A force field as accurate as quantum mechanics (QMs) and as fast as molecular mechanics (MMs), with which one can simulate a biomolecular system efficiently enough and meaningfully enough to get quantitative insights, is among the most ardent dreams of biophysicists—a dream, nevertheless, not to be fulfilled any time soon. Machine learning force fields (MLFFs) represent a meaningful endeavor in this direction, where differentiable neural functions are parametrized to fit ab initio energies and forces through automatic differentiation. We argue that, as of now, the utility of the MLFF models is no longer bottlenecked by accuracy but primarily by their speed, as well as stability and generalizability—many recent variants, on limited chemical spaces, have long surpassed the chemical accuracy of 1 kcal/mol—the empirical threshold beyond which realistic chemical predictions are possible—though still magnitudes slower than MM. Hoping to kindle exploration and design of faster, albeit perhaps slightly less accurate MLFFs, in this review, we focus our attention on the technical design space (the speed-accuracy trade-off) between MM and ML force fields. After a brief review of the building blocks (from a machine learning-centric point of view) of force fields of either kind, we discuss the desired properties and challenges now faced by the force field development community, survey the efforts to make MM force fields more accurate and ML force fields faster, and envision what the next generation of MLFF might look like.

1.
L.
Boltzmann
, “
Studien uber das gleichgewicht der lebenden kraft
,”
Wissenschafiliche Abhandlungen
1
,
49
96
(
1868
).
2.
M.
Levitt
and
S.
Lifson
, “
Refinement of protein conformations using a macromolecular energy minimization procedure
,”
J. Mol. Biol.
46
,
269
279
(
1969
).
3.
A.
Hagler
,
E.
Huler
, and
S.
Lifson
, “
Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals
,”
J. Am. Chem. Soc.
96
,
5319
5327
(
1974
).
4.
J. A.
McCammon
,
B. R.
Gelin
, and
M.
Karplus
, “
Dynamics of folded proteins
,”
Nature
267
,
585
590
(
1977
).
5.
J. W.
Ponder
and
D. A.
Case
, “
Force fields for protein simulations
,” in
Advances in Protein Chemistry
(
Elsevier
,
2003
), Vol.
66
, pp.
27
85
.
6.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
7.
D. A.
Case
,
T. E.
Cheatham
III
,
T.
Darden
,
H.
Gohlke
,
R.
Luo
,
K. M.
Merz
, Jr.
,
A.
Onufriev
,
C.
Simmerling
,
B.
Wang
, and
R. J.
Woods
, “
The amber biomolecular simulation programs
,”
J. Comput. Chem.
26
,
1668
1688
(
2005
).
8.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kale
, and
K.
Schulten
, “
Scalable molecular dynamics with NAMD
,”
J. Comput. Chem.
26
,
1781
1802
(
2005
).
9.
F. E.
Calculations
,
Free Energy Calculations: Theory and Applications in Chemistry and Biology
, Springer Series in Chemical Physics Vol.
86
(
Springer
,
2007
).
10.
C.
Wang
,
G.
Pilania
,
S.
Boggs
,
S.
Kumar
,
C.
Breneman
, and
R.
Ramprasad
, “
Computational strategies for polymer dielectrics design
,”
Polymer
55
,
979
988
(
2014
).
11.
C.
Li
and
A.
Strachan
, “
Molecular scale simulations on thermoset polymers: A review
,”
J. Polym. Sci, Part B: Polym. Phys.
53
,
103
122
(
2015
).
12.
H.
Sun
,
Z.
Jin
,
C.
Yang
,
R. L.
Akkermans
,
S. H.
Robertson
,
N. A.
Spenley
,
S.
Miller
, and
S. M.
Todd
, “
Compass II: Extended coverage for polymer and drug-like molecule databases
,”
J. Mol. Model.
22
,
47
(
2016
).
13.
M. J.
Harvey
,
G.
Giupponi
, and
G. D.
Fabritiis
, “
ACEMD: Accelerating biomolecular dynamics in the microsecond time scale
,”
J. Chem. Theory Comput.
5
,
1632
1639
(
2009
).
14.
R.
Salomon-Ferrer
,
A. W.
Gotz
,
D.
Poole
,
S.
Le Grand
, and
R. C.
Walker
, “
Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald
,”
J. Chem. Theory Comput.
9
,
3878
3888
(
2013
).
15.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
et al, “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
16.
P.
Eastman
,
R.
Galvelis
,
R. P.
Peláez
,
C. R.
Abreu
,
S. E.
Farr
,
E.
Gallicchio
,
A.
Gorenko
,
M. M.
Henry
,
F.
Hu
,
J.
Huang
et al, “
OpenMM 8: Molecular dynamics simulation with machine learning potentials
,”
J. Phys. Chem. B
128
,
109
116
(
2023a
).
17.
L.
Wang
,
Y.
Wu
,
Y.
Deng
,
B.
Kim
,
L.
Pierce
,
G.
Krilov
,
D.
Lupyan
,
S.
Robinson
,
M. K.
Dahlgren
,
J.
Greenwood
et al, “
Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field
,”
J. Am. Chem. Soc.
137
,
2695
2703
(
2015
).
18.
C. E.
Schindler
,
H.
Baumann
,
A.
Blum
,
D.
Bose
,
H.-P.
Buchstaller
,
L.
Burgdorf
,
D.
Cappel
,
E.
Chekler
,
P.
Czodrowski
,
D.
Dorsch
et al, “
Large-scale assessment of binding free energy calculations in active drug discovery projects
,”
J. Chem. Inf. Model.
60
,
5457
5474
(
2020
).
19.
V.
Gapsys
,
D. F.
Hahn
,
G.
Tresadern
,
D. L.
Mobley
,
M.
Rampp
, and
B. L.
de Groot
, “
Pre-exascale computing of protein–ligand binding free energies with open source software for drug design
,”
J. Chem. Inf. Model.
62
,
1172
1177
(
2022
).
20.
S.
Boothroyd
,
P. K.
Behara
,
O. C.
Madin
,
D. F.
Hahn
,
H.
Jang
,
V.
Gapsys
,
J. R.
Wagner
,
J. T.
Horton
,
D. L.
Dotson
,
M. W.
Thompson
et al, “
Development and benchmarking of open force field 2.0.0: The sage small molecule force field
,”
J. Chem. Theory Comput.
19
,
3251
(
2023
).
21.
K.
Takaba
,
A. J.
Friedman
,
C. E.
Cavender
,
P. K.
Behara
,
I.
Pulido
,
M. M.
Henry
,
H.
MacDermott-Opeskin
,
C. R.
Iacovella
,
A. M.
Nagle
,
A. M.
Payne
,
M. R.
Shirts
,
D. L.
Mobley
,
J. D.
Chodera
, and
Y.
Wang
, “
Machine-learned molecular mechanics force fields from large-scale quantum chemical data
,”
Chem. Sci.
15
,
12861
12878
(
2024
).
22.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017a
).
23.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Machine learning force fields
,”
Chem. Rev.
121
,
10142
10186
(
2021a
).
24.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017a
).
25.
J. S.
Smith
,
B.
Nebgen
,
N.
Lubbers
,
O.
Isayev
, and
A. E.
Roitberg
, “
Less is more: Sampling chemical space with active learning
,”
J. Chem. Phys.
148
,
241733
(
2018
).
26.
J. S.
Smith
,
B. T.
Nebgen
,
R.
Zubatyuk
,
N.
Lubbers
,
C.
Devereux
,
K.
Barros
,
S.
Tretiak
,
O.
Isayev
, and
A. E.
Roitberg
, “
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
,”
Nat. Commun.
10
,
1
8
(
2019
).
27.
C.
Devereux
,
J. S.
Smith
,
K. K.
Davis
,
K.
Barros
,
R.
Zubatyuk
,
O.
Isayev
, and
A. E.
Roitberg
, “
Extending the applicability of the ANI deep learning molecular potential to sulfur and halogens
,”
J. Chem. Theory Comput.
16
,
4192
4202
(
2020
).
28.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet—A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
29.
S.
Batzner
,
A.
Musaelian
,
L.
Sun
,
M.
Geiger
,
J. P.
Mailoa
,
M.
Kornbluth
,
N.
Molinari
,
T. E.
Smidt
, and
B.
Kozinsky
, “
E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
,”
Nat. Commun.
13
,
2453
(
2022a
).
30.
Y.
Han
,
Z.
Wang
,
Z.
Wei
,
J.
Liu
, and
J.
Li
, “
Machine learning builds full-QM precision protein force fields in seconds
,”
Briefings Bioinf.
22
,
bbab158
(
2021
).
31.
Y.
Wang
and
J. D.
Chodera
, “
Spatial attention kinetic networks with e(n)-equivariance
,” arXiv:2301.08893 (
2023
).
32.
A.
Musaelian
,
S.
Batzner
,
A.
Johansson
,
L.
Sun
,
C. J.
Owen
,
M.
Kornbluth
, and
B.
Kozinsky
, “
Learning local equivariant representations for large-scale atomistic dynamics
,”
Nat. Commun.
14
,
579
(
2023
).
33.
G. D.
Fabritiis
, “
Machine learning potentials: A roadmap toward next-generation biomolecular simulations
,” arXiv:2408.12625 (
2024
).
34.
S.
Barnett
and
J. D.
Chodera
, “
Neural network potentials for enabling advanced small-molecule drug discovery and generative design
,”
GEN Biotechnol.
3
,
119
129
(
2024
).
35.
A.
Kabylda
,
J. T.
Frank
,
S. S.
Dou
,
A.
Khabibrakhmanov
,
L. M.
Sandonas
,
O. T.
Unke
,
S.
Chmiela
,
K.-R.
Muller
, and
A.
Tkatchenko
, “
Molecular simulations with a pretrained neural network and universal pairwise force fields
,”
ChemRxiv
(
2024
).
36.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
37.
S.
Thais
and
D.
Murnane
, “
Equivariance is not all you need: Characterizing the utility of equivariant graph neural networks for particle physics tasks
,” arXiv:2311.03094 (
2023
).
38.
O.
Puny
,
M.
Atzmon
,
H.
Ben-Hamu
,
I.
Misra
,
A.
Grover
,
E. J.
Smith
, and
Y.
Lipman
, “
Frame averaging for invariant and equivariant network design
,” arXiv:2110.03336 (
2022
).
39.
A.
Duval
,
V.
Schmidt
,
A. H.
Garcia
,
S.
Miret
,
F. D.
Malliaros
,
Y.
Bengio
, and
D.
Rolnick
, “
FaeNet: Frame averaging equivariant GNN for materials modeling
,” arXiv:2305.05577 (
2023
).
40.
J.
Abramson
,
J.
