The exploration and development of novel materials with intrinsically low thermal conductivity hold significant scientific and technological implications for thermoelectrics and thermal barrier coatings. In this study, a single crystal of Mg4.8Ag1.4Sb4 has been successfully synthesized, demonstrating an ultralow thermal conductivity of approximately 0.6 W m−1 K−1 at room temperature. Structure determination based on single-crystal x-ray diffraction analysis identifies the Fm3¯m space group and the mixed occupancy of Mg atoms (∼60 at. %), Ag atoms (∼17.5 at. %), and vacancies (22.5 at. %) at the 8c site. These crystallographic site-occupation disorders lead to substantial phonon scattering, which is the primary cause of the observed low thermal conductivity. First-principles calculations reveal high anharmonic scattering rates and short mean free paths in Mg4.8Ag1.4Sb4. Complementary molecular dynamics simulations demonstrate the anomalous atomic vibrations of Ag atoms with large amplitudes at 300 K, which induces a low-lying acoustic phonon branch and enhanced phonon density of states at 0.6 THz. This phenomenon accounts for the enhanced anharmonic scattering rates at elevated temperatures, inducing a further reduction in the lattice thermal conductivity. Our work can shed new light on the discovery of novel materials with low thermal conductivity.

1.
R. A.
Miller
, “
Current status of thermal barrier coatings—An overview
,”
Surf. Coat. Technol.
30
(
1
),
1
11
(
1987
).
2.
R.
Vassen
,
X.
Cao
,
F.
Tietz
,
D.
Basu
, and
D.
Stöver
, “
Zirconates as new materials for thermal barrier coatings
,”
J. Am. Ceram. Soc.
83
(
8
),
2023
2028
(
2000
).
3.
A. G.
Evans
,
D. R.
Mumm
,
J. W.
Hutchinson
,
G. H.
Meier
, and
F. S.
Pettit
, “
Mechanisms controlling the durability of thermal barrier coatings
,”
Prog. Mater. Sci.
46
(
5
),
505
553
(
2001
).
4.
D. R.
Clarke
and
C. G.
Levi
, “
Materials design for the next generation thermal barrier coatings
,”
Annu. Rev. Mater. Res.
33
,
383
417
(
2003
).
5.
X. Q.
Cao
,
R.
Vassen
, and
D.
Stoever
, “
Ceramic materials for thermal barrier coatings
,”
J. Eur. Ceram. Soc.
24
(
1
),
1
10
(
2004
).
6.
R.
Vaben
,
M. O.
Jarligo
,
T.
Steinke
,
D. E.
Mack
, and
D.
Stöver
, “
Overview on advanced thermal barrier coatings
,”
Surf. Coat. Technol.
205
(
4
),
938
942
(
2010
).
7.
D. R.
Clarke
,
M.
Oechsner
, and
N. P.
Padture
, “
Thermal-barrier coatings for more efficient gas-turbine engines
,”
MRS Bull.
37
(
10
),
891
898
(
2012
).
8.
K.
Kurosaki
,
A.
Kosuga
,
H.
Muta
,
M.
Uno
, and
S.
Yamanaka
, “
Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity
,”
Appl. Phys. Lett.
87
(
6
),
061919
(
2005
).
9.
K.
Suekuni
,
K.
Tsuruta
,
T.
Ariga
, and
M.
Koyano
, “
Thermoelectric properties of mineral tetrahedrites Cu10Tr2Sb4S13 with low thermal conductivity
,”
Appl. Phys. Express
5
(
5
),
051201
(
2012
).
10.
Y.
Pei
,
J.
He
,
J.
Li
,
F.
Li
,
Q.
Liu
,
W.
Pan
,
C.
Barreteau
,
D.
Berardan
,
N.
Dragoe
, and
L.
Zhao
, “
High thermoelectric performance of oxyselenides: Intrinsically low thermal conductivity of Ca-doped BiCuSeO
,”
NPG Asia Mater.
