It is thought that schemes for quantum imaging are fragile against realistic environments in which the background noise is often stronger than the nonclassical signal of the imaging photons. Unfortunately, it is unfeasible to produce brighter quantum light sources to alleviate this problem. Here, we overcome this paradigmatic limitation by developing a quantum imaging scheme that relies on the use of natural sources of light. This is achieved by performing conditional detection on the photon number of the thermal light field scattered by a remote object. Specifically, the conditional measurements in our scheme enable us to extract quantum features of the detected thermal photons to produce quantum images with improved signal-to-noise ratios. This technique shows an exponential enhancement in the contrast of quantum images. This measurement scheme enables the possibility of producing images from the vacuum fluctuations of the light field. This is experimentally demonstrated through the implementation of a single-pixel camera with photon-number-resolving capabilities. As such, we believe that our scheme opens a new paradigm in the field of quantum imaging. It also unveils the potential of combining natural light sources with nonclassical detection schemes for the development of robust quantum technologies.

1.
T. B.
Pittman
,
Y. H.
Shih
,
D. V.
Strekalov
, and
A. V.
Sergienko
, “
Optical imaging by means of two-photon quantum entanglement
,”
Phys. Rev. A
52
,
R3429
R3432
(
1995
).
2.
R. S.
Bennink
,
S. J.
Bentley
, and
R. W.
Boyd
, “
Two-photon coincidence imaging with a classical source
,”
Phys. Rev. Lett.
89
,
113601
(
2002
).
3.
O. S.
Magaña-Loaiza
and
R. W.
Boyd
, “
Quantum imaging and information
,”
Rep. Prog. Phys.
82
,
124401
(
2019
).
4.
M.
D'Angelo
,
M. V.
Chekhova
, and
Y.
Shih
, “
Two-photon diffraction and quantum lithography
,”
Phys. Rev. Lett.
87
,
013602
(
2001
).
5.
L. A.
Rozema
,
J. D.
Bateman
,
D. H.
Mahler
,
R.
Okamoto
,
A.
Feizpour
,
A.
Hayat
, and
A. M.
Steinberg
, “
Scalable spatial superresolution using entangled photons
,”
Phys. Rev. Lett.
112
,
223602
(
2014
).
6.
A. N.
Boto
,
P.
Kok
,
D. S.
Abrams
,
S. L.
Braunstein
,
C. P.
Williams
, and
J. P.
Dowling
, “
Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit
,”
Phys. Rev. Lett.
85
,
2733
2736
(
2000
).
7.
M.
Tsang
,
R.
Nair
, and
X.-M.
Lu
, “
Quantum theory of superresolution for two incoherent optical point sources
,”
Phys. Rev. X
6
,
031033
(
2016
).
8.
N.
Bhusal
,
M.
Hong
,
A.
Miller
,
M. A.
Quiroz-Juárez
,
R. d J.
León-Montiel
,
C.
You
, and
O. S.
Magaña-Loaiza
, “
Smart quantum statistical imaging beyond the Abbe-Rayleigh criterion
,”
npj Quantum Inf.
8
,
83
(
2022
).
9.
G.
Brida
,
M.
Genovese
, and
I.
Ruo Berchera
, “
Experimental realization of sub-shot-noise quantum imaging
,”
Nat. Photonics
4
,
227
230
(
2010
).
10.
M.
Malik
,
O. S.
Magaña-Loaiza
, and
R. W.
Boyd
, “
Quantum-secured imaging
,”
Appl. Phys. Lett.
101
,
241103
(
2012
).
11.
G. B.
Lemos
,
V.
Borish
,
G. D.
Cole
,
S.
Ramelow
,
R.
Lapkiewicz
, and
A.
Zeilinger
, “
Quantum imaging with undetected photons
,”
Nature
512
,
409
412
(
2014
).
12.
O. S.
Magaña-Loaiza
,
G. A.
Howland
,
M.
Malik
,
J. C.
Howell
, and
R. W.
Boyd
, “
Compressive object tracking using entangled photons
,”
Appl. Phys. Lett.
102
,
231104
(
2013
).
13.
P. A.
Morris
,
R. S.
Aspden
,
J. E. C.
Bell
,
R. W.
Boyd
, and
M. J.
Padgett
, “
Imaging with a small number of photons
,”
Nat. Commun.
6
,
5913
(
2015
).
14.
G. B.
Lemos
,
M.