Adler
,
J.
Dunger
,
R.
Evans
,
T.
Green
,
A.
Pritzel
,
O.
Ronneberger
,
L.
Willmore
,
A. J.
Ballard
,
J.
Bambrick
et al, “
Accurate structure prediction of biomolecular interactions with AlphaFold 3
,”
Nature
630
,
493
(
2024
).
41.
J. A.
Barker
and
R. O.
Watts
, “
Monte Carlo studies of the dielectric properties of water-like models
,”
Mol. Phys.
26
,
789
792
(
1973
).
42.
R.
Watts
, “
Monte Carlo studies of liquid water
,”
Mol. Phys.
28
,
1069
1083
(
1974
).
43.
J.
Kolafa
and
J. W.
Perram
, “
Cutoff errors in the Ewald summation formulae for point charge systems
,”
Mol. Simul.
9
,
351
368
(
1992
).
44.
D.-A.
Clevert
,
T.
Unterthiner
, and
S.
Hochreiter
, “
Fast and accurate deep network learning by exponential linear units (ELUs)
,” arXiv:1511.07289 (
2016
).
45.
X.
Fu
,
Z.
Wu
,
W.
Wang
,
T.
Xie
,
S.
Keten
,
R.
Gomez-Bombarelli
, and
T.
Jaakkola
, “
Forces are not enough: Benchmark and critical evaluation for machine learning force fields with molecular simulations
,” arXiv:2210.07237 (
2023
).
46.
S.
Stocker
,
J.
Gasteiger
,
F.
Becker
,
S.
Günnemann
, and
J. T.
Margraf
, “
How robust are modern graph neural network potentials in long and hot molecular dynamics simulations?
,”
Mach. Learn: Sci. Technol.
3
,
045010
(
2022
).
47.
W.
Wang
,
T.
Yang
,
W. H.
Harris
, and
R.
Gómez-Bombarelli
, “
Active learning and neural network potentials accelerate molecular screening of ether-based solvate ionic liquids
,”
Chem. Commun.
56
,
8920
8923
(
2020a
).
48.
D.
Schwalbe-Koda
,
A. R.
Tan
, and
R.
Gómez-Bombarelli
, “
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
,”
Nat. Commun.
12
,
5104
(
2021
).
49.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
, “
How fast-folding proteins fold
,”
Science
334
,
517
520
(
2011
).
50.
J.
Kubelka
,
J.
Hofrichter
, and
W. A.
Eaton
, “
The protein folding ‘speed limit’
,”
Curr. Opin. Struct. Biol.
14
,
76
88
(
2004
).
51.
W. A.
Eaton
, “
Modern kinetics and mechanism of protein folding: A retrospective
,”
J. Phys. Chem. B
125
,
3452
3467
(
2021
).
52.
B.
Manavalan
,
K.
Kuwajima
, and
J.
Lee
, “
PFDB: A standardized protein folding database with temperature correction
,”
Sci. Rep.
9
,
1588
(
2019
).
53.
J.-C.
Horng
,
V.
Moroz
, and
D. P.
Raleigh
, “
Rapid cooperative two-state folding of a miniature α β protein and design of a thermostable variant
,”
J. Mol. Biol.
326
,
1261
1270
(
2003
).
54.
Z.
Qiao
,
M.
Welborn
,
A.
Anandkumar
,
F. R.
Manby
, and
T. F.
Miller
, “
OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features
,”
J. Chem. Phys.
153
,
124111
(
2020
).
55.
M.
Retchin
,
Y.
Wang
,
K.
Takaba
, and
J. D.
Chodera
, “
DrugGym: A testbed for the economics of autonomous drug discovery
,” bioRxiv:2024.05.28.596296 (
2024
).
56.
A. G.
Baydin
,
B. A.
Pearlmutter
,
A. A.
Radul
, and
J. M.
Siskind
, “
Automatic differentiation in machine learning: A survey
,”
J. Mach. Learn. Res.
18
,
1
43
(
2018
).
57.
J. A.
Pople
, “
Nobel lecture: Quantum chemical models
,”
Rev. Mod. Phys.
71
,
1267
(
1999
).
58.
M.
Bogojeski
,
L.
Vogt-Maranto
,
M. E.
Tuckerman
,
K.-R.
Müller
, and
K.
Burke
, “
Quantum chemical accuracy from density functional approximations via machine learning
,”
Nat. Commun.
11
,
5223
(
2020
).
59.
D. L.
Mobley
and
P. V.
Klimovich
, “
Perspective: Alchemical free energy calculations for drug discovery
,”
J. Chem. Phys.
137
,
230901
(
2012
).
60.
I.
Batatia
,
D. P.
Kovacs
,
G.
Simm
,
C.
Ortner
, and
G.
Csányi
, “
MACE: Higher order equivariant message passing neural networks for fast and accurate force fields
,” in
Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)
(
2022a
), Vol.
35
, pp.
11423
11436
.
61.
A. S.
Christensen
and
O. A.
von Lilienfeld
, “
On the role of gradients for machine learning of molecular energies and forces
,” arXiv:2007.09593 (
2020a
).
62.
P.
Eastman
,
P. K.
Behara
,
D. L.
Dotson
,
R.
Galvelis
,
J. E.
Herr
,
J. T.
Horton
,
Y.
Mao
,
J. D.
Chodera
,
B. P.
Pritchard
,
Y.
Wang
et al, “
Spice, a dataset of drug-like molecules and peptides for training machine learning potentials
,”
Sci. Data
10
,
11
(
2023b
).
63.
J. S.
Smith
,
R.
Zubatyuk
,
B.
Nebgen
,
N.
Lubbers
,
K.
Barros
,
A. E.
Roitberg
,
O.
Isayev
, and
S.
Tretiak
, “
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules
,”
Sci. Data
7
,
134
(
2020
).
64.
D. P.
Kovács
,
J. H.
Moore
,
N. J.
Browning
,
I.
Batatia
,
J. T.
Horton
,
V.
Kapil
,
W. C.
Witt
,
I.-B.
Magdău
,
D. J.
Cole
, and
G.
Csányi
, “
Mace-off23: Transferable machine learning force fields for organic molecules
,” arXiv:2312.15211 (
2023a
).
65.
G.
Simeon
and
G.
De Fabritiis
, “
TensorNet: Cartesian tensor representations for efficient learning of molecular potentials
,” in
Proceedings of the Advances in Neural Information Processing Systems (NeurIPS)
(
2024
), Vol.
36
.
66.
I.
Poltavsky
,
M.
Puleva
,
A.
Charkin-Gorbulin
,
G. C.
Fonseca
,
I.
Batatia
,
N. J.
Browning
,
S.
Chmiela
,
M.
Cui
,
J. T.
Frank
,
S.
Heinen
et al, “
Crash testing machine learning force fields for molecules, materials, and interfaces: Molecular dynamics in the TEA challenge 2023
,”
Chem. Sci.
16
,
2931
(
2025
).
67.
P.
Dauber-Osguthorpe
and
A. T.
Hagler
, “
Biomolecular force fields: Where have we been, where are we now, where do we need to go and how do we get there?
,”
J. Comput.-Aided. Mol. Des.
33
,
133
203
(
2019
).
68.
A. T.
Hagler
, “
Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics
,”
J. Comput.-Aided. Mol. Des.
33
,
205
264
(
2019
).
69.
C.
Ringrose
,
J. T.
Horton
,
L.-P.
Wang
, and
D. J.
Cole
, “
Exploration and validation of force field design protocols through QM-to-MM mapping
,”
Phys. Chem. Chem. Phys.
24
,
17014
17027
(
2022
).
70.
X. C.
Yan
,
M. J.
Robertson
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
Improved description of sulfur charge anisotropy in OPLS force fields: Model development and parameterization
,”
J. Phys. Chem. B
121
,
6626
6636
(
2017
).
71.
M. H.
Kolar
and
P.
Hobza
, “
Computer modeling of halogen bonds and other σ-hole interactions
,”
Chem. Rev.
116
,
5155
5187
(
2016
).
72.
J.
Delhommelle
and
P.
Millié
, “
Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation
,”
Mol. Phys.
99
,
619
625
(
2001
).
73.
T. A.
Halgren
, “
The representation of van der Waals (vdw) interactions in molecular mechanics force fields: Potential form, combination rules, and VDW parameters
,”
J. Am. Chem. Soc.
114
,
7827
7843
(
1992
).
74.
M.
Abraham
,
A.
Alekseenko
,
V.
Basov
,
C.
Bergh
,
E.
Briand
,
A.
Brown
,
M.
Doijade
,
G.
Fiorin
,
S.
Fleischmann
,
S.
Gorelov
,
G.
Gouaillardet
,
A.
Grey
,
E. I. M. F.
Jalalypour
,
J.
Jordan
,
C.
Kutzner
,
J. A.
Lemkul
,
M.
Lundborg
,
P.
Merz
,
V.
Miletic
,
D.
Morozov
,
J.
Nabet
,
S.
Pall
,
A.
Pasquadibisceglie
,
M.
Pellegrino
,
H.
Santuz
,
R.
Schulz
,
T.
Shugaeva
,
A.
Shvetsov
,
A.
Villa
,
S.
Wingbermuehle
,
B.
Hess
, and
E.
Lindahl
, GROMACS User Manual, version 2024.2 (2024). Available at https://manual.gromacs.org/2024.2/manual-2024.2.pdf.
75.
P. M.
Morse
, “
Diatomic molecules according to the wave mechanics. II. Vibrational levels
,”
Phys. Rev.
34
,
57
64
(
1929
).
76.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
, and
A. D.
Mackerell
, Jr.
, “
CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
,”
J. Comput. Chem.
31
,
671
690
(
2010
).
77.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
, “
Dreiding: A generic force field for molecular simulations
,”
J. Phys. Chem.
94
,
8897
8909
(
1990
).
78.
M. J.
Robertson
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
Improved peptide and protein torsional energetics with the OPLS-AA force field
,”
J. Chem. Theory Comput.
11
,
3499
3509
(
2015
).
79.
J. E.
Jones
, “
On the determination of molecular fields—II. From the equation of state of a gas
,”
Proc. R. Soc. London, Ser. A
106
,
463
477
(
1924
).
80.
R. A.
Buckingham
, “
The classical equation of state of gaseous helium, neon and argon
,”
Proc. R. Soc. London, Ser. A
168
,
264
283
(
1938
).
81.
J. J. K.
Chung
,
M. L.
Brown
, and
P. L. A.
Popelier
, “
Transferability of Buckingham parameters for short-range repulsion between topological atoms
,”
J. Chem. Theory Comput.
128
,
4561
4572
(
2024
).
82.
