β-Ga2O3 is a highly promising ultrawide bandgap semiconductor material that is poised to transform the high-power electronics field. The manufacturability of device quality β-Ga2O3 epitaxial films at scale is urgently needed. Using a production-ready closed-coupled showerhead MOCVD reactor with in situ reflectance monitoring, this study presents a detailed investigation of the impact of growth parameters on the epitaxial growth of β-Ga2O3 on both (010) and (001) oriented native substrates, as well as on c-plane sapphire substrates with 0°–8° off-axis orientations. By tuning the showerhead–susceptor gap and mapping the other growth parameters, including annealing, nucleation, growth temperature, reactor pressure, and substrate orientation, we achieved state-of-the-art crystal quality, extraordinary wafer-level thickness uniformity of <1% variation for both 2-in. and 4-in. substrates for growth rates as high as 7.2 μm/h. All growth was performed using TMGa and pure O2 as the precursors and N2 as the carrier gas instead of the more widely used argon; no detectable nitrogen and carbon incorporation was observed by secondary ion mass spectrometry. For the homoepitaxy of Si-doped β-Ga2O3 films on (010) substrates, a room temperature Hall mobility of 148 cm2/V s was achieved at a carrier concentration of 1.26 × 1017 cm−3, with a growth rate of 2.6 μm/h. For the heteroepitaxy on sapphire, off-axis substrates exhibited enhanced crystallinity, as shown by the continued reduction of x-ray diffraction rocking curve full width at half maximum from 2834 to 1300 arcsec for 0° and 8° offcut sapphire substrates, respectively. The results demonstrate the scalability and potential advantages of this reactor design for manufacturing-scale β-Ga2O3 growth and offer new insights into the controllability of uniform high-quality films for power electronics applications.

1.
M.
Higashiwaki
and
M. H.
Wong
, “
Beta-gallium oxide material and device technologies
,”
Annu. Rev. Mater. Res.
54
,
175
198
(
2024
).
2.
A. K.
Singh
,
C.-C.
Yen
,
C.-Y.
Huang
,
F.-G.
Tarntair
,
H.-Y.
Chou
,
S.-M.
Huang
,
B. K.
Yadlapalli
,
R.-H.
Horng
, and
D.-S.
Wuu
, “
First-principles investigations and MOCVD growth of Si-doped β-Ga2O3 thin films on sapphire substrates for enhancing Schottky barrier diode characteristics
,”
Mater. Sci. Semicond. Process.
178
,
108475
(
2024
).
3.
Z.
Ren
,
H.-C.
Huang
,
H.
Lee
,
C.
Chan
,
H. C.
Roberts
,
X.
Wu
,
A.
Waseem
,
A. F. M. A. U.
Bhuiyan
,
H.
Zhao
,
W.
Zhu
, and
X.
Li
, “
Temperature dependent characteristics of β-Ga2O3 FinFETs by MacEtch
,”
Appl. Phys. Lett.
123
(
4
),
043505
(
2023
).
4.
H.-C.
Huang
,
Z.
Ren
,
A. F. M.
Anhar Uddin Bhuiyan
,
Z.
Feng
,
Z.
Yang
,
X.
Luo
,
A. Q.
Huang
,
A.
Green
,
K.
Chabak
,
H.
Zhao
, and
X.
Li
, “
β-Ga2O3 FinFETs with ultra-low hysteresis by plasma-free metal-assisted chemical etching
,”
Appl. Phys. Lett.
121
(
5
),
052102
(
2022
).
5.
K. D.
Chabak
,
N.
Moser
,
A. J.
Green
,
D. E.
Walker
,
S. E.
Tetlak
,
E.
Heller
,
A.
Crespo
,
R.
Fitch
,
J. P.
McCandless
,
K.
Leedy
,
M.
Baldini
,
G.
Wagner
,
Z.
Galazka
,
X.
Li
, and
G.
Jessen
, “
Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage
,”
Appl. Phys. Lett.
109
(
21
),
213501
(
2016
).
6.
T.
Chen
,
X.
Zhang
,
L.
Zhang
,
C.
Zeng
,
S.
Li
,
A.
Yang
,
Y.
Hu
,
B.
Li
,
M.
Jiang
,
Z.
Huang
,
Y.
Li
,
G.
Guo
,
Y.
