyuklimanli
,
W.
Ou
,
J.
Serfass
,
A.
Wan
, and
S.
Dhar
,
Appl. Surf. Sci.
317
,
593
597
(
2014
).
59.
H.
Yoshioka
,
T.
Nakamura
, and
T.
Kimoto
,
J. Appl. Phys.
111
(
1
),
014502
(
2012
).
60.
P. M.
Mooney
and
A. F.
Basile
, in
Micro and Nanoelectronics: Emerging Device Challenges and Solution
, edited by
E. K.
Iniewshi
and
T.
Brozek
(
CRC Press, Taylor and Francis Group
,
2014
), pp.
51
68
.
61.
R.
Kosugi
,
T.
Umeda
, and
Y.
Sakuma
,
Appl. Phys. Lett.
99
(
18
),
182111
(
2011
).
62.
T.
Umeda
,
K.
Esaki
,
R.
Kosugi
,
K.
Fukuda
,
T.
Ohshima
,
N.
Morishita
, and
J.
Isoya
,
Appl. Phys. Lett.
99
(
14
),
142105
(
2011
).
63.
C. J.
Cochrane
,
P. M.
Lenahan
, and
A. J.
Lelis
,
Appl. Phys. Lett.
102
(
19
),
193507
(
2013
).
64.
S.
Wang
,
S.
Dhar
,
S.-r.
Wang
,
A. C.
Ahyi
,
A.
Franceschetti
,
J. R.
Williams
,
L. C.
Feldman
, and
S. T.
Pantelides
,
Phys. Rev. Lett.
98
(
2
),
026101
(
2007
).
65.
S.
Dhar
,
S.
Wang
,
A. C.
Ahyi
,
T.
Isaacs-Smith
,
S. T.
Pantelides
,
J. R.
Williams
, and
L. C.
Feldman
,
Silicon Carbide and Related Materials 2005, Pts 1 and 2
(
Trans Tech Publications, Inc.
,
2006
), Vol. 527–529, pp.
949
954
.
66.
M.
Noborio
,
Y.
Kanzaki
,
J.
Suda
, and
T.
Kimoto
,
IEEE Trans. Electron Devices
52
(
9
),
1954
1962
(
2005
).
67.
E. V.
Brunt
,
L.
Cheng
,
M.
O'Loughlin
,
C.
Capell
,
C.
Jonas
,
K.
Lam
,
J.
Richmond
,
V.
Pala
,
S.
Ryu
,
S. T.
Allen
,
A. A.
Burk
,
J. W.
Palmour
, and
C.
Scozzie
, “
22 kV, 1 cm2, 4 H-SiC n-IGBTs with improved conductivity modulation
,” in
IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD)
(
2014
), pp.
358
361
.
68.
ROHM, semiconductor today,
2013
.
69.
T.
Eberlein
,
R.
Jones
, and
P.
Briddon
,
Phys. Rev. Lett.
90
(
22
),
225502
(
2003
).
70.
T.
Hiyoshi
and
T.
Kimoto
,
Appl. Phys. Express
2
(
9
),
091101
(
2009
).
71.
K.
Kawahara
,
J.
Suda
, and
T.
Kimoto
,
Appl. Phys. Express
6
(
5
),
051301
(
2013
).
72.
A. J.
Lelis
,
R.
Green
,
D. B.
Habersat
, and
M.
El
,
IEEE Trans. Electron Devices
62
(
2
),
316
323
(
2015
).
73.
A.
Lelis
,
D.
Habersat
,
R.
Green
, and
E.
Mooro
,
ECS Trans.
58
(
4
),
87
93
(
2013
).
74.
A. J.
Lelis
,
D.
Habersat
,
R.
Green
,
A.
Ogunniyi
,
M.
Gurfinkel
,
J.
Suehle
, and
N.
Goldsman
,
IEEE Trans. Electron Devices
55
(
8
),
1835
1840
(
2008
).
75.
J.
Rozen
,
S.
Dhar
,
S. K.
Dixit
,
V. V.
Afanas'ev
,
F. O.
Roberts
,
H. L.
Dang
,
S.
Wang
,
S. T.
Pantelides
,
J. R.
Williams
, and
L. C.
Feldman
,
J. Appl. Phys.
103
(
12
),
124513
(
2008
).
76.
H.
Yano
,
N.
Kanafuji
,
A.
Osawa
,
T.
Hatayama
, and
T.