J. R.
Hart
and
A. K.
Rappé
, “
van der Waals functional forms for molecular simulations
,”
J. Chem. Phys.
97
,
1109
1115
(
1992
).
83.
L.
Yang
,
L.
Sun
, and
W.-Q.
Deng
, “
Combination rules for Morse-based van der Waals force fields
,”
J. Phys. Chem. A
122
,
1672
1677
(
2018
).
84.
X.
Wu
and
B. R.
Brooks
, “
A double exponential potential for van der Waals interaction
,”
AIP Adv.
9
,
065304
(
2019
).
85.
V. H.
Man
,
X.
Wu
,
X.
HeXiang-Qun
,
X. R.
Brooks
, and
J.
Wang
, “
Determination of van der Waals parameters using a double exponential potential for nonbonded divalent metal cations in tip3p solvent
,”
J. Chem. Theory Comput.
17
,
1086
1097
(
2021
).
86.
J. T.
Horton
,
S.
Boothroyd
,
P. K.
Behara
,
D. L.
Mobley
, and
D. J.
Cole
, “
A transferable double exponential potential for condensed phase simulations of small molecules
,”
Digital Discovery
2
,
1178
1187
(
2023
).
87.
S.
Chmiela
,
V.
Vassilev-Galindo
,
O. T.
Unke
,
A.
Kabylda
,
H. E.
Sauceda
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Accurate global machine learning force fields for molecules with hundreds of atoms
,”
Sci. Adv.
9
,
eadf0873
(
2023
).
88.
D. P.
Kovács
,
I.
Batatia
,
E. S.
Arany
, and
G.
Csányi
, “
Evaluation of the MACE force field architecture: From medicinal chemistry to materials science
,”
J. Chem. Phys.
159
,
044118
(
2023b
).
89.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
3693
(
2019
).
90.
O. T.
Unke
,
S.
Chmiela
,
M.
Gastegger
,
K. T.
Schütt
,
H. E.
Sauceda
, and
K.-R.
Müller
, “
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
,”
Nat. Commun.
12
,
7273
(
2021b
).
91.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
, “
Machine learning for molecular simulation
,”
Annu. Rev. Phys. Chem.
71
,
361
390
(
2020
).
92.
M. S.
Chen
,
J.
Lee
,
H.-Z.
Ye
,
T. C.
Berkelbach
,
D. R.
Reichman
, and
T. E.
Markland
, “
Data-efficient machine learning potentials from transfer learning of periodic correlated electronic structure methods: Liquid water at AFQMC, CCSD, and CCSD(T) accuracy
,”
J. Chem. Theory Comput.
19
,
4510
4519
(
2023
).
93.
M.
Rossi
,
W.
Fang
, and
A.
Michaelides
, “
Stability of complex biomolecular structures: Van der Waals, hydrogen bond cooperativity, and nuclear quantum effects
,”
J. Phys. Chem. Lett.
6
,
4233
4238
(
2015
).
94.
K.
Yao
,
J. E.
Herr
,
D.
Toth
,
R.
Mckintyre
, and
J.
Parkhill
, “
The tensormol-0.1 model chemistry: A neural network augmented with long-range physics
,”
Chem. Sci.
9
,
2261
2269
(
2018
).
95.
T.
Plé
,
L.
Lagardère
, and
J.-P.
Piquemal
, “
Force-field-enhanced neural network interactions: From local equivariant embedding to atom-in-molecule properties and long-range effects
,”
Chem. Sci.
14
,
12554
12569
(
2023
).
96.
D. M.
Anstine
,
R.
Zubatyuk
, and
O.
Isayev
, “
AIMNet2: A neural network potential to meet your neutral, charged, organic, and elemental-organic needs
,”
ChemRxiv
(2023).
97.
B.
Kozinsky
,
A.
Musaelian
,
A.
Johansson
, and
S.
Batzner
, “
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
,” in
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(
ACM
,
2023
), pp.
1
12
.
98.
O. T.
Unke
,
M.
Stöhr
,
S.
Ganscha
,
T.
Unterthiner
,
H.
Maennel
,
S.
Kashubin
,
D.
Ahlin
,
M.
Gastegger
,
L. M.
Sandonas
,
J. T.
Berryman
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments
,”
Sci. Adv.
10
,
eadn4397
(
2024
).
99.
Z.
Cheng
,
J.
Du
,
L.
Zhang
,
J.
Ma
,
W.
Li
, and
S.
Li
, “
Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning
,”
Phys. Chem. Chem. Phys.
24
,
1326
1337
(
2022
).
100.
S. L. J.
Lahey
and
C. N.
Rowley
, “
Simulating protein-ligand binding with neural network potentials
,”
Chem. Sci.
11
,
2362
2368
(
2020
).
101.
D. A.
Rufa
,
H. E.
Bruce Macdonald
,
J.
Fass
,
M.
Wieder
,
P. B.
Grinaway
,
A. E.
Roitberg
,
O.
Isayev
, and
J. D.
Chodera
, “
Towards chemical accuracy for alchemical free energy calculations with hybrid physics-based machine learning/molecular mechanics potentials
,” bioRxiv:2020.07.29.227959 (
2020
).
102.
R.
Galvelis
,
A.
Varela-Rial
,
S.
Doerr
,
R.
Fino
,
P.
Eastman
,
T. E.
Markland
,
J. D.
Chodera
, and
G.
De Fabritiis
, “
NNP/MM: Accelerating molecular dynamics simulations with machine learning potentials and molecular mechanics
,”
J. Chem. Inf. Model.
63
,
5701
5708
(
2023
).
103.
F.
Sabanés Zariquiey
,
R.
Galvelis
,
E.
Gallicchio
,
J. D.
Chodera
,
T. E.
Markland
, and
G.
De Fabritiis
, “
Enhancing protein–ligand binding affinity predictions using neural network potentials
,”
J. Chem. Inf. Model.
64
,
1481
1485
(
2024
).
104.
T.
Jaffrelot Inizan
,
T.
Plé
,
O.
Adjoua
,
P.
Ren
,
H.
Gökcan
,
O.
Isayev
,
L.
Lagardère
, and
J.-P.
Piquemal
, “
Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects
,”
Chem. Sci.
14
,
5438
5452
(
2023
).
105.
K.
Zinovjev
,
L.
Hedges
,
R.
Montagud Andreu
,
C.
Woods
,
I.
Tuñón
, and
M. W.
van der Kamp
, “
emle-engine: A flexible electrostatic machine learning embedding package for multiscale molecular dynamics simulations
,”
J. Chem. Theory Comput.
20
,
4514
4522
(
2024
).
106.
D. W.
Zhang
and
J. Z. H.
Zhang
, “
Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein–molecule interaction energy
,”
J. Chem. Phys.
119
,
3599
3605
(
2003
).
107.
X.
He
and
J. Z. H.
Zhang
, “
The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy
,”
J. Chem. Phys.
124
,
184703
(
2006
).
108.
X.
Wang
,
J.
Liu
,
J. Z. H.
Zhang
, and
X.
He
, “
Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy
,”
J. Phys. Chem. A
117
,
7149
7161
(
2013
).
109.
W.
Li
,
S.
Li
, and
Y.
Jiang
, “
Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules
,”
J. Phys. Chem. A
111
,
2193
2199
(
2007
).
110.
H.
Wang
and
W.
Yang
, “
Toward building protein force fields by residue-based systematic molecular fragmentation and neural network
,”
J. Chem. Theory Comput.
15
,
1409
1417
(
2019
).
111.
Z.
Wang
,
Y.
Han
,
J.
Li
, and
X.
He
, “
Combining the fragmentation approach and neural network potential energy surfaces of fragments for accurate calculation of protein energy
,”
J. Phys. Chem. B
124
,
3027
3035
(
2020b
).
112.
Y.
Han
,
Z.
Wang
,
A.
Chen
,
I.
Ali
,
J.
Cai
,
S.
Ye
, and
J.
Li
, “
An inductive transfer learning force field (ITLFF) protocol builds protein force fields in seconds
,”
Briefings Bioinf.
23
,
bbab590
(
2022
).
113.
P.
Thölke
and
G. D.
Fabritiis
, “
TorchMD-NET: Equivariant transformers for neural network based molecular potentials
,” arXiv:2202.02541 (
2022
).
114.
K.
Schütt
,
O.
Unke
, and
M.
Gastegger
, “
Equivariant message passing for the prediction of tensorial properties and molecular spectra
,” in
Proceedings of the International Conference on Machine Learning
(
PMLR
,
2021
), pp.
9377
9388
.
115.
J. T.
Frank
,
O. T.
Unke
,
K.-R.
Müller
, and
S.
Chmiela
, “
A Euclidean transformer for fast and stable machine learned force fields
,”
Nat. Commun.
15
,
6539
(
2024
).
116.
D. K.
Duvenaud
,
D.
Maclaurin
,
J.
Iparraguirre
,
R.
Bombarell
,
T.
Hirzel
,
A.
Aspuru-Guzik
, and
R. P.
Adams
, “
Convolutional networks on graphs for learning molecular fingerprints
,” in Proceedings of the Advances in Neural Information Processing Systems (
2015
), pp.
2224
2232
.
117.
T. N.
Kipf
and
M.
Welling
, “
Semi-supervised classification with graph convolutional networks
,” arXiv:1609.02907 (
2016
).
118.
J.
Gilmer
,
S. S.
Schoenholz
,
P. F.
Riley
,
O.
Vinyals
, and
G. E.
Dahl
, “
Neural message passing for quantum chemistry
,” in Proceedings of the
International Conference on Machine Learning
(
PMLR
,
2017
), pp.
1263
1272
.
119.
K.
Xu
,
W.
Hu
,
J.
Leskovec
, and
S.
Jegelka
, “
How powerful are graph neural networks?
,” arXiv:1810.00826 (
2018
).
120.
P. W.
Battaglia
,
J. B.
Hamrick
,
V.
Bapst
,
A.
Sanchez-Gonzalez
,
V.
Zambaldi
,
M.
Malinowski
,
A.
Tacchetti
,
D.
Raposo
,
A.
Santoro
,
R.
Faulkner
et al, “
Relational inductive biases, deep learning, and graph networks
,” arXiv:1806.01261 (
2018
).
121.
J.
Du
,
S.
Zhang
,
G.
Wu
,
J. M. F.
Moura
, and
S.
Kar
, “
Topology adaptive graph convolutional networks
,” arXiv:1710.10370 (
2018
).
122.
F.
Wu
,
T.
Zhang
,
A. H. d.
Souza
, Jr.
,
C.
Fifty
,
T.
Yu
, and
K. Q.
Weinberger
, “
Simplifying graph convolutional networks
,” arXiv:1902.07153 (
2019a
).
123.
M.