Fan
,
W.
Shi
,
Y.
Cai
,
Z.
Zeng
, and
B.
Zhang
, “
High-speed and ultrasensitive solar-blind ultraviolet photodetectors based on in situ grown β-Ga2O3 single-crystal films
,”
ACS Appl. Mater. Interfaces
16
(
5
),
6068
6077
(
2024
).
7.
M.
Kim
,
H.-C.
Huang
,
J. D.
Kim
,
K. D.
Chabak
,
A. R. K.
Kalapala
,
W.
Zhou
, and
X.
Li
, “
Nanoscale groove textured β-Ga2O3 by room temperature inverse metal-assisted chemical etching and photodiodes with enhanced responsivity
,”
Appl. Phys. Lett.
113
(
22
),
222104
(
2018
).
8.
R.
Yatskiv
,
M.
Vorochta
,
N.
Bašinová
,
T. N.
Dinhova
,
J.
Maixner
, and
J.
Grym
, “
Low-temperature gas sensing mechanism in β-Ga2O3 nanostructures revealed by near-ambient pressure XPS
,”
Appl. Surf. Sci.
663
,
160155
(
2024
).
9.
S.
Sun
,
C.
Wang
,
S.
Alghamdi
,
H.
Zhou
,
Y.
Hao
, and
J.
Zhang
, “
Recent advanced ultra-wide bandgap β-Ga2O3 material and device technologies
,”
Adv. Electron. Mater.
11
,
2300844
(
2025
).
10.
A. S.
Pratiyush
,
S.
Krishnamoorthy
,
S.
Kumar
,
Z.
Xia
,
R.
Muralidharan
,
S.
Rajan
, and
D. N.
Nath
, “
Demonstration of zero bias responsivity in MBE grown β-Ga2O3 lateral deep-UV photodetector
,”
Jpn. J. Appl. Phys.
57
(
6
),
060313
(
2018
).
11.
J. H.
Leach
,
K.
Udwary
,
J.
Rumsey
,
G.
Dodson
,
H.
Splawn
, and
K. R.
Evans
, “
Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films
,”
APL Mater.
7
(
2
),
022504
(
2019
).
12.
S.
Chen
,
Z.
Chen
,
W.
Chen
,
P.
Fang
,
Z.
Lv
,
B.
Cai
,
C.
Che
,
J.
Liang
,
X.
Wang
,
G.
Wang
, and
Y.
Pei
, “
High-quality heteroepitaxy of ε-Ga2O3 films on 4H-SiC substrates grown via MOCVD
,”
CrystEngComm
26
(
25
),
3363
3369
(
2024
).
13.
Z.
Galazka
, “
Growth of bulk β-Ga2O3 single crystals by the Czochralski method
,”
J. Appl. Phys.
131
(
3
),
031103
(
2022
).
14.
A.
Yoshikawa
,
V.
Kochurikhin
,
T.
Tomida
,
I.
Takahashi
,
K.
Kamada
,
Y.
Shoji
, and
K.
Kakimoto
, “
Growth of bulk β-Ga2O3 crystals from melt without precious-metal crucible by pulling from a cold container
,”
Sci. Rep.
14
(
1
),
14881
(
2024
).
15.
A.
Waseem
,
Z.
Ren
,
H.-C.
Huang
,
K.
Nguyen
,
X.
Wu
, and
X.
Li
, “
A review of recent progress in β-Ga2O3 epitaxial growth: effect of substrate orientation and precursors in metal–organic chemical vapor deposition
,”
Phys. Status Solidi A
220
(
3
),
2200616
(
2023
).
16.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
, IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
(
1
),
011301
(
2018
).
17.
P.
Mazzolini
,
C.
Wouters
,
M.
Albrecht
,
A.
Falkenstein
,
M.
Martin
,
P.
Vogt
, and
O.
Bierwagen
, “
Molecular beam epitaxy of β-(InxGa1–x)2O3 on β-Ga2O3 (010): Compositional control, layer quality, anisotropic strain relaxation, and prospects for two-dimensional electron gas confinement
,”
ACS Appl. Mater. Interfaces
16
(
10
),
12793
12804
(
2024
).
18.
K.
Azizie
,
F. V. E.
Hensling
,
C. A.
Gorsak
,
Y.