Lahiri
,
S.
Ramelow
,
R.
Lapkiewicz
, and
W. N.
Plick
, “
Quantum imaging and metrology with undetected photons: Tutorial
,”
J. Opt. Soc. Am. B
39
,
2200
2228
(
2022
).
15.
I.
Kviatkovsky
,
H. M.
Chrzanowski
,
E. G.
Avery
,
H.
Bartolomaeus
, and
S.
Ramelow
, “
Microscopy with undetected photons in the mid-infrared
,”
Sci. Adv.
6
,
eabd0264
(
2020
).
16.
Y.
Bromberg
,
O.
Katz
, and
Y.
Silberberg
, “
Ghost imaging with a single detector
,”
Phys. Rev. A
79
,
053840
(
2009
).
17.
M.
D'Angelo
,
F. V.
Pepe
,
A.
Garuccio
, and
G.
Scarcelli
, “
Correlation plenoptic imaging
,”
Phys. Rev. Lett.
116
,
223602
(
2016
).
18.
M.
Genovese
, “
Real application of quantum imaging
,”
J. Opt.
18
,
073002
(
2016
).
19.
G.
Nirala
,
S. T.
Pradyumna
,
A.
Kumar
, and
A. M.
Marino
, “
Information encoding in the spatial correlations of entangled twin beams
,”
Sci. Adv.
9
,
eadf9161
(
2023
).
20.
J. L.
O'Brien
,
A.
Furusawa
, and
J.
Vuckovic
, “
Photonic quantum technologies
,”
Nat. Photonics
3
,
687
695
(
2009
).
21.
B. J.
Lawrie
,
P. D.
Lett
,
A. M.
Marino
, and
R. C.
Pooser
, “
Quantum sensing with squeezed light
,”
ACS Photonics
6
,
1307
1318
(
2019
).
22.
Y.
Zhai
,
F. E.
Becerra
,
B. L.
Glebov
,
J.
Wen
,
A. E.
Lita
,
B.
Calkins
,
T.
Gerrits
,
J.
Fan
,
S. W.
Nam
, and
A.
Migdall
, “
Photon-number-resolved detection of photon-subtracted thermal light
,”
Opt. Lett.
38
,
2171
2173
(
2013
).
23.
H.
Defienne
,
B.
Ndagano
,
A.
Lyons
, and
D.
Faccio
, “
Polarization entanglement-enabled quantum holography
,”
Nat. Phys.
17
,
591
597
(
2021
).
24.
O. S.
Magaña-Loaiza
,
R. J.
León-Montiel
,
A.
Perez-Leija
,
A. B.
URen
,
C.
You
,
K.
Busch
,
A. E.
Lita
,
S. W.
Nam
,
R. P.
Mirin
, and
T.
Gerrits
, “
Multiphoton quantum-state engineering using conditional measurements
,”
npj Quantum Inf.
5
,
80
(
2019
).
25.
M.
Hong
,
A.
Miller
,
R. J.
León-Montiel
,
C.
You
, and
O. S.
Magaña Loaiza
, “
Engineering super-Poissonian photon statistics of spatial light modes
,”
Laser Photonics Rev.
17
,
2300117
(
2023
).
26.
A.
Valencia
,
G.
Scarcelli
,
M.
D'Angelo
, and
Y.
Shih
, “
Two-photon imaging with thermal light
,”
Phys. Rev. Lett.
94
,
063601
(
2005
).
27.
T. A.
Smith
and
Y.
Shih
, “
Turbulence-free double-slit interferometer
,”
Phys. Rev. Lett.
120
,
063606
(
2018
).
28.
F.
Dell'Anno
,
S.
De Siena
, and
F.
Illuminati
, “
Multiphoton quantum optics and quantum state engineering
,”
Phys. Rep.
428
,
53
168
(
2006
).
29.
C.
You
,
A.
Miller
,
R. J.
León-Montiel
, and
O. S.
Magaña-Loaiza
, “
Multiphoton quantum van Cittert-Zernike theorem
,”
npj Quantum Inf.
9
,
50
(
2023
).
30.
M.
Dakna
,
T.
Anhut
,
T.
Opatrný
,
L.
Knöll
, and
D.-G.
Welsch
, “
Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter
,”
Phys. Rev. A
55
,
3184
3194
(
1997
).
31.
J.
Ferdous
,
M.
Hong
,
R. B.
Dawkins
,
F.