Wang
,
D.
Zheng
,
Z.
Ye
,
Q.
Gan
,
M.
Li
,
X.
Song
,
J.
Zhou
,
C.
Ma
,
L.
Yu
,
Y.
Gai
et al, “
Deep graph library: A graph-centric, highly-performant package for graph neural networks
,” arXiv:1909.01315 (
2019a
).
124.
Y.
Wang
,
Y.
Sun
,
Z.
Liu
,
S. E.
Sarma
,
M. M.
Bronstein
, and
J. M.
Solomon
, “
Dynamic graph CNN for learning on point clouds
,”
ACM Trans. Graph.
38
,
1
12
(
2019b
).
125.
C. K.
Joshi
,
C.
Bodnar
,
S. V.
Mathis
,
T.
Cohen
, and
P.
Lio
, “
On the expressive power of geometric graph neural networks
,” in Proceedings of the
International Conference on Machine Learning
(
PMLR
,
2023
), pp.
15330
15355
.
126.
Y.
Wang
and
T.
Karaletsos
, “
Stochastic aggregation in graph neural networks
,” arXiv:2102.12648 (
2021
).
127.
P.
Veličković
,
G.
Cucurull
,
A.
Casanova
,
A.
Romero
,
P.
Liò
, and
Y.
Bengio
, “
Graph attention networks
,” arXiv:1710.10903 (
2018
).
128.
F.
Wu
,
A.
Souza
, Jr.
,
T.
Zhang
,
C.
Fifty
,
T.
Yu
, and
K. Q.
Weinberger
, “
Simplifying graph convolutional networks
,” arXiv:1902.07153 (
2019b
).
129.
B. P.
Chamberlain
,
J.
Rowbottom
,
M. I.
Gorinova
,
S.
Webb
,
E.
Rossi
, and
M. M.
Bronstein
, “
GRAND: Graph neural diffusion
,” arXiv:2106.10934 (
2021
).
130.
C.
Cai
and
Y.
Wang
, “
A note on over-smoothing for graph neural networks
,” arXiv:2006.13318 (
2020
).
131.
T. K.
Rusch
,
M. M.
Bronstein
, and
S.
Mishra
, “
A survey on oversmoothing in graph neural networks
,” arXiv:2303.10993 (
2023
).
132.
U.
Alon
and
E.
Yahav
, “
On the bottleneck of graph neural networks and its practical implications
,” arXiv:2006.05205 (
2020
).
133.
J.
Topping
,
F. D.
Giovanni
,
B. P.
Chamberlain
,
X.
Dong
, and
M. M.
Bronstein
, “
Understanding over-squashing and bottlenecks on graphs via curvature
,” arXiv:2111.14522 (
2022
).
134.
G.
Corso
,
L.
Cavalleri
,
D.
Beaini
,
P.
Liò
, and
P.
Veličković
, “
Principal neighbourhood aggregation for graph nets
,” arXiv:2004.05718 (
2020
).
135.
V. K.
Garg
,
S.
Jegelka
, and
T. S.
Jaakkola
, “
Generalization and representational limits of graph neural networks
,” arXiv:2002.06157 (
2020
).
136.
Y.
Wang
and
K.
Cho
, “
Non-convolutional graph neural networks
,” arXiv:2408.00165 (
2024
).
137.
K.
Schütt
,
P.-J.
Kindermans
,
H. E.
Sauceda Felix
,
S.
Chmiela
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
,” in Proceedings of the Advances in Neural Information Processing Systems (
2017
), Vol.
30
.
138.
N.
Thomas
,
T. E.
Smidt
,
S.
Kearnes
,
L.
Yang
,
L.
Li
,
K.
Kohlhoff
, and
P.
Riley
, “
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
,” arXiv:1802.08219 (
2018
).
139.
S.
Villar
,
D. W.
Hogg
,
K.
Storey-Fisher
,
W.
Yao
, and
B.
Blum-Smith
, “
Scalars are universal: Equivariant machine learning, structured like classical physics
,” in Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (
2021
), Vol.
34
, pp.
28848
28863
.
140.
A.
Vaswani
, “
Attention is all you need
,” in Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (
2017
).
141.
E.
Albert
,
W.
Perrett
, and
G.
Jeffery
, “
The foundation of the general theory of relativity
,”
Ann. Phys.
354
,
769
(
1916
).
142.
A.
Ullah
and
P. O.
Dral
, “
Molecular quantum chemical data sets and databases for machine learning potentials
,” arXiv:2408.12058 (
2024
).
143.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
144.
A.
Tkatchenko
,
R. A.
DiStasio
, Jr.
,
R.
Car
, and
M.
Scheffler
, “
Accurate and efficient method for many-body van der Waals interactions
,”
Phys. Rev. Lett.
108
,
236402
(
2012
).
145.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
Von Lilienfeld
, “
Quantum chemistry structures and properties of 134 kilo molecules
,”
Sci. Data
1
,
1
7
(
2014
).
146.
J.
Hoja
,
L.
Medrano Sandonas
,
B. G.
Ernst
,
A.
Vazquez-Mayagoitia
,
R. A.
DiStasio
, and
A.
Tkatchenko
, “
QM7-X, a comprehensive dataset of quantum-mechanical properties spanning the chemical space of small organic molecules
,”
Sci. Data
8
,
43
(
2021
).
147.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1, a data set of 20 million calculated off-equilibrium conformations for organic molecules
,”
Sci. Data
4
(
1
),
8
(
2017c
).
148.
A. S.
Christensen
,
S. K.
Sirumalla
,
Z.
Qiao
,
M. B.
O'Connor
,
D. G. A.
Smith
,
F.
Ding
,
P. J.
Bygrave
,
A.
Anandkumar
,
M.
Welborn
,
F. R.
Manby
, and
T. F.
Miller
III
, “
OrbNet Denali training data
” (
2021a
).
149.
A. S.
Christensen
,
S. K.
Sirumalla
,
Z.
Qiao
,
M. B.
O'Connor
,
D. G. A.
Smith
,
F.
Ding
,
P. J.
Bygrave
,
A.
Anandkumar
,
M.
Welborn
,
F. R.
Manby
, and
T. F.
Miller
, “
OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy
,”
J. Chem. Phys.
155
,
204103
(
2021b
).
150.
C. N.
Cavasotto
, “
Binding free energy calculation using quantum mechanics aimed for drug lead optimization
,” in
Quantum Mechanics in Drug Discovery
(
Humana
,
2020
), pp.
257
268
.
151.
A. E. A.
Allen
,
N.
Lubbers
,
S.
Matin
,
J.
Smith
,
R.
Messerly
,
S.
Tretiak
, and
K.
Barros
, “
Learning together: Towards foundational models for machine learning interatomic potentials with meta-learning
,” arXiv:2307.04012 (
2023
).
152.
A. S.
Christensen
and
O. A.
von Lilienfeld
, “
On the role of gradients for machine learning of molecular energies and forces
,” arXiv:2007.09593 (
2020b
).
153.
D. P.
Kovács
,
C. v d
Oord
,
J.
Kucera
,
A. E.
Allen
,
D. J.
Cole
,
C.
Ortner
, and
G.
Csányi
, “
Linear atomic cluster expansion force fields for organic molecules: Beyond RMSE
,”
J. Chem. Theory Comput.
17
,
7696
7711
(
2021
).
154.
I.
Batatia
,
Batzner
,
D. P.
Kovács
,
A.
Musaelian
,
G. N. C.
Simm
,
R.
Drautz
,
C.
Ortner
,
B.
Kozinsky
, and
G.
Csányi
, “
The design space of E(3)-equivariant atom-centered interatomic potentials
,” arXiv:2205.06643 (
2022b
).
155.
P.
Eastman
,
P. K.
Behara
,
D.
Dotson
,
R.
Galvelis
,
J.
Herr
,
J.
Horton
,
Y.
Mao
,
J.
Chodera
,
B.
Pritchard
,
Y.
Wang
,
G.
De Fabritiis
, and
T.
Markland
, “
Spice 2.0.1
” (
2024a
).
156.
D. G.
Smith
,
D.
Altarawy
,
L. A.
Burns
,
M.
Welborn
,
L. N.
Naden
,
L.
Ward
,
S.
Ellis
,
B. P.
Pritchard
, and
T. D.
Crawford
, “
The MoLSSI QCArchive project: An open-source platform to compute, organize, and share quantum chemistry data
,”
WIREs. Comput. Mol. Sci.
11
,
e1491
(
2021
).
157.
J. A.
Vita
,
E. G.
Fuemmeler
,
A.
Gupta
,
G. P.
Wolfe
,
A. Q.
Tao
,
R. S.
Elliott
,
S.
Martiniani
, and
E. B.
Tadmor
, “
ColabFit exchange: Open-access datasets for data-driven interatomic potentials
,” arXiv:2306.11071 (
2023
).
158.
Y.
Yang
,
S.
Zhang
,
K. D.
Ranasinghe
,
O.
Isayev
, and
A. E.
Roitberg
, “
Machine learning of reactive potentials
,”
Annu. Rev. Phys. Chem.
75
,
371
395
(
2024
).
159.
U.
Rivero
,
O. T.
Unke
,
M.
Meuwly
, and
S.
Willitsch
, “
Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations
,”
J. Chem. Phys.
151
,
104301
(
2019
).
160.
S.
Zhang
,
M. Z.
Makoś
,
R. B.
Jadrich
,
E.
Kraka
,
K.
Barros
,
B. T.
Nebgen
,
S.
Tretiak
,
O.
Isayev
,
N.
Lubbers
,
R. A.
Messerly
et al, “
Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential
,”
Nat. Chem.
16
,
727
734
(
2024
).
161.
M.
Gastegger
and
P.
Marquetand
, “
High-dimensional neural network potentials for organic reactions and an improved training algorithm
,”
J. Chem. Theory Comput.
11
,
2187
2198
(
2015
).
162.
M.
Schreiner
,
A.
Bhowmik
,
T.
Vegge
,
J.
Busk
, and
O.
Winther
, “
Transition1x—A dataset for building generalizable reactive machine learning potentials
,”
Sci. Data
9
,
779
(
2022
).
163.
T. A.
Young
,
T.
Johnston-Wood
,
H.
Zhang
, and
F.
Duarte
, “
Reaction dynamics of Diels–Alder reactions from machine learned potentials
,”
Phys. Chem. Chem. Phys.
24
,
20820
20827
(
2022
).
164.
X.
Pan
,
J.
Yang
,
R.
Van
,
E.
Epifanovsky
,
J.
Ho
,
J.
Huang
,
J.
Pu
,
Y.
Mei
,
K.
Nam
, and
Y.