Kim
,
N. A.
Pieczulewski
,
D. M.
Dryden
,
M. K. I.
Senevirathna
,
S.
Coye
,
S.-L.
Shang
,
J.
Steele
,
P.
Vogt
,
N. A.
Parker
,
Y. A.
Birkhölzer
,
J. P.
McCandless
,
D.
Jena
,
H. G.
Xing
,
Z.-K.
Liu
,
M. D.
Williams
,
A. J.
Green
,
K.
Chabak
,
D. A.
Muller
,
A. T.
Neal
,
S.
Mou
,
M. O.
Thompson
,
H. P.
Nair
, and
D. G.
Schlom
, “
Silicon-doped β-Ga2O3 films grown at 1 μm/h by suboxide molecular-beam epitaxy
,”
APL Mater.
11
(
4
),
041102
(
2023
).
19.
K.
Goto
,
K.
Konishi
,
H.
Murakami
,
Y.
Kumagai
,
B.
Monemar
,
M.
Higashiwaki
,
A.
Kuramata
, and
S.
Yamakoshi
, “
Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties
,”
Thin Solid Films
666
,
182
184
(
2018
).
20.
F.-G.
Tarntair
,
C.-Y.
Huang
,
S.
Rana
,
K.-L.
Lin
,
S.-H.
Hsu
,
Y.-C.
Kao
,
S. J.
Pratap
,
Y.-C.
Chen
,
N.
Tumilty
,
P.-L.
Liu
, and
R.-H.
Horng
, “
Material properties of n-type β-Ga2O3 epilayers with in situ doping grown on sapphire by metalorganic chemical vapor deposition
,”
Adv. Electron. Mater.
11
,
2300679
(
2024
).
21.
W.
Zhang
,
H.
Zhang
,
S.
Zhang
,
Z.
Wang
,
L.
Liu
,
Q.
Zhang
,
X.
Hu
, and
H.
Liang
, “
The heteroepitaxy of thick β-Ga2O3 film on sapphire substrate with a β-(AlxGa1−x)2O3 intermediate buffer layer
,”
Materials
16
(
7
),
2775
(
2023
).
22.
Y.
Oshima
,
E. G.
Víllora
, and
K.
Shimamura
, “
Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy
,”
J. Cryst. Growth
410
,
53
58
(
2015
).
23.
K.
Goto
,
H.
Murakami
,
A.
Kuramata
,
S.
Yamakoshi
,
M.
Higashiwaki
, and
Y.
Kumagai
, “
Effect of substrate orientation on homoepitaxial growth of β-Ga2O3 by halide vapor phase epitaxy
,”
Appl. Phys. Lett.
120
(
10
),
102102
(
2022
).
24.
L.
Dimitrocenko
,
G.
Strikis
,
B.
Polyakov
,
L.
Bikse
,
S.
Oras
, and
E.
Butanovs
, “
The effect of a nucleation layer on morphology and grain size in MOCVD-grown β-Ga2O3 thin films on C-plane sapphire
,”
Materials
15
(
23
),
8362
(
2022
).
25.
E.
Serquen
,
F.
Bravo
,
Z.
Chi
,
L. A.
Enrique
,
K.
Lizárraga
,
C.
Sartel
,
E.
Chikoidze
, and
J. A.
Guerra
, “
Impact of c- and m- sapphire plane orientations on the structural and electrical properties of β-Ga2O3 thin films grown by metal-organic chemical vapor deposition
,”
J. Phys. D: Appl. Phys.
57
(
49
),
495106
(
2024
).
26.
S.
Rafique
,
L.
Han
,
A. T.
Neal
,
S.
Mou
,
J.
Boeckl
, and
H.
Zhao
, “
Towards high-mobility heteroepitaxial β-Ga2O3 on sapphire − dependence on the substrate off-axis angle
,”
Phys. Status Solidi A
215
(
2
),
1700467
(
2018
).
27.
G.
Pozina
,
C.-W.
Hsu
,
N.
Abrikossova
,
M. A.
Kaliteevski
, and
C.
Hemmingsson
, “
Development of β-Ga2O3 layers growth on sapphire substrates employing modeling of precursors ratio in halide vapor phase epitaxy reactor
,”
Sci. Rep.
10
(
1
),
22261
(
2020
).
28.
J.