Fuyuki
,
IEEE Trans. Electron Devices
62
(
2
),
324
332
(
2015
).
77.
T.
Kimoto
,
Y.
Kanzaki
,
M.
Noborio
,
H.
Kawano
, and
H.
Matsunami
,
Jpn. J. Appl. Phys., Part 1
44
(
3
),
1213
1218
(
2005
).
78.
D.
Okamoto
,
H.
Yano
,
H.
Kenji
,
T.
Hatayama
, and
T.
Fuyuki
,
IEEE Electron Device Lett.
31
(
7
),
710
712
(
2010
).
79.
Y. K.
Sharma
,
A. C.
Ahyi
,
T.
Issacs-Smith
,
X.
Shen
,
S. T.
Pantelides
,
X.
Zhu
,
L. C.
Feldman
,
J.
Rozen
, and
J. R.
Williams
,
Solid-State Electron.
68
,
103
107
(
2012
).
80.
E. Ö.
Sveinbjörnsson
,
F.
Allerstam
,
H. Ö.
Ólafsson
,
G.
Gudjónsson
,
D.
Dochev
,
T.
Rödle
, and
R.
Jos
,
Mater. Sci. Forum
556–557
,
487
492
(
2007
).
81.
D. J.
Lichtenwalner
,
L.
Cheng
,
S.
Dhar
,
A.
Agarwal
, and
J. W.
Palmour
,
Appl. Phys. Lett.
105
,
182107
(
2014
).
82.
X.
Yang
,
B.
Lee
, and
V.
Misra
, “
Effect of post deposition annealing for high mobility 4H-SiC MOSFET utilizing lanthanum silicate and atomic layer deposited SiO2
,” in
the 2nd IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA)
,
2014
.
83.
D.
Okamoto
,
M.
Sometani
,
S.
Harada
,
R.
Kosugi
,
Y.
Yonezawa
, and
H.
Yano
,
IEEE Electron Device Lett.
35
(
12
),
1176
1178
(
2014
).
84.
S.
Harada
,
S.
Suzuki
,
J.
Senzaki
,
R.
Kosugi
,
K.
Adachi
,
K.
Fukuda
, and
K.
Arai
,
IEEE Electron Device Lett.
22
(
6
),
272
274
(
2001
).
85.
A.
Modic
,
G.
Liu
,
A. C.
Ahyi
,
Y. M.
Zhou
,
P. Y.
Xu
,
M. C.
Hamilton
,
J. R.
Williams
,
L. C.
Feldman
, and
S.
Dhar
,
IEEE Electron Device Lett.
35
(
9
),
894
896
(
2014
).
86.
H.
Kurimoto
,
K.
Shibata
,
C.
Kimura
,
H.
Aoki
, and
T.
Sugino
,
Appl. Surf. Sci.
253
(
5
),
2416
2420
(
2006
).
87.
R. H.
Kikuchi
and
K.
Kita
,
Appl. Phys. Lett.
105
(
3
),
032106
(
2014
).
88.
S. M.
Thomas
,
Y. K.
Sharma
,
M. A.
Crouch
,
C. A.
Fisher
,
A.
Perez-Tomas
,
M. R.
Jennings
, and
P. A.
Mawby
,
IEEE J. Electron Devices Soc.
2
(
5
),
114
117
(
2014
).
89.
S.
Dhar
, Ph.D. dissertation,
Vanderbilt University
,
2005
.
90.
H.
Yano
,
T.
Hirao
,
T.
Kimoto
,
H.
Matsunami
,
K.
Asano
, and
Y.
Sugawara
,
IEEE Electron Device Lett.
20
(
12
),
611
613
(
1999
).
91.
J.
Senzaki
,
K.
Kojima
,
S.
Harada
,
R.
Kosugi
,
S.
Suzuki
,
T.
Suzuki
, and
K.
Fukuda
,
IEEE Electron Device Lett.
23
(
1
),
13
15
(
2002
).
92.
T.
Endo
,
E.
Okuno
,
T.
Sakakibara
, and
S.
Onda
,
Mater. Sci. Forum
600–603
,
691
694
(
2009
).
93.
T.
Hiyoshi
,
T.
Masuda
,
K.
Wada
,
S.
Harada
, and
Y.
Namikawa
,
Mater. Sci. Forum
740–742
,
506
509
(
2013
).
94.
G.
Liu
,
A. C.
Ahyi
,
Y.
Xu
,
T.
Isaacs-Smith
,
Y. K.
Sharma
,
J. R.
Williams
,
L. C.
Feldman
, and
S.