Shao
, “
Machine-learning-assisted free energy simulation of solution-phase and enzyme reactions
,”
J. Chem. Theory Comput.
17
,
5745
5758
(
2021
).
165.
T.
Devergne
,
T.
Magrino
,
F.
Pietrucci
, and
A. M.
Saitta
, “
Combining machine learning approaches and accurate ab initio enhanced sampling methods for prebiotic chemical reactions in solution
,”
J. Chem. Theory Comput.
18
,
5410
5421
(
2022
).
166.
M.
Yang
,
L.
Bonati
,
D.
Polino
, and
M.
Parrinello
, “
Using metadynamics to build neural network potentials for reactive events: The case of urea decomposition in water
,”
Catal. Today
387
,
143
149
(
2022
).
167.
Z.
Benayad
,
R.
David
, and
G.
Stirnemann
, “
Prebiotic chemical reactivity in solution with quantum accuracy and microsecond sampling using neural network potentials
,”
Proc. Natl. Acad. Sci. U. S. A.
121
,
e2322040121
(
2024
).
168.
I.-B.
Magdău
,
D. J.
Arismendi-Arrieta
,
H. E.
Smith
,
C. P.
Grey
,
K.
Hermansson
, and
G.
Csányi
, “
Machine learning force fields for molecular liquids: Ethylene carbonate/ethyl methyl carbonate binary solvent
,”
npj Comput. Mater.
9
,
146
(
2023
).
169.
S.
Boothroyd
,
L.-P.
Wang
,
D. L.
Mobley
,
J. D.
Chodera
, and
M. R.
Shirts
, “
Open force field evaluator: An automated, efficient, and scalable framework for the estimation of physical properties from molecular simulation
,”
J. Chem. Theory Comput.
18
,
3566
3576
(
2022
).
170.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
,
K.
Sheppard
,
T.
Reddy
,
W.
Weckesser
,
H.
Abbasi
,
C.
Gohlke
, and
T. E.
Oliphant
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
171.
J. R.
Maple
,
M.-J.
Hwang
,
T. P.
Stockfisch
,
U.
Dinur
,
M.
Waldman
,
C. S.
Ewig
, and
A. T.
Hagler
, “
Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules
,”
J. Comput. Chem.
15
,
162
182
(
1994a
).
172.
M. J.
Hwang
,
T.
Stockfisch
, and
A.
Hagler
, “
Derivation of class II force fields. 2. Derivation and characterization of a class II force field, CFF93, for the alkyl functional group and alkane molecules
,”
J. Am. Chem. Soc.
116
,
2515
2525
(
1994
).
173.
J.
Maple
,
M.-J.
Hwang
,
T.
Stockfisch
, and
A.
Hagler
, “
Derivation of class II force fields. III. Characterization of a quantum force field for alkanes
,”
Isr. J. Chem.
34
,
195
231
(
1994b
).
174.
S. R.
Xie
,
M.
Rupp
, and
R. G.
Hennig
, “
Ultra-fast interpretable machine-learning potentials
,”
npj Comput. Mater.
9
,
162
(
2023
).
175.
J. A.
Lemkul
,
J.
Huang
,
B.
Roux
, and
A. D. J.
MacKerell
, “
An empirical polarizable force field based on the classical Drude oscillator model: Development history and recent applications
,”
Chem. Rev.
116
,
4983
5013
(
2016
).
176.
A. P.
Jones
,
J.
Crain
,
V. P.
Sokhan
,
T. W.
Whitfield
, and
G. J.
Martyna
, “
Quantum Drude oscillator model of atoms and molecules: Many-body polarization and dispersion interactions for atomistic simulation
,”
Phys. Rev. B
87
,
144103
(
2013
).
177.
Y.
Shi
,
Z.
Xia
,
J.
Zhang
,
R.
Best
,
C.
Wu
,
J. W.
Ponder
, and
P.
Ren
, “
Polarizable atomic multipole-based amoeba force field for proteins
,”
J. Chem. Theory Comput.
9
,
4046
4063
(
2013
).
178.
A.
Illarionov
,
S.
Sakipov
,
L.
Pereyaslavets
,
I. V.
Kurnikov
,
G.
Kamath
,
O.
Butin
,
E.
Voronina
,
I.
Ivahnenko
,
I.
Leontyev
,
G.
Nawrocki
,
M.
Darkhovskiy
,
M.
Olevanov
,
Y. K.
Cherniavskyi
,
C.
Lock
,
S.
Greenslade
,
S. K.
Sankaranarayanan
,
M. G.
Kurnikova
,
J.
Potoff
,
R. D.
Kornberg
,
M.
Levitt
, and
B.
Fain
, “
Combining force fields and neural networks for an accurate representation of chemically diverse molecular interactions
,”
J. Am. Chem. Soc.
145
,
23620
23629
(
2023
).
179.
A. C. T. v
Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
, “
ReaxFF: A reactive force field for hydrocarbons
,”
J. Phys. Chem. A
105
,
9396
9409
(
2001
).
180.
M. C.
Kaymak
,
A.
Rahnamoun
,
K. A.
O'Hearn
,
A. C. T. v.
Duin
,
K. M. J.
Merz
, and
H. M.
Aktulga
, “
JAX-ReaxFF: A gradient-based framework for fast optimization of reactive force fields
,”
J. Chem. Theory Comput.
18
,
5181
5194
(
2022
).
181.
A.
Warshel
and
R. M.
Weiss
, “
An empirical valence bond approach for comparing reactions in solutions and in enzymes
,”
J. Am. Chem. Soc.
102
,
6218
6226
(
1980
).
182.
J.
Lobaugh
and
G. A.
Voth
, “
The quantum dynamics of an excess proton in water
,”
J. Chem. Phys.
104
,
2056
2069
(
1996
).
183.
D. E.
Sagnella
and
M. E.
Tuckerman
, “
An empirical valence bond model for proton transfer in water
,”
J. Chem. Phys.
108
,
2073
2083
(
1998
).
184.
U. W.
Schmitt
and
G. A.
Voth
, “
Multistate empirical valence bond model for proton transport in water
,”
J. Phys. Chem. B
102
,
5547
5551
(
1998
).
185.
J.
Åqvist
and
A.
Warshel
, “
Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches
,”
Chem. Rev.
93
,
2523
2544
(
1993
).
186.
A. E. A.
Allen
and
G.
Csányi
, “
Toward transferable empirical valence bonds: Making classical force fields reactive
,”
J. Chem. Phys.
160
,
124108
(
2024
).
187.
L.-P.
Wang
,
J.
Chen
, and
T.
Van Voorhis
, “
Systematic parametrization of polarizable force fields from quantum chemistry data
,”
J. Chem. Theory Comput.
9
,
452
460
(
2013
).
188.
L.-P.
Wang
,
T. J.
Martinez
, and
V. S.
Pande
, “
Building force fields: An automatic, systematic, and reproducible approach
,”
J. Phys. Chem. Lett.
5
,
1885
1891
(
2014
).
189.
S.
Thaler
and
J.
Zavadlav
, “
Learning neural network potentials from experimental data via differentiable trajectory reweighting
,”
Nat. Commun.
12
,
6884
(
2021
).
190.
B. J.
Befort
,
R. S.
DeFever
,
G. M.
Tow
,
A. W.
Dowling
, and
E. J.
Maginn
, “
Machine learning directed optimization of classical molecular modeling force fields
,”
J. Chem. Inf. Model.
61
,
4400
4414
(
2021
).
191.
X.
Wang
,
J.
Li
,
L.
Yang
,
F.
Chen
,
Y.
Wang
,
J.
Chang
,
J.
Chen
,
W.
Feng
,
L.
Zhang
, and
K.
Yu
, “
DMFF: An open-source automatic differentiable platform for molecular force field development and molecular dynamics simulation
,”
J. Chem. Theory Comput.
19
,
5897
5909
(
2023
).
192.
D. L.
Mobley
,
C. C.
Bannan
,
A.
Rizzi
,
C. I.
Bayly
,
J. D.
Chodera
,
V. T.
Lim
,
N. M.
Lim
,
K. A.
Beauchamp
,
D. R.
Slochower
,
M. R.
Shirts
et al, “
Escaping atom types in force fields using direct chemical perception
,”
J. Chem. Theory Comput.
14
,
6076
6092
(
2018
).
193.
L.
Wang
,
P. K.
Behara
,
M. W.
Thompson
,
T.
Gokey
,
Y.
Wang
,
J. R.
Wagner
,
D. J.
Cole
,
M. K.
Gilson
,
M. R.
Shirts
, and
D. L.
Mobley
, “
The open force field initiative: Open software and open science for molecular modeling
,”
J. Phys. Chem. B
128
,
7043
(
2024a
).
194.
K. B.
Koziara
,
M.
Stroet
,
A. K.
Malde
, and
A. E.
Mark
, “
Testing and validation of the automated topology builder (ATB) version 2.0: Prediction of hydration free enthalpies
,”
J. Comput.-Aided. Mol. Des.
28
,
221
233
(
2014
).
195.
R. M.
Betz
and
R. C.
Walker
, “
Paramfit: Automated optimization of force field parameters for molecular dynamics simulations
,”
J. Comput. Chem.
36
,
79
87
(
2015
).
196.
E.
Harder
,
W.
Damm
,
J.
Maple
,
C.
Wu
,
M.
Reboul
,
J. Y.
Xiang
,
L.
Wang
,
D.
Lupyan
,
M. K.
Dahlgren
,
J. L.
Knight
et al, “
OPLS3: A force field providing broad coverage of drug-like small molecules and proteins
,”
J. Chem. Theory Comput.
12
,
281
296
(
2016
).
197.
J. T.
Horton
,
S.
Boothroyd
,
J.
Wagner
,
J. A.
Mitchell
,
T.
Gokey
,
D. L.
Dotson
,
P. K.
Behara
,
V. K.
Ramaswamy
,
M.
Mackey
,
J. D.
Chodera
,
J.
Anwar
,
D. L.
Mobley
, and
D. J.
Cole
, “
Open force field bespokefit: Automating bespoke torsion parametrization at scale
,”
J. Chem. Inf. Model.
62
,
5622
5633
(
2022
).
198.
A.
Kumar
and
A. D. J.
MacKerell
, “
FFParam-v2.0: A comprehensive tool for CHARMM additive and Drude polarizable force-field parameter optimization and validation
,”
J. Phys. Chem. B
128
,
4385
4395
(
2024
).
199.
J. A.
Maier
,
C.
Martinez
,
K.
Kasavajhala
,
L.
Wickstrom
,
K. E.
Hauser
, and
C.
Simmerling
, “
ff14sb: Improving the accuracy of protein side chain and backbone parameters from ff99sb
,”
J. Chem. Theory Comput.
11
,
3696
3713
(
2015
).