Wei
,
K.
Kim
,
F.
Liu
,
P.
Wang
,
X.
Zheng
,
Z.
Chen
,
D.
Wang
,
A.
Imran
,
X.
Rong
,
X.
Yang
,
F.
Xu
,
J.
Yang
,
B.
Shen
, and
X.
Wang
, “
β-Ga2O3 thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy
,”
J. Semicond.
40
(
1
),
012802
(
2019
).
29.
T.
Itoh
,
Molecular Beam Epitaxy of β-Ga2O3: Growth and Doping
(
UC Santa Barbara
,
2023
).
30.
V. I.
Nikolaev
,
A. I.
Pechnikov
,
S. I.
Stepanov
,
I. P.
Nikitina
,
A. N.
Smirnov
,
A. V.
Chikiryaka
,
S. S.
Sharofidinov
,
V. E.
Bougrov
, and
A. E.
Romanov
, “
Epitaxial growth of β-Ga2O3 on (0001) sapphire substrates by halide vapour phase epitaxy
,”
Mater. Sci. Semicond. Process.
47
,
16
19
(
2016
).
31.
H.
Murakami
,
K.
Nomura
,
K.
Goto
,
K.
Sasaki
,
K.
Kawara
,
Q. T.
Thieu
,
R.
Togashi
,
Y.
Kumagai
,
M.
Higashiwaki
,
A.
Kuramata
,
S.
Yamakoshi
,
B.
Monemar
, and
A.
Koukitu
, “
Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy
,”
Appl. Phys. Express
8
(
1
),
015503
(
2015
).
32.
Y.
Wang
,
T.
Li
,
D.
Chen
, and
H.
Qi
, “
Effect of miscut angles of the substrates on step-flow Β-Ga2o3 homoepitaxial films grown by Mocvd
,” Available at SSRN 4794880 (
2024
).
33.
Y.
Song
,
P.
Ranga
,
Y.
Zhang
,
Z.
Feng
,
H.-L.
Huang
,
M. D.
Santia
,
S. C.
Badescu
,
C. U.
Gonzalez-Valle
,
C.
Perez
,
K.
Ferri
,
R. M.
Lavelle
,
D. W.
Snyder
,
B. A.
Klein
,
J.
Deitz
,
A. G.
Baca
,
J.-P.
Maria
,
B.
Ramos-Alvarado
,
J.
Hwang
,
H.
Zhao
,
X.
Wang
,
S.
Krishnamoorthy
,
B. M.
Foley
, and
S.
Choi
, “
Thermal conductivity of β-phase Ga2O3 and (AlxGa1–x)2O3 heteroepitaxial thin films
,”
ACS Appl. Mater. Interfaces
13
(
32
),
38477
38490
(
2021
).
34.
K.
Fu
,
H.
Fu
,
X.
Deng
,
P.-Y.
Su
,
H.
Liu
,
K.
Hatch
,
C.-Y.
Cheng
,
D.
Messina
,
R. V.
Meidanshahi
,
P.
Peri
,
C.
Yang
,
T.-H.
Yang
,
J.
Montes
,
J.
Zhou
,
X.
Qi
,
S. M.
Goodnick
,
F. A.
Ponce
,
D. J.
Smith
,
R.
Nemanich
, and
Y.
Zhao
, “
The impact of interfacial Si contamination on GaN-on-GaN regrowth for high power vertical devices
,”
Appl. Phys. Lett.
118
(
22
),
222104
(
2021
).
35.
Z.
Chen
,
A.
Mishra
,
A. K.
Bhat
,
M. D.
Smith
,
M. J.
Uren
,
S.
Kumar
,
M.
Higashiwaki
, and
M.
Kuball
, “
Modelling of impedance dispersion in lateral β-Ga2O3 MOSFETs due to parallel conductive Si-accumulation layer
,”
Appl. Phys. Express
16
(
4
),
044002
(
2023
).
36.
F.
Alema
,
B.
Hertog
,
A.
Osinsky
,
P.
Mukhopadhyay
,
M.
Toporkov
, and
W. V.
Schoenfeld
, “
Fast growth rate of epitaxial β–Ga2O3 by close coupled showerhead MOCVD
,”
J. Cryst. Growth
475
,
77
82
(
2017
).
You do not currently have access to this content.