Mostafavi
,
A.
Oktyabrskaya
,
C.
You
,
R. J.
León-Montiel
, and
O. S.
Magana-Loaiza
, “
Emergence of multiphoton quantum coherence by light propagation
,”
ACS Photonics
11
,
3197
3204
(
2024
).
32.
C.
You
,
M. A.
Quiroz-Juárez
,
A.
Lambert
,
N.
Bhusal
,
C.
Dong
,
A.
Perez-Leija
,
A.
Javaid
,
R. J.
León-Montiel
, and
O. S.
Magaña Loaiza
, “
Identification of light sources using machine learning
,”
Appl. Phys. Rev.
7
,
021404
(
2020
).
33.
R. J.
Glauber
, “
Coherent and incoherent states of the radiation field
,”
Phys. Rev.
131
,
2766
2788
(
1963
).
34.
E. C. G.
Sudarshan
, “
Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams
,”
Phys. Rev. Lett.
10
,
277
279
(
1963
).
35.
F. T.
Arecchi
, “
Measurement of the statistical distribution of gaussian and laser sources
,”
Phys. Rev. Lett.
15
,
912
916
(
1965
).
36.
M.
Mirhosseini
,
O. S.
Magaña Loaiza
,
S. M.
Hashemi Rafsanjani
, and
R. W.
Boyd
, “
Compressive direct measurement of the quantum wave function
,”
Phys. Rev. Lett.
113
,
090402
(
2014
).
37.
V.
Kilic
,
T. D.
Tran
, and
M. A.
Foster
, “
Compressed sensing in photonics: Tutorial
,”
J. Opt. Soc. Am. B
40
,
28
52
(
2023
).
38.
N.
Montaut
,
O. S.
Magaña-Loaiza
,
T. J.
Bartley
,
V. B.
Verma
,
S. W.
Nam
,
R. P.
Mirin
,
C.
Silberhorn
, and
T.
Gerrits
, “
Compressive characterization of telecom photon pairs in the spatial and spectral degrees of freedom
,”
Optica
5
,
1418
1423
(
2018
).
39.
C.
Gerry
and
P.
Knight
,
Introductory Quantum Optics
(
Cambridge University Press
,
Cambridge
,
2004
).
40.
Y.
Shih
,
An Introduction to Quantum Optics: Photon and Biphoton Physics
(
CRC Press
,
2020
).
41.
J.
Sperling
,
W.
Vogel
, and
G. S.
Agarwal
, “
True photocounting statistics of multiple on-off detectors
,”
Phys. Rev. A
85
,
023820
(
2012
).
42.
K. G.
Katamadze
,
G. V.
Avosopiants
,
N. A.
Bogdanova
,
Y. I.
Bogdanov
, and
S. P.
Kulik
, “
Multimode thermal states with multiphoton subtraction: Study of the photon-number distribution in the selected subsystem
,”
Phys. Rev. A
101
,
013811
(
2020
).
43.
R. B.
Dawkins
,
M.
Hong
,
C.
You
, and
O. S.
Magaña-Loaiza
, “
The quantum Gaussian–Schell model: A link between classical and quantum optics
,”
Opt. Lett.
49
,
4242
4245
(
2024
).
44.
F.
Mostafavi
,
Z.
Jafari
,
M. L. J.
Lollie
,
C.
You
,
I.
De Leon
, and
O. S.
Magaña-Loaiza
, “
Conditional quantum plasmonic sensing
,”
Nanophotonics
11
,
3299
3306
(
2022
).
45.
S. M.
Hashemi Rafsanjani
,
M.
Mirhosseini
,
O. S.
Magaña-Loaiza
,
B. T.
Gard
,
R.
Birrittella
,
B. E.
Koltenbah
,
C. G.
Parazzoli
,
B. A.
Capron
,
C. C.
Gerry
,
J. P.
Dowling
, and
R. W.
Boyd
, “
Quantum-enhanced interferometry with weak thermal light
,”
Optica
4
,
487
491
(
2017
).
46.
K. J.
Resch
,
K. L.
Pregnell
,
R.
Prevedel
,
A.
Gilchrist
,
G. J.
Pryde
,
J. L.
O'Brien
, and
A. G.
White
, “
Time-reversal and super-resolving phase measurements
,”
Phys. Rev. Lett.
98
,
223601
(
2007
).
47.
C.
You
,
M.
Hong
,
P.