200.
M.
Zgarbová
,
J.
Sponer
,
M.
Otyepka
,
T. E.
Cheatham
,
I. I. I. R.
Galindo-Murillo
, and
P.
Jurecka
, “
Refinement of the sugar–phosphate backbone torsion beta for amber force fields improves the description of z-and b-dna
,”
J. Chem. Theory Comput.
11
,
5723
5736
(
2015
).
201.
R.
Galindo-Murillo
,
J. C.
Robertson
,
M.
Zgarbová
,
J.
Šponer
,
M.
Otyepka
,
P.
Jurečka
, and
T. E.
Cheatham
III
, “
Assessing the current state of amber force field modifications for DNA
,”
J. Chem. Theory Comput.
12
,
4114
4127
(
2016
).
202.
M.
Zgarbová
,
M.
Otyepka
,
J.
Šponer
,
A.
Mládek
,
P.
Banáš
,
T. E.
Cheatham
, and
I. I. I. P.
Jurečka
, “
Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles
,”
J. Chem. Theory Comput.
7
,
2886
2902
(
2011
).
203.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
204.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
, “
Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew
,”
J. Chem. Phys.
120
,
9665
9678
(
2004
).
205.
S.
Izadi
,
R.
Anandakrishnan
, and
A. V.
Onufriev
, “
Building water models: A different approach
,”
J. Phys. Chem. Lett.
5
,
3863
3871
(
2014
).
206.
I. S.
Joung
and
T. E.
Cheatham
III
, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
,
9020
9041
(
2008
).
207.
I. S.
Joung
and
T. E.
Cheatham
III
, “
Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters
,”
J. Phys. Chem. B
113
,
13279
13290
(
2009
).
208.
P.
Li
,
B. P.
Roberts
,
D. K.
Chakravorty
, and
K. M.
Merz
, Jr.
, “
Rational design of particle mesh Ewald compatible Lennard-Jones parameters for+ 2 metal cations in explicit solvent
,”
J. Chem. Theory Comput.
9
,
2733
2748
(
2013
).
209.
P.
Li
and
K. M.
Merz
, Jr
, “
Taking into account the ion-induced dipole interaction in the nonbonded model of ions
,”
J. Chem. Theory Comput.
10
,
289
297
(
2014
).
210.
P.
Li
,
L. F.
Song
, and
K. M.
Merz
, Jr.
, “
Parameterization of highly charged metal ions using the 12-6-4 lj-type nonbonded model in explicit water
,”
J. Phys. Chem. B
119
,
883
895
(
2015
).
211.
C. J.
Dickson
,
R. C.
Walker
, and
I. R.
Gould
, “
Lipid21: Complex lipid membrane simulations with AMBER
,”
J. Chem. Theory Comput.
18
,
1726
1736
(
2022
).
212.
K. N.
Kirschner
,
A. B.
Yongye
,
S. M.
Tschampel
,
J.
González-Outeiriño
,
C. R.
Daniels
,
B. L.
Foley
, and
R. J.
Woods
, “
GLYCAM06: A generalizable biomolecular force field. carbohydrates
,”
J. Comput. Chem.
29
,
622
655
(
2008
).
213.
M. L.
DeMarco
and
R. J.
Woods
, “
Atomic-resolution conformational analysis of the GM3 ganglioside in a lipid bilayer and its implications for ganglioside–protein recognition at membrane surfaces
,”
Glycobiology
19
,
344
355
(
2008
).
214.
M. L.
DeMarco
,
R. J.
Woods
,
J. H.
Prestegard
, and
F.
Tian
, “
Presentation of membrane-anchored glycosphingolipids determined from molecular dynamics simulations and NMR paramagnetic relaxation rate enhancement
,”
J. Am. Chem. Soc.
132
,
1334
1338
(
2010
).
215.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
216.
J.
Wang
,
W.
Wang
,
P. A.
Kollman
, and
D. A.
Case
, “
Automatic atom type and bond type perception in molecular mechanical calculations
,”
J. Mol. Graph. Modell.
25
,
247
260
(
2006
).
217.
G. A.
Khoury
,
J. P.
Thompson
,
J.
Smadbeck
,
C. A.
Kieslich
, and
C. A.
Floudas
, “
Forcefield_PTM: Ab initio charge and AMBER forcefield parameters for frequently occurring post-translational modifications
,”
J. Chem. Theory Comput.
9
,
5653
5674
(
2013
).
218.
R.
Aduri
,
B. T.
Psciuk
,
P.
Saro
,
H.
Taniga
,
H. B.
Schlegel
, and
J.
SantaLucia
, “
AMBER force field parameters for the naturally occurring modified nucleosides in RNA
,”
J. Chem. Theory Comput.
3
,
1464
1475
(
2007
).
219.
M.
Stroet
,
B.
Caron
,
M. S.
Engler
,
J. v. d.
Woning
,
A.
Kauffmann
,
M. v.
Dijk
,
M.
El-Kebir
,
K. M.
Visscher
,
J.
Holownia
,
C.
Macfarlane
,
B. J.
Bennion
,
S.
Gelpi-Dominguez
,
F. C.
Lightstone
,
T. v. d.
Storm
,
D. P.
Geerke
,
A. E.
Mark
, and
G. W.
Klau
, “
OFraMP: A fragment-based tool to facilitate the parametrization of large molecules
,”
J. Comput.-Aided. Mol. Des.
37
,
357
371
(
2023
).
220.
J. D.
Yesselman
,
D. J.
Price
,
J. L.
Knight
, and
C. L.
Brooks
III
, “
Match: An atom-typing toolset for molecular mechanics force fields
,”
J. Comput. Chem.
33
,
189
202
(
2012
).
221.
J.
Wagner
,
M.
Thompson
,
D. L.
Mobley
,
J.
Chodera
,
C.
Bannan
,
A.
Rizzi
,
Trevorgokey
,
D. L.
Dotson
,
J. A.
Mitchell
,
Jaimergp
,
Camila
,
P.
Behara
,
C.
Bayly
,
JoshHorton
,
I.
Pulido
,
L.
Wang
,
V.
Lim
,
S.
Sasmal
,
SimonBoothroyd
,
A.
Dalke
,
D.
Smith
,
B.
Westbrook
,
J.
Horton
,
L.-P.
Wang
,
R.
Gowers
,
Z.
Zhao
,
C.
Davel
, and
Y.
Zhao
, “
openforcefield/openff-toolkit: 0.15.2 minor feature release
” (
2024
).
222.
A. R.
McIsaac
,
P. K.
Behara
,
T.
Gokey
,
C.
Cavender
,
J.
Horton
,
L.
Wang
,
B. R.
Westbrook
,
M. W.
Thompson
,
M.
Osato
,
H. M.
Baumann
,
H.
Jang
,
J.
Wagne
,
D.
Cole
,
C.
Bayly
, and
D.
Mobley
, “
openforcefield/openff-forcefields
” (
2024
).
223.
K.
Roos
,
C.
Wu
,
W.
Damm
,
M.
Reboul
,
J. M.
Stevenson
,
C.
Lu
,
M. K.
Dahlgren
,
S.
Mondal
,
W.
Chen
,
L.
Wang
,
R.
Abel
,
R. A.
Friesner
, and
E. D.
Harder
, “
Opls3e: Extending force field coverage for drug-like small molecules
,”
J. Chem. Theory Comput.
15
,
1863
1874
(
2019
).
224.
T.
Gokey
and
D. L.
Mobley
, “
Hierarchical clustering of chemical space using binary-encoded SMARTS for building data-driven chemical perception models
,”
J. Chem. Theory Comput.
19
,
3251
–3275 (
2023
).
225.
Y.
Wang
,
J.
Fass
,
B.
Kaminow
,
J. E.
Herr
,
D.
Rufa
,
I.
Zhang
,
I.
Pulido
,
M.
Henry
,
H. E.
Bruce Macdonald
,
K.
Takaba
, and
J. D.
Chodera
, “
End-to-end differentiable construction of molecular mechanics force fields
,”
Chem. Sci.
13
,
12016
12033
(
2022
).
226.
G.
Chen
,
T.
Jaffrelot Inizan
,
T.
Plé
,
L.
Lagardère
,
J.-P.
Piquemal
, and
Y.
Maday
, “
Advancing force fields parameterization: A directed graph attention networks approach
,”
J. Chem. Theory Comput.
20
,
5558
5569
(
2024
).
227.
L.
Seute
,
E.
Hartmann
,
J.
Stühmer
, and
G.
Frauke
, “
Grappa—A machine learned molecular mechanics force field
,” arXiv:2404.00050 (
2024
).
228.
M.
Thurlemann
,
L.
Boselt
, and
S.
Riniker
, “
Regularized by physics: Graph neural network parametrized potentials for the description of intermolecular interactions
,”
J. Chem. Theory Comput.
19
,
562
579
(
2023
).
229.
M. T.
Lehner
,
P.
Katzberger
,
N.
Maeder
,
C. C.
Schiebroek
,
J.
Teetz
,
G. A.
Landrum
, and
S.
Riniker
, “
DASH: Dynamic attention-based substructure hierarchy for partial charge assignment
,”
J. Chem. Inf. Model.
63
,
6014
6028
(
2023
).
230.
Y.
Wang
,
I.
Pulido
,
K.
Takaba
,
B.
Kaminow
,
J.
Scheen
,
L.
Wang
, and
J. D.
Chodera
, “
EspalomaCharge: Machine learning-enabled ultrafast partial charge assignment
,”
J. Phys. Chem. A
128
,
4160
4167
(
2024b
).
231.
Y.
Wang
,
J.
Fass
,
C. D.
Stern
,
K.
Luo
, and
J.
Chodera
, “
Graph nets for partial charge prediction
,” arXiv:1909.07903 (
2019c
).
232.
Y.
Wang
,
Graph Machine Learning for (Bio) Molecular Modeling and Force Field Construction
(
Weill Medical College of Cornell University
,
2023
).
233.
S.
Passaro
and
C. L.
Zitnick
, “
Reducing SO(3) convolutions to SO(2) for efficient equivariant GNNs
,” arXiv:2302.03655 (
2023
).
234.
S.
Luo
,
T.
Chen
, and
A. S.
Krishnapriyan
, “
Enabling efficient equivariant operations in the Fourier basis via gaunt tensor products
,” arXiv:2401.10216 (
2024
).
235.
B.
Cheng
, “
Cartesian atomic cluster expansion for machine learning interatomic potentials
,”
npj Comput. Mater.
10
,
157
(
2024
).
236.
B.
Smit
,
P.
Hilbers
,
K.
Esselink
,
L.
Rupert
,
N.
Van Os
, and
A.