Dhar
,
IEEE Electron Device Lett.
34
(
2
),
181
183
(
2013
).
95.
T.
Kimoto
,
H.
Yoshioka
, and
T.
Nakamura
, in
IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA)
(
2013
), pp.
135
138
.
96.
M.
Okamoto
,
M.
Tanaka
,
T.
Yatsuo
, and
K.
Fukuda
,
Appl. Phys. Lett.
89
(
2
),
023502
(
2006
).
97.
M.
Okamoto
,
Y.
Makifuchi
,
M.
Iijima
,
Y.
Sakai
,
N.
Iwamuro
,
H.
Kimura
,
K.
Fukuda
, and
H.
Okumura
,
Appl. Phys. Express
5
(
4
),
041302
(
2012
).
98.
M.
Okamoto
,
Y.
Makifuchi
,
T.
Araoka
,
M.
Miyazato
,
Y.
Sugahara
,
T.
Tsutsumi
,
Y.
Onishi
,
H.
Kimura
,
S.
Harada
,
K.
Fukuda
,
A.
Otsuki
, and
H.
Okumura
,
Mater. Sci. Forum
778–780
,
975
978
(
2014
).
99.
T.
Umeda
,
M.
Okamoto
,
R.
Kosugi
,
S.
Harada
,
R.
Arai
,
Y.
Sato
,
T.
Makino
, and
T.
Ohshima
,
ECS Trans.
58
(
7
),
55
60
(
2013
).
100.
G.
Liu
,
C.
Xu
,
B.
Yakshinskiy
,
L.
Wielunski
,
T.
Gustafsson
,
J.
Bloch
,
S.
Dhar
, and
L. C.
Feldman
,
Appl. Phys. Lett.
105
(
19
),
191602
(
2014
).
101.
H.
Yoshioka
,
J.
Senzaki
,
A.
Shimozato
,
Y.
Tanaka
, and
H.
Okumura
,
Appl. Phys. Lett.
104
(
8
),
083516
(
2014
).
102.
G.
Liu
,
C.
Xu
,
B.
Yakshinskiy
,
L.
Wielunski
,
T.
Gustafsson
,
J.
Bloch
,
S.
Dhar
, and
L. C.
Feldman
,
Appl. Phys. Lett.
106
(
12
),
123502
(
2015
).
103.
B. J.
Baliga
,
Proc. IEEE
89
(
6
),
822
832
(
2001
).
104.
H. N. H.
Yano
,
T.
Hatayama
,
T.
Uraoka
, and
T.
Fuyuki
,
Mater. Sci. Forum
556–557
,
807
(
2007
).
105.
H.
Yano
,
H.
Nakao
,
H.
Mikami
,
T.
Hatayama
,
Y.
Uraoka
, and
T.
Fuyuki
,
Appl. Phys. Lett.
90
(
4
),
042102
(
2007
).
106.
S.
Harada
,
S.
Ito
,
M.
Kato
,
A.
Takatsuka
,
K.
Kojima
,
K.
Fukuda
, and
H.
Okumura
,
Mater. Sci. Forum
645–648
,
999
1004
(
2010
).
107.
Y.
Sui
,
T.
Tsuji
, and
J. A.
Cooper
,
IEEE Electron Device Lett.
26
(
4
),
255
257
(
2005
).
108.
I. A.
Khan
,
J. A.
Cooper
, Jr.
,
M. A.
Capano
,
T.
Isaacs–Smith
, and
J. R.
Williams
, in
Proceedings of the 14th International Symposium on Power Semiconductor Devices and ICs
(
2002
), pp.
157
160
.
109.
Y.
Kawada
,
T.
Tawara
,
S.
Nakamura
,
T.
Tamori
, and
N.
Iwamuro
,
Jpn. J. Appl. Phys., Part 1
48
(
11
),
116508
(
2009
).
110.
K.
Kawahara
,
M.
Krieger
,
J.
Suda
, and
T.
Kimoto
,
J. Appl. Phys.
108
(
2
),
023706
(
2010
).
111.
G.
Liu
,
Y.
Xu
,
C.
Xu
,
A.
Basile
,
F.
Wang
,
S.
Dhar
,
E.
Conrad
,
P.
Mooney
,
T.
Gustafsson
, and
L. C.
Feldman
,
Appl. Surf. Sci.
324
,
30
34
(
2015
).
112.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
(
Wiley
,
2006
).