5
(
5
),
e47
(
2013
).
11.
L.
Zhao
,
S.
Lo
,
Y.
Zhang
,
H.
Sun
,
G.
Tan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
, “
Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
,”
Nature
508
(
7496
),
373
377
(
2014
).
12.
H.
Lin
,
G.
Tan
,
J.
Shen
,
S.
Hao
,
L.
Wu
,
N.
Calta
,
C.
Malliakas
,
S.
Wang
,
C.
Uher
,
C.
Wolverton
, and
M. G.
Kanatzidis
, “
Concerted rattling in CsAg5Te3 leading to ultralow thermal conductivity and high thermoelectric performance
,”
Angew. Chem. Int. Ed.
55
(
38
),
11431
11436
(
2016
).
13.
Z. H.
Liu
,
Y. M.
Wang
,
J.
Mao
,
H. Y.
Geng
,
J.
Shuai
,
Y. X.
Wang
,
R.
He
,
W.
Cai
,
J. H.
Sui
, and
Z. F.
Ren
, “
Lithium doping to enhance thermoelectric performance of MgAgSb with weak electron-phonon coupling
,”
Adv. Energy Mater.
6
(
7
),
11
(
2016
).
14.
G.
Tan
,
S.
Hao
,
J.
Zhao
,
C.
Wolverton
, and
M. G.
Kanatzidis
, “
High thermoelectric performance in electron-doped AgBi3S5 with ultralow thermal conductivity
,”
J. Am. Chem. Soc.
139
(
18
),
6467
6473
(
2017
).
15.
K.
Zhao
,
A. B.
Blichfeld
,
E.
Eikeland
,
P.
Qiu
,
D.
Ren
,
B. B.
Iversen
,
X.
Shi
, and
L.
Chen
, “
Extremely low thermal conductivity and high thermoelectric performance in liquid-like Cu2Se1−xSx polymorphic materials
,”
J. Mater. Chem. A
5
(
34
),
18148
18156
(
2017
).
16.
C.
Chang
and
L.
Zhao
, “
Anharmoncity and low thermal conductivity in thermoelectrics
,”
Mater. Today Phys.
4
,
50
57
(
2018
).
17.
D. R.
Clarke
, “
Materials selection guidelines for low thermal conductivity thermal barrier coatings
,”
Surf. Coat. Technol.
163–164
,
67
74
(
2003
).
18.
D. R.
Clarke
and
S. R.
Phillpot
, “
Thermal barrier coating materials
,”
Mater. Today
8
(
6
),
22
29
(
2005
).
19.
C.
Kittel
, “
Interpretation of the thermal conductivity of glasses
,”
Phys. Rev.
75
(
6
),
972
974
(
1949
).
20.
R. B.
Stephens
, “
Intrinsic low-temperature thermal properties of glasses
,”
Phys. Rev. B
13
(
2
),
852
865
(
1976
).
21.
P. G.
Klemens
, “
Theory of the thermal conductivity of amorphous solids
,” in
Thermal Conductivity 18
, edited by
T.
Ashworth
and
D. R.
Smith
(
Springer US
,
Boston, MA
,
1985
), pp.
307
314
.
22.
D. G.
Cahill
and
R. O.
Pohl
, “
Thermal conductivity of amorphous solids above the plateau
,”
Phys. Rev. B
35
(
8
),
4067
4073
(
1987
).
23.
R. O.
Pohl
,
X.
Liu
, and
E.
Thompson
, “
Low-temperature thermal conductivity and acoustic attenuation in amorphous solids
,”
Rev. Mod. Phys.
74
(
4
),
991
1013
(
2002
).
24.
A. D.
McConnell
,
S.
Uma
, and
K. E.
Goodson
, “
Thermal conductivity of doped polysilicon layers
,”
J. Microelectromech. Syst.
10
(
3
),
360
369
(
2001
).