Bierhorst
,
A. E.
Lita
,
S.
Glancy
,
S.
Kolthammer
,
E.
Knill
,
S. W.
Nam
,
R. P.
Mirin
,
O. S.
Magaña-Loaiza
, and
T.
Gerrits
, “
Scalable multiphoton quantum metrology with neither pre- nor post-selected measurements
,”
Appl. Phys. Rev.
8
,
041406
(
2021
).
48.
S. M.
Barnett
,
G.
Ferenczi
,
C. R.
Gilson
, and
F. C.
Speirits
, “
Statistics of photon-subtracted and photon-added states
,”
Phys. Rev. A
98
,
013809
(
2018
).
49.
R.
Cheng
,
Y.
Zhou
,
S.
Wang
,
M.
Shen
,
T.
Taher
, and
H. X.
Tang
, “
A 100-pixel photon-number-resolving detector unveiling photon statistics
,”
Nat. Photonics
17
,
112
119
(
2023
).
50.
P.-A.
Moreau
,
E.
Toninelli
,
T.
Gregory
, and
M. J.
Padgett
, “
Imaging with quantum states of light
,”
Nat. Rev. Phys.
1
,
367
380
(
2019
).
51.
H.
Defienne
,
W. P.
Bowen
,
M.
Chekhova
,
G. B.
Lemos
,
D.
Oron
,
S.
Ramelow
,
N.
Treps
, and
D.
Faccio
, “
Advances in quantum imaging
,”
Nat. Photonics
18
,
1024
1036
(
2024
).
52.
M.
Hong
,
R. B.
Dawkins
,
B.
Bertoni
,
C.
You
, and
O. S.
Magaña-Loaiza
, “
Isolating bosonic, fermionic and vacuum dynamics of plasmonic waves
,”
Opt. Photonics News
35
,
37
(
2024
).
53.
M.
Wubs
, “
Multiphoton quantum statistics from scattered classical light
,”
Nat. Phys.
20
,
689
690
(
2024
).
54.
T.
Ono
,
R.
Okamoto
, and
S.
Takeuchi
, “
An entanglement-enhanced microscope
,”
Nat. Commun.
4
,
2426
(
2013
).
55.
Y.
Israel
,
S.
Rosen
, and
Y.
Silberberg
, “
Supersensitive polarization microscopy using noon states of light
,”
Phys. Rev. Lett.
112
,
103604
(
2014
).
56.
N.
Thomas-Peter
,
B. J.
Smith
,
A.
Datta
,
L.
Zhang
,
U.
Dorner
, and
I. A.
Walmsley
, “
Real-world quantum sensors: Evaluating resources for precision measurement
,”
Phys. Rev. Lett.
107
,
113603
(
2011
).
57.
L.
Cohen
,
E. S.
Matekole
,
Y.
Sher
,
D.
Istrati
,
H. S.
Eisenberg
, and
J. P.
Dowling
, “
Thresholded quantum lidar: Exploiting photon-number-resolving detection
,”
Phys. Rev. Lett.
123
,
203601
(
2019
).
58.
E.
Polino
,
M.
Valeri
,
N.
Spagnolo
, and
F.
Sciarrino
, “
Photonic quantum metrology
,”
AVS Quantum Sci.
2
,
024703
(
2020
).
59.
S.
Nerenberg
,
O. D.
Neill
,
G.
Marcucci
, and
D.
Faccio
, “
Photon number-resolving quantum reservoir computing
,” arXiv:2402.06339 (
2024
).
60.
C.
You
,
M.
Hong
,
F.
Mostafavi
,
J.
Ferdous
,
R. J.
León-Montiel
,
R. B.
Dawkins
, and
O. S.
Magaña-Loaiza
, “
Isolating the classical and quantum coherence of a multiphoton system
,”
PhotoniX
5
,
39
(
2024
).
61.
Z.
Zhang
,
C.
You
,
O. S.
Magaña-Loaiza
,
R.
Fickler
,
R. J.
León-Montiel
,
J. P.
Torres
,
T. S.
Humble
,
S.
Liu
,
Y.
Xia
, and
Q.
Zhuang
, “
Entanglement-based quantum information technology: A tutorial
,”
Adv. Opt. Photonics
16
,
60
162
(
2024
).
62.
C.
Li
, “
An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing,” Master's thesis
(
Rice University
,
2010
).
You do not currently have access to this content.