113.
E. H.
Nicollian
and
J. R.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley
,
1982
).
114.
H.
Yoshioka
,
T.
Nakamura
, and
T.
Kimoto
,
J. Appl. Phys.
112
(
2
),
024520
(
2012
).
115.
S.
Nakazawa
,
T.
Okuda
,
J.
Suda
,
T.
Nakamura
, and
T.
Kimoto
,
IEEE Trans. Electron Devices
62
(
2
),
309
315
(
2015
).
116.
H.
Yoshioka
,
T.
Nakamura
, and
T.
Kimoto
,
J. Appl. Phys.
115
(
1
),
014502
(
2014
).
117.
S.
Takagi
,
A.
Toriumi
,
M.
Iwase
, and
H.
Tango
,
IEEE Trans. Electron Devices
41
(
12
),
2357
2362
(
1994
).
118.
S. C.
Sun
and
J. D.
Plummer
,
IEEE J. Solid–State Circuits
15
(
4
),
562
573
(
1980
).
119.
S.
Dhar
,
S.
Haney
,
L.
Cheng
,
S. R.
Ryu
,
A. K.
Agarwal
,
L. C.
Yu
, and
K. P.
Cheung
,
J. Appl. Phys.
108
(
5
),
054509
(
2010
).
120.
S.
Potbhare
,
N.
Goldsman
,
A.
Lelis
,
J. M.
McGarrity
,
F. B.
McLean
, and
D.
Habersat
,
IEEE Trans. Electron Devices
55
(
8
),
2029
2040
(
2008
).
121.
V.
Tilak
,
K.
Matocha
, and
G.
Dunne
,
IEEE Trans. Electron Devices
54
(
11
),
2823
2829
(
2007
).
122.
S.
Dhar
,
A. C.
Ahyi
,
J. R.
Williams
,
S. H.
Ryu
, and
A. K.
Agarwal
,
Silicon Carbide and Related Materials 2011, Pts 1 and 2
(
Trans Tech Publications, Inc.
,
2012
), Vol.
717–720
, pp.
713
716
.
123.
P.
Fiorenza
,
L. K.
Swanson
,
M.
Vivona
,
F.
Giannazzo
,
C.
Bongiorno
,
A.
Frazzetto
, and
F.
Roccaforte
,
Appl. Phys. A: Mater. Sci. Process.
115
(
1
),
333
339
(
2014
).
124.
S. M. N. K. K.
Sze
,
Physics of Semiconductor Devices
(
Wiley-Interscience
,
Hoboken, NJ
,
2007
).
125.
A.
Modic
, in
9th Annual ARL SiC MOS Workshop
(
2014
).
126.
P.
Liu
,
G.
Li
,
G.
Duscher
,
Y. K.
Sharma
,
A. C.
Ahyi
,
T.
Isaacs-Smith
,
J. R.
Williams
, and
S.
Dhar
,
J. Vac. Sci. Technol., A
32
(
6
),
060603
(
2014
).
127.
P.
Fiorenza
,
F.
Giannazzo
,
M.
Vivona
,
A.
La Magna
, and
F.
Roccaforte
,
Appl. Phys. Lett.
103
(
15
),
153508
(
2013
).
128.
N. O.
Lipari
,
J. Vac. Sci. Technol.
15
(
4
),
1412
1416
(
1978
).
129.
B. R.
Tuttle
,
S.
Dhar
,
S. H.
Ryu
,
X.
Zhu
,
J. R.
Williams
,
L. C.
Feldman
, and
S. T.
Pantelides
,
J. Appl. Phys.
109
(
2
),
023702
(
2011
).
130.
J. P.
Campbell
,
P. M.
Lenahan
,
C. J.
Cochrane
,
A. T.
Krishnan
, and
S.
Krishnan
,
IEEE Trans. Device Mater. Reliab.
7
(
4
),
540
557
(
2007
).
131.
J. P.
Campbell
,
P. M.
Lenahan
,
A. T.
Krishnan
, and
S.
Krishnan
,
Appl. Phys. Lett.
91
(
13
),
133507
(
2007
).
132.
X.
Shen
,
E. X.
Zhang
,
C. X.
Zhang
,
D. M.
Fleetwood
,
R. D.
Schrimpf
,
S.
Dhar
,
S.-H.
Ryu
, and
S. T.
Pantelides
,
Appl. Phys. Lett.
98
(
6
),
063507
(
2011
).
You do not currently have access to this content.