25.
M.
Asheghi
,
K.
Kurabayashi
,
R.
Kasnavi
, and
K. E.
Goodson
, “
Thermal conduction in doped single-crystal silicon films
,”
J. Appl. Phys.
91
(
8
),
5079
5088
(
2002
).
26.
W.
Pan
,
S. R.
Phillpot
,
C.
Wan
,
A.
Chernatynskiy
, and
Z.
Qu
, “
Low thermal conductivity oxides
,”
MRS Bull.
37
(
10
),
917
922
(
2012
).
27.
S. N.
Guin
,
V.
Srihari
, and
K.
Biswas
, “
Promising thermoelectric performance in n-type AgBiSe2: Effect of aliovalent anion doping
,”
J. Mater. Chem. A
3
(
2
),
648
655
(
2015
).
28.
P. D.
Maycock
, “
Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys
,”
Solid-State Electron.
10
(
3
),
161
168
(
1967
).
29.
M. A.
Afromowitz
, “
Thermal conductivity of Ga1−xAlxAs alloys
,”
J. Appl. Phys.
44
(
3
),
1292
1294
(
1973
).
30.
Z.
Zheng
,
X.
Su
,
R.
Deng
,
C.
Stoumpos
,
H.
Xie
,
W.
Liu
,
Y.
Yan
,
S.
Hao
,
C.
Uher
,
C.
Wolverton
,
M. G.
Kanatzidis
, and
X.
Tang
, “
Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance
,”
J. Am. Chem. Soc.
140
(
7
),
2673
2686
(
2018
).
31.
Y.
Pei
,
L.
Zheng
,
W.
Li
,
S.
Lin
,
Z.
Chen
,
Y.
Wang
,
X.
Xu
,
H.
Yu
,
Y.
Chen
, and
B.
Ge
, “
Interstitial point defect scattering contributing to high thermoelectric performance in SnTe
,”
Adv. Electron. Mater.
2
(
6
),
1600019
(
2016
).
32.
A.
Bhui
,
M.
Dutta
,
M.
Mukherjee
,
K. S.
Rana
,
A. K.
Singh
,
A.
Soni
, and
K.
Biswas
, “
Ultralow thermal conductivity in earth-abundant Cu1.6Bi4.8S8: Anharmonic rattling of interstitial Cu
,”
Chem. Mater.
33
(
8
),
2993
3001
(
2021
).
33.
N. A.
Katcho
, “
Effect of nitrogen and vacancy defects on the thermal conductivity of diamond: An ab initio Green's function approach
,”
Phys. Rev. B
90
(
9
),
094117
(
2014
).
34.
Y.
Liu
,
C.
Xiao
,
Z.
Li
, and
Y.
Xie
, “
Vacancy engineering for tuning electron and phonon structures of two-dimensional materials
,”
Adv. Energy Mater.
6
(
23
),
1600436
(
2016
).
35.
Z.
Chen
,
B.
Ge
,
W.
Li
,
S.
Lin
,
J.
Shen
,
Y.
Chang
,
R.
Hanus
,
G. J.
Snyder
, and
Y.
Pei
, “
Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics
,”
Nat. Commun.
8
(
1
),
13828
(
2017
).
36.
J.
Zou
,
D.
Kotchetkov
,
A. A.
Balandin
,
D. I.
Florescu
, and
F. H.
Pollak
, “
Thermal conductivity of GaN films: Effects of impurities and dislocations
,”
J. Appl. Phys.
92
(
5
),
2534
2539
(
2002
).
37.
C.
Mion
,
J. F.
Muth
,
E. A.
Preble
, and
D.
Hanser
, “
Accurate dependence of gallium nitride thermal conductivity on dislocation density
,”
Appl. Phys. Lett.
89
(
9
),
092123
(
2006
).
38.