Schlijper
, “
Computer simulations of a water/oil interface in the presence of micelles
,”
Nature
348
,
624
625
(
1990
).
237.
M.
Müller
,
K.
Katsov
, and
M.
Schick
, “
Biological and synthetic membranes: What can be learned from a coarse-grained description?
,”
Phys. Rep.
434
,
113
176
(
2006
).
238.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
De Vries
, “
The martini force field: Coarse grained model for biomolecular simulations
,”
J. Phys. Chem. B
111
,
7812
7824
(
2007
).
239.
P. C.
Souza
,
R.
Alessandri
,
J.
Barnoud
,
S.
Thallmair
,
I.
Faustino
,
F.
Grünewald
,
I.
Patmanidis
,
H.
Abdizadeh
,
B. M.
Bruininks
,
T. A.
Wassenaar
et al, “
Martini 3: A general purpose force field for coarse-grained molecular dynamics
,”
Nat. Methods
18
,
382
388
(
2021
).
240.
J.
Wang
,
S.
Olsson
,
C.
Wehmeyer
,
A.
Pérez
,
N. E.
Charron
,
G.
De Fabritiis
,
F.
Noé
, and
C.
Clementi
, “
Machine learning of coarse-grained molecular dynamics force fields
,”
ACS Cent. Sci.
5
,
755
767
(
2019d
).
241.
W.
Wang
and
R.
Gómez-Bombarelli
, “
Coarse-graining auto-encoders for molecular dynamics
,”
npj Comput. Mater.
5
,
125
(
2019
).
242.
S.
Yang
and
R.
Gómez-Bombarelli
, “
Chemically transferable generative backmapping of coarse-grained proteins
,” arXiv:2303.01569 (
2023
).
243.
S.
Wang
,
B. Z.
Li
,
M.
Khabsa
,
H.
Fang
, and
H.
Ma
, “
Linformer: Self-attention with linear complexity
,” arXiv:2006.04768 (
2020c
).
244.
J. D.
Gale
,
L. M.
LeBlanc
,
P. R.
Spackman
,
A.
Silvestri
, and
P.
Raiteri
, “
A universal force field for materials, periodic GFN-FF: Implementation and examination
,”
J. Chem. Theory Comput.
17
,
7827
7849
(
2021
).
245.
M. R.
Gunner
,
T.
Murakami
,
A. S.
Rustenburg
,
M.
Işık
, and
J. D.
Chodera
, “
Standard state free energies, not pKas, are ideal for describing small molecule protonation and tautomeric states
,”
J. Comput.-Aided. Mol. Des.
34
,
561
573
(
2020
).
246.
P.
Eastman
,
B. P.
Pritchard
,
J. D.
Chodera
, and
T. E.
Markland
, “
Nutmeg and spice: Models and data for biomolecular machine learning
,” arXiv:2406.13112 (
2024b
).
247.
W.
Huang
,
J.
Han
,
Y.
Rong
,
T.
Xu
,
F.
Sun
, and
J.
Huang
, “
Equivariant graph mechanics networks with constraints
,” arXiv:2203.06442 (
2022
).
248.
C.
Qu
,
Q.
Yu
,
R.
Conte
,
P. L.
Houston
,
A.
Nandi
, and
J. M.
Bomwan
, “
A δ-machine learning approach for force fields, illustrated by a CCSD(T) 4-body correction to the MB-pol water potential
,”
Digital Discovery
1
,
658
664
(
2022
).
249.
T. W.
Ko
,
J. A.
Finkler
,
S.
Goedecker
, and
J.
Behler
, “
A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer
,”
Nat. Commun.
12
,
1
11
(
2021
).
250.
S. M.
Larson
,
C. D.
Snow
,
M.
Shirts
, and
V. S.
Pande
, “
Folding@home and Genome@home: Using distributed computing to tackle previously intractable problems in computational biology
,” arXiv:0901.0866 (
2009
).
251.
M.
Thürlemann
,
L.
Böselt
, and
S.
Riniker
, “
Learning atomic multipoles: Prediction of the electrostatic potential with equivariant graph neural networks
,”
J. Chem. Theory Comput.
18
,
1701
1710
(
2022
).
252.
R. E.
Duke
,
O. N.
Starovoytov
,
J.-P.
Piquemal
, and
G. A.
Cisneros
, “
GEM*: A molecular electronic density-based force field for molecular dynamics simulations
,”
J. Chem. Theory Comput.
10
,
1361
1365
(
2014
).
253.
A. K.
Rappe
and
W. A.
Goddard
III
, “
Charge equilibration for molecular dynamics simulations
,”
J. Phys. Chem.
95
,
3358
3363
(
1991
).
254.
L.
Böselt
,
M.
Thürlemann
, and
S.
Riniker
, “
Machine learning in qm/mm molecular dynamics simulations of condensed-phase systems
,”
J. Chem. Theory Comput.
17
,
2641
2658
(
2021
).
255.
H. M.
Senn
and
W.
Thiel
, “
QM/MM methods for biomolecular systems
,”
Angew. Chem. Int. Ed. Engl.
48
,
1198
1229
(
2009
).
256.
D. J.
Cole
,
L.
Mones
, and
G.
Csányi
, “
A machine learning based intramolecular potential for a flexible organic molecule
,”
Faraday Discuss.
224
,
247
264
(
2020
).
257.
J.
Karwounopoulos
,
Z.
Wu
,
S.
Tkaczyk
,
S.
Wang
,
A.
Baskerville
,
K.
Ranasinghe
,
T.
Langer
,
G. P.
Wood
,
M.
Wieder
, and
S.
Boresch
, “
Insights and challenges in correcting force field based solvation free energies using a neural network potential
,”
J. Phys. Chem. B
128
,
6693
6703
(
2024
).
258.
B.
Lier
,
P.
Poliak
,
P.
Marquetand
,
J.
Westermayr
, and
C.
Oostenbrink
, “
BuRNN: Buffer region neural network approach for polarizable-embedding neural network/molecular mechanics simulations
,”
J. Phys. Chem. Lett.
13
,
3812
(
2022
).
259.
A. W. H.
Grubmüller
,
H.
Heller
, and
K.
Schulten
, “
Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions
,”
Mol. Simul.
6
,
121
142
(
1991
).
260.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
, “
Reversible multiple time scale molecular dynamics
,”
J. Chem. Phys.
97
,
1990
2001
(
1992
).
261.
D. T. W. B.
Streett
and
G.
Saville
, “
Multiple time-step methods in molecular dynamics
,”
Mol. Phys.
35
,
639
648
(
1978
).
262.
P.
Minary
,
M. E.
Tuckerman
, and
G. J.
Martyna
, “
Long time molecular dynamics for enhanced conformational sampling in biomolecular systems
,”
Phys. Rev. Lett.
93
,
150201
(
2004
).
263.
P. F.
Batcho
,
D. A.
Case
, and
T.
Schlick
, “
Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations
,”
J. Chem. Phys.
115
,
4003
4018
(
2001
).
264.
C. R. A.
Abreu
and
M. E.
Tuckerman
, “
Hamiltonian based resonance-free approach for enabling very large time steps in multiple time-scale molecular dynamics
,”
Mol. Phys.
119
,
e1923848
(
2021
).
265.
M.
Guidon
,
F.
Schiffmann
,
J.
Hutter
, and
J.
VandeVondele
, “
Ab initio molecular dynamics using hybrid density functionals
,”
J. Chem. Phys.
128
,
214104
(
2008
).
266.
R. P.
Steele
, “
Communication: Multiple-timestep ab initio molecular dynamics with electron correlation
,”
J. Chem. Phys.
139
,
011102
(
2013
).
267.
N.
Luehr
,
T. E.
Markland
, and
T. J.
Martínez
, “
Multiple time step integrators in ab initio molecular dynamics
,”
J. Chem. Phys.
140
,
084116
(
2014
).
268.
Z.
Long
,
A. O.
Atsango
,
J. A.
Napoli
,
T. E.
Markland
, and
M. E.
Tuckerman
, “
Elucidating the proton transport pathways in liquid imidazole with first-principles molecular dynamics
,”
J. Phys. Chem. Lett.
11
,
6156
6163
(
2020
).
269.
W.
Wang
,
S.
Axelrod
, and
R.
Gómez-Bombarelli
, “
Differentiable molecular simulations for control and learning
,” arXiv:2003.00868 (
2020
).
270.
J. G.
Greener
and
D. T.
Jones
, “
Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins
,”
PLoS One
16
,
e0256990
(
2021
).
271.
P.
Kidger
,
R. T. Q.
Chen
, and
T. J.
Lyons
, “
‘hey, that's not an ode’: Faster ode adjoints via seminorms
,” in
Proceedings of the International Conference on Machine Learning
(
2021
).
272.
R. T. Q.
Chen
,
Y.
Rubanova
,
J.
Bettencourt
, and
D.
Duvenaud
, “
Neural ordinary differential equations
,” in Proceedings of the Advances in Neural Information Processing Systems (
2018
).
273.
L. S.
Pontryagin
,
Mathematical Theory of Optimal Processes (Routledge
,
2018
).
274.
R. J.
Williams
, “
Simple statistical gradient-following algorithms for connectionist reinforcement learning
,”
Mach. Learn.
8
,
229
256
(
1992
).
275.
J.
Schulman
,
F.
Wolski
,
P.
Dhariwal
,
A.
Radford
, and
O.
Klimov
, “
Proximal policy optimization algorithms
,” arXiv:1707.06347 (
2017
).
276.
S. S.
Schoenholz
and
E. D.
Cubuk
, “
JAX M.D. A framework for differentiable physics
,” in Proceedings of the
Advances in Neural Information Processing Systems
(
Curran Associates, Inc
.,
2020
), Vol.
33
.
277.
S.
Doerr
,
M.
Majewski
,
A.
Pérez
,
A.
Kramer
,
C.
Clementi
,
F.
Noe
,
T.
Giorgino
, and
G.
De Fabritiis
, “
TorchMD: A deep learning framework for molecular simulations
,”
J. Chem. Theory Comput.
17
,
2355
2363
(
2021
).
278.
J.
Bradbury
,
R.
Frostig
,
P.
Hawkins
,
M. J.
Johnson
,
C.
Leary
,
D.
Maclaurin
,
G.
Neubig
,
A.
Paszke
,
J.
VanderPlas
,
S.
Wanderman-Milne
, and
Q.
Zhang
, “JAX: Composable transformations of Python+NumPy programs,” GitHub repository (2018). Available at https://github.com/google/jax.
279.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
et al, “
Pytorch: An imperative style, high-performance deep learning library
,” in Proceedings of the Advances in Neural Information Processing Systems (
2019
), Vol.
32
.
280.