S. I.
Kim
,
K. H.
Lee
,
H. A.
Mun
,
H. S.
Kim
,
S. W.
Hwang
,
J. W.
Roh
,
D. J.
Yang
,
W. H.
Shin
,
X. S.
Li
,
Y. H.
Lee
,
G. J.
Snyder
, and
S. W.
Kim
, “
Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics
,”
Science
348
(
6230
),
109
114
(
2015
).
39.
X.
Meng
,
Z.
Liu
,
B.
Cui
,
D.
Qin
,
H.
Geng
,
W.
Cai
,
L.
Fu
,
J.
He
,
Z.
Ren
, and
J.
Sui
, “
Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites
,”
Adv. Energy Mater.
7
(
13
),
1602582
(
2017
).
40.
P.
Zong
,
R.
Hanus
,
M.
Dylla
,
Y.
Tang
,
J.
Liao
,
Q.
Zhang
,
G. J.
Snyder
, and
L.
Chen
, “
Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device
,”
Energy Environ. Sci.
10
(
1
),
183
191
(
2017
).
41.
R.
Deng
,
X.
Su
,
Z.
Zheng
,
W.
Liu
,
Y.
Yan
,
Q.
Zhang
,
V. P.
Dravid
,
C.
Uher
,
M. G.
Kanatzidis
, and
X.
Tang
, “
Thermal conductivity in Bi0.5Sb1.5Te3+x and the role of dense dislocation arrays at grain boundaries
,”
Sci. Adv.
4
(
6
),
eaar5606
(
2018
).
42.
R.
Venkatasubramanian
, “
Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures
,”
Phys. Rev. B
61
(
4
),
3091
3097
(
2000
).
43.
D.
Li
,
Y.
Wu
,
R.
Fan
,
P.
Yang
, and
A.
Majumdar
, “
Thermal conductivity of Si/SiGe superlattice nanowires
,”
Appl. Phys. Lett.
83
(
15
),
3186
3188
(
2003
).
44.
J. C.
Caylor
,
K.
Coonley
,
J.
Stuart
,
T.
Colpitts
, and
R.
Venkatasubramanian
, “
Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity
,”
Appl. Phys. Lett.
87
(
2
),
023105
(
2005
).
45.
Y.
Chen
,
D.
Li
,
J. R.
Lukes
,
Z.
Ni
, and
M.
Chen
, “
Minimum superlattice thermal conductivity from molecular dynamics
,”
Phys. Rev. B
72
(
17
),
174302
(
2005
).
46.
W.
Kim
,
J.
Zide
,
A.
Gossard
,
D.
Klenov
,
S.
Stemmer
,
A.
Shakouri
, and
A.
Majumdar
, “
Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors
,”
Phys. Rev. Lett.
96
(
4
),
045901
(
2006
).
47.
B. E.
Jebasingh
and
A. V.
Arasu
, “
A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications
,”
Energy Storage Mater.
24
,
52
74
(
2020
).
48.
K.
Apmann
,
R.
Fulmer
,
A.
Soto
, and
S.
Vafaei
, “
Thermal conductivity and viscosity: Review and optimization of effects of nanoparticles
,”
Materials
14
(
5
),
1291
(
2021
).
49.
H.
Yang
,
K.
Li
,
Y.
Bu
,
J.
Wu
,
Y.
Fang
,
L.
Meng
,
J.
Liu
, and
H.
Wang
, “
Nanoprecipitates induced dislocation pinning and multiplication strategy for designing high strength, plasticity and conductivity Cu alloys
,”
Scr. Mater.
195
,
113741
(
2021
).
50.
J.
Dong
,
D.
Zhang
,
J.
Liu
,
Y.
Jiang
,
X. Y.
Tan
,
N.
Jia
,
J.
Cao
,
A.
Suwardi
,
Q.
Zhu
,
J.
Xu
,
J.
Li
, and
Q.
Yan
, “
N-type thermoelectric AgBiPbS3 with nanoprecipitates and low thermal conductivity
,”
Inorg. Chem.
62
(
43
),
17905
17912
(
2023
).
51.
G. M.
Sheldrick
, “
A short history of SHELX
,”
Acta Crystallogr. A
64
(
1
),
112
122
(
2008
).
52.
G.
Sheldrick
, “
SHELXL-2014
,” Univ. Gött. Ger. (
2014
).
53.
L. J.
Farrugia
, “
WinGX suite for small-molecule single-crystal crystallography
,”
J. Appl. Crystallogr.
32
(
4
),
837
838
(
1999
).
54.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
55.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
56.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
57.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
58.
A.
Zunger
,
S. H.
Wei
,
L. G.
Ferreira
, and
J. E.
Bernard
, “
Special quasirandom structures
,”
Phys. Rev. Lett.
65
(
3
),
353
356
(
1990
).
59.
M.
Angqvist
,
W. A.
Muñoz
,
J. M.
Rahm
,
E.
Fransson
,
C.
Durniak
,
P.
Rozyczko
,
T. H.
Rod
, and
P.
Erhart
, “
ICET – A python library for constructing and sampling alloy cluster expansions
,”
Adv. Theory Simul.
2
(
7
),
1900015
(
2019
).
60.
O.
Hellman
,
I. A.
Abrikosov
, and
S. I.
Simak
, “
Lattice dynamics of anharmonic solids from first principles
,”
Phys. Rev. B
84
(
18
),
180301
(
2011
).
61.
O.
Hellman
,
P.
Steneteg
,
I. A.
Abrikosov
, and
S. I.
Simak
, “
Temperature dependent effective potential method for accurate free energy calculations of solids
,”
Phys. Rev. B
87
(
10
),
104111
(
2013
).
62.
O.
Hellman
and
I. A.
Abrikosov
, “
Temperature-dependent effective third-order interatomic force constants from first principles
,”
Phys. Rev. B
88
(
14
),
144301
(
2013
).
63.
F.
Knoop
,
N.
Shulumba
,
A.
Castellano
,
J. P. A.
Batista
,
R.
Farris
,
M. J.
Verstraete
,
M.
Heine
,
D.
Broido
,
D. S.
Kim
,
J.
Klarbring
,
I. A.
Abrikosov
,
S. I.
Simak
, and
O.
Hellman
, “
TDEP: Temperature dependent effective potentials
,”
J. Open Source Softw.
9
(
94
),
6150
(
2024
).
64.
S.
Nosé
,
A Molecular Dynamics Method for Simulations in the Canonical Ensemble
(
Taylor Francis
,
1984
).
65.
R.
Jinnouchi
,
J.
Lahnsteiner
,
F.
Karsai
,
G.
Kresse
, and
M.
Bokdam
, “
Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference
,”
Phys. Rev. Lett.
122
(
22
),
225701
(
2019
).
66.
R.
Jinnouchi
,
F.
Karsai
, and
G.
Kresse
, “
On-the-fly machine learning force field generation: Application to melting points
,”
Phys. Rev. B
100
(
1
),
014105
(
2019
).
67.
R.
Jinnouchi
,
F.
Karsai
,
C.
Verdi
,
R.
Asahi
, and
G.
Kresse
, “
Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials
,”
J. Chem. Phys.
152
(
23
),
234102
(
2020
).
68.
W.
Li
,
J.
Carrete
,
N. A.
Katcho
, and
N.
Mingo
, “
ShengBTE: A solver of the Boltzmann transport equation for phonons
,”
Comput. Phys. Commun.
185
(
6
),
1747
1758
(
2014
).
69.
R.
Fabbri
,
F.
Cembali
,
M.
Servidori
, and
A.
Zani
, “
Analysis of thin-film solid solutions on single-crystal silicon by simulation of X-ray rocking curves: B-Si and Ge-Si binary alloys
,”
J. Appl. Phys.
74
(
4
),
2359
2369
(
1993
).