P.
Micikevicius
,
S.
Narang
,
J.
Alben
,
G.
Diamos
,
E.
Elsen
,
D.
Garcia
,
B.
Ginsburg
,
M.
Houston
,
O.
Kuchaiev
,
G.
Venkatesh
, and
H.
Wu
, “
Mixed precision training of deep neural networks
,” NVIDIA Developer Blog (2018). Available at https://developer.nvidia.com/blog/mixed-precision-training-deep-neural-networks/.
281.
See https://github.com/proteneer/timemachine for
Y.
Zhao
, “
timemachine
” (
2024
).
282.
R. O.
Dror
,
C.
Young
, and
D. E.
Shaw
, “Anton, a special-purpose molecular simulation machine” (
2011
).
283.
D. E.
Shaw
,
P. J.
Adams
,
A.
Azaria
,
J. A.
Bank
,
B.
Batson
,
A.
Bell
,
M.
Bergdorf
,
J.
Bhatt
,
J. A.
Butts
,
T.
Correia
et al, “
Anton 3: Twenty microseconds of molecular dynamics simulation before lunch
,” in
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(
2021
), pp.
1
11
.
284.
R.
Bommasani
,
D. A.
Hudson
,
E.
Adeli
,
R.
Altman
,
S.
Arora
,
S.
von Arx
,
M. S.
Bernstein
,
J.
Bohg
,
A.
Bosselut
,
E.
Brunskill
,
E.
Brynjolfsson
,
S.
Buch
,
D.
Card
,
R.
Castellon
,
N.
Chatterji
,
A.
Chen
,
K.
Creel
,
J. Q.
Davis
,
D.
Demszky
,
C.
Donahue
,
M.
Doumbouya
,
E.
Durmus
,
S.
Ermon
,
J.
Etchemendy
,
K.
Ethayarajh
,
L.
Fei-Fei
,
C.
Finn
,
T.
Gale
,
L.
Gillespie
,
K.
Goel
,
N.
Goodman
,
S.
Grossman
,
N.
Guha
,
T.
Hashimoto
,
P.
Henderson
,
J.
Hewitt
,
D. E.
Ho
,
J.
Hong
,
K.
Hsu
,
J.
Huang
,
T.
Icard
,
S.
Jain
,
D.
Jurafsky
,
P.
Kalluri
,
S.
Karamcheti
,
G.
Keeling
,
F.
Khani
,
O.
Khattab
,
P. W.
Koh
,
M.
Krass
,
R.
Krishna
,
R.
Kuditipudi
,
A.
Kumar
,
F.
Ladhak
,
M.
Lee
,
T.
Lee
,
J.
Leskovec
,
I.
Levent
,
X. L.
Li
,
X.
Li
,
T.
Ma
,
A.
Malik
,
C. D.
Manning
,
S.
Mirchandani
,
E.
Mitchell
,
Z.
Munyikwa
,
S.
Nair
,
A.
Narayan
,
D.
Narayanan
,
B.
Newman
,
A.
Nie
,
J. C.
Niebles
,
H.
Nilforoshan
,
J.
Nyarko
,
G.
Ogut
,
L.
Orr
,
I.
Papadimitriou
,
J. S.
Park
,
C.
Piech
,
E.
Portelance
,
C.
Potts
,
A.
Raghunathan
,
R.
Reich
,
H.
Ren
,
F.
Rong
,
Y.
Roohani
,
C.
Ruiz
,
J.
Ryan
,
C.
,
D.
Sadigh
,
S.
Sagawa
,
K.
Santhanam
,
A.
Shih
,
K.
Srinivasan
,
A.
Tamkin
,
R.
Taori
,
A. W.
Thomas
,
F.
Tramèr
,
R. E.
Wang
,
W.
Wang
,
B.
Wu
,
J.
Wu
,
Y.
Wu
,
S. M.
Xie
,
M.
Yasunaga
,
J.
You
,
M.
Zaharia
,
M.
Zhang
,
T.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
L.
Zheng
,
K.
Zhou
, and
P.
Liang
, “
On the opportunities and risks of foundation models
,” arXiv:2108.07258 (
2022
).
285.
L.
Chanussot
,
A.
Das
,
S.
Goyal
,
T.
Lavril
,
M.
Shuaibi
,
M.
Riviere
,
K.
Tran
,
J.
Heras-Domingo
,
C.
Ho
,
W.
Hu
,
A.
Palizhati
,
A.
Sriram
,
B.
Wood
,
J.
Yoon
,
D.
Parikh
,
C. L.
Zitnick
, and
Z.
Ulissi
, “
Open catalyst 2020 (OC20) dataset and community challenges
,”
ACS Catal.
11
,
6059
6072
(
2021
).
286.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
et al, “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
287.
L.
Barroso-Luque
,
M.
Shuaibi
,
X.
Fu
,
B. M.
Wood
,
M.
Dzamba
,
M.
Gao
,
A.
Rizvi
,
C. L.
Zitnick
, and
Z. W.
Ulissi
, “
Open materials 2024 (omat24) inorganic materials dataset and models
,” arXiv:2410.12771 (
2024
).
288.
C.
Zang
and
F.
Wang
, “
Moflow: An invertible flow model for generating molecular graphs
,” in
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery; Data Mining, KDD’20
(
ACM
,
2020
).
289.
W.
Jin
,
R.
Barzilay
, and
T.
Jaakkola
, “
Junction tree variational autoencoder for molecular graph generation
,” arXiv:1802.04364 (
2019
).
290.
C.
Shi
,
M.
Xu
,
Z.
Zhu
,
W.
Zhang
,
M.
Zhang
, and
J.
Tang
, “
GraphAF: A flow-based autoregressive model for molecular graph generation
,” arXiv:2001.09382 (
2020
).
291.
E.
Mansimov
,
O.
Mahmood
,
S.
Kang
, and
K.
Cho
, “
Molecular geometry prediction using a deep generative graph neural network
,”
Sci. Rep.
9
,
20381
(
2019
).
292.
E.
Hoogeboom
,
V. G.
Satorras
,
C.
Vignac
, and
M.
Welling
, “
Equivariant diffusion for molecule generation in 3D
,” arXiv:2203.17003 (
2022
).
293.
J.
Jumper
,
R.
Evans
,
A.
Pritzel
,
T.
Green
,
M.
Figurnov
,
O.
Ronneberger
,
K.
Tunyasuvunakool
,
R.
Bates
,
A.
Žídek
,
A.
Potapenko
et al, “
Highly accurate protein structure prediction with alphafold
,”
Nature
596
,
583
589
(
2021
).
294.
G.
Ahdritz
,
N.
Bouatta
,
C.
Floristean
,
S.
Kadyan
,
Q.
Xia
,
W.
Gerecke
,
T. J.
O'Donnell
,
D.
Berenberg
,
I.
Fisk
,
N.
Zanichelli
et al, “
OpenFold: Retraining alphafold2 yields new insights into its learning mechanisms and capacity for generalization
,”
Nat. Methods
21
,
1514
(
2024
).
295.
L.
Klein
,
A. Y. K.
Foong
,
T. E.
Fjelde
,
B.
Mlodozeniec
,
M.
Brockschmidt
,
S.
Nowozin
,
F.
Noé
, and
R.
Tomioka
, “
Timewarp: Transferable acceleration of molecular dynamics by learning time-coarsened dynamics
,” arXiv:2302.01170 (
2023
).
296.
F.
Noé
,
S.
Olsson
,
J.
Köhler
, and
H.
Wu
, “
Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning
,”
Science
365
,
eaaw1147
(
2019
).
297.
M. E.
Tuckerman
, “
Machine learning transforms how microstates are sampled
,”
Science
365
,
982
983
(
2019
).
298.
L.
Klein
and
F.
Noé
, “
Transferable boltzmann generators
,” arXiv:2406.14426 (
2024
).
299.
J.
Köhler
,
L.
Klein
, and
F.
Noé
, “
Equivariant flows: Exact likelihood generative learning for symmetric densities
,” in
Proceedings of the International Conference on Machine Learning
(
PMLR
,
2020
), pp.
5361
5370
.
300.
L. I.
Midgley
,
V.
Stimper
,
J.
Antorán
,
E.
Mathieu
,
B.
Schölkopf
, and
J. M.
Hernández-Lobato
, “
SE(3) equivariant augmented coupling flows
,” arXiv:2308.10364 (
2024
).
301.
V. G.
Satorras
,
E.
Hoogeboom
,
F. B.
Fuchs
,
I.
Posner
, and
M.
Welling
, “
E(N) equivariant normalizing flows
,” arXiv:2105.09016 (
2022
).
302.
Y.
LeCun
,
S.
Chopra
,
R.
Hadsell
,
M.
Ranzato
,
F.
Huang
et al, “
A tutorial on energy-based learning
,”
Predicting structured data
1
(
2006
).
303.
Y.
Song
and
D. P.
Kingma
, “
How to train your energy-based models
,” arXiv:2101.03288 (
2021
).
304.
F.-A.
Croitoru
,
V.
Hondru
,
R. T.
Ionescu
, and
M.
Shah
, “
Diffusion models in vision: A survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
45
,
10850
10869
(
2023
).
305.
L.
Yang
,
Z.
Zhang
,
Y.
Song
,
S.
Hong
,
R.
Xu
,
Y.
Zhao
,
W.
Zhang
,
B.
Cui
, and
M.-H.
Yang
, “
Diffusion models: A comprehensive survey of methods and applications
,”
ACM Comput. Surv.
56
,
1
39
(
2023
).
306.
Y.
Song
,
J.
Sohl-Dickstein
,
D. P.
Kingma
,
A.
Kumar
,
S.
Ermon
, and
B.
Poole
, “
Score-based generative modeling through stochastic differential equations
,” arXiv:2011.13456 (
2021
).
307.
J.
Ho
,
A.
Jain
, and
P.
Abbeel
, “
Denoising diffusion probabilistic models
,” arXiv:2006.11239 (
2020
).
308.
K.
Kahouli
,
S. S. P.
Hessmann
,
K.-R.
Müller
,
S.
Nakajima
,
S.
Gugler
, and
N. W. A.
Gebauer
, “
Molecular relaxation by reverse diffusion with time step prediction
,”
Mach. Learn.: Sci. Technol.
5
,
035038
(
2024
).
309.
M.
Arts
,
V. G.
Satorras
,
C.-W.
Huang
,
D.
Zuegner
,
M.
Federici
,
C.
Clementi
,
F.
Noé
,
R.
Pinsler
, and
R.
van den Berg
, “
Two for one: Diffusion models and force fields for coarse-grained molecular dynamics
,” arXiv:2302.00600 (
2023
).
You do not currently have access to this content.