70.
M.
Servidori
and
R.
Fabbri
, “
Analysis of (n,-n) and (n, -n, n) X-ray rocking curves of processed silicon
,”
J. Phys. D: Appl. Phys.
26
(
4A
),
A22
A28
(
1993
).
71.
S.
Milita
and
M.
Servidori
, “
X-ray rocking-curve analysis of crystals with buried amorphous layers. Case of ion-implanted silicon
,”
J. Appl. Crystallogr.
28
(
6
),
666
672
(
1995
).
72.
G. M.
Sheldrick
, “
Crystal structure refinement with SHELXL
,”
Acta Crystallogr. Sect. C
71
(
1
),
3
8
(
2015
).
73.
X.
Ma
,
H.
Yao
,
S.
Zhi
,
P.
Zhao
,
S.
Ye
,
S.
Duan
,
L.
Yin
,
J.
Li
,
X.
Bao
,
J.
Sui
,
F.
Cao
,
Q.
Zhang
, and
J.
Mao
, “
Identifying the point defects in single-crystalline Mg3Sb2
,”
Chem. Mater.
35
(
14
),
5640
5647
(
2023
).
74.
S. F.
Wang
,
Z. G.
Zhang
,
B. T.
Wang
,
J. R.
Zhang
, and
F. W.
Wang
, “
Zintl phase BaAgSb: Low thermal conductivity and high performance thermoelectric material in ab initio calculation
,”
Chin. Phys. Lett.
38
(
4
),
046301
(
2021
).
75.
A.
Manzoor
,
S.
Pandey
,
D.
Chakraborty
,
S. R.
Phillpot
, and
D. S.
Aidhy
, “
Entropy contributions to phase stability in binary random solid solutions
,”
npj Comput. Mater.
4
(
1
),
1
10
(
2018
).
76.
H.
Li
,
J.
Lai
,
Z.
Li
, and
L.
Wang
, “
Multi-sites electrocatalysis in high-entropy alloys
,”
Adv. Funct. Mater.
31
(
47
),
2106715
(
2021
).
77.
J.
Xin
,
G.
Li
,
G.
Auffermann
,
H.
Borrmann
,
W.
Schnelle
,
J.
Gooth
,
X.
Zhao
,
T.
Zhu
,
C.
Felser
, and
C.
Fu
, “
Growth and transport properties of Mg3X2 (X = Sb, Bi) single crystals
,”
Mater. Today Phys.
7
,
61
68
(
2018
).
78.
J. J.
Martin
, “
Thermal conductivity of Mg2Si, Mg2Ge and Mg2Sn
,”
J. Phys. Chem. Solids
33
(
5
),
1139
1148
(
1972
).
79.
M.
Omini
and
A.
Sparavigna
, “
An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity
,”
Phys. B Condens. Matter
212
(
2
),
101
112
(
1995
).
80.
W.
Li
and
N.
Mingo
, “
Thermal conductivity of fully filled skutterudites: Role of the filler
,”
Phys. Rev. B
89
(
18
),
184304
(
2014
).
81.
W.
Li
and
N.
Mingo
, “
Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the flat avoided-crossing filler modes
,”
Phys. Rev. B
91
(
14
),
144304
(
2015
).
82.
Y.
Fu
,
D. J.
Singh
,
W.
Li
, and
L.
Zhang
, “
Intrinsic ultralow lattice thermal conductivity of the unfilled skutterudite FeSb3
,”
Phys. Rev. B
94
(
7
),
075122
(
2016
).
83.
W.
Li
,
L.
Lindsay
,
D. A.
Broido
,
D. A.
Stewart
, and
N.
Mingo
, “
Thermal conductivity of bulk and nanowire Mg2SixSn1-x alloys from first principles
,”
Phys. Rev. B
86
(
17
),
174307
(
2012
).
You do not currently have access to this content.