As a wide bandgap semiconductor, diamond holds both excellent electrical and thermal properties, making it highly promising in the electrical industry. However, its hole mobility is relatively low and dramatically decreases with increasing temperature, which severely limits further applications. Herein, we proposed that the hole mobility can be efficiently enhanced via slight compressive shear strain along the [100] direction, while the improvement via shear strain along the [111] direction is marginal. This impressive distinction is attributed to the deformation potential and the elastic compliance matrix. The shear strain breaks the symmetry of the crystalline structure and lifts the band degeneracy near the valence band edge, resulting in a significant suppression of interband electron–phonon scattering. Moreover, the hole mobility becomes less temperature-dependent due to the decrease of electron scatterings from high-frequency acoustic phonons. Remarkably, the in-plane hole mobility of diamond is increased by 800% at 800 K with a 2% compressive shear strain along the [100] direction. The efficient shear strain strategy can be further extended to other semiconductors with face-centered cubic geometry.

1.
International Roadmap for Devices and Systems (IRDS)
, https://irds.ieee.org/editions/2023
2.
C. J.
Wort
and
R. S.
Balmer
, “
Diamond as an electronic material
,”
Mater. Today
11
,
22
28
(
2008
).
3.
J.
Isberg
,
J.
Hammersberg
,
E.
Johansson
,
T.
Wikström
,
D. J.
Twitchen
,
A. J.
Whitehead
,
S. E.
Coe
, and
G. A.
Scarsbrook
, “
High carrier mobility in single-crystal plasma-deposited diamond
,”
Science
297
,
1670
1672
(
2002
).
4.
S.
Poncé
,
F.
Macheda
,
E. R.
Margine
,
N.
Marzari
,
N.
Bonini
, and
F.
Giustino
, “
First-principles predictions of Hall and drift mobilities in semiconductors
,”
Phys. Rev. Res.
3
,
043022
(
2021
).
5.
A. V.
Sumant
,
O.
Auciello
,
R. W.
Carpick
,
S.
Srinivasan
, and
J. E.
Butler
, “
Ultrananocrystalline and nanocrystalline diamond thin films for MEMS/NEMS applications
,”
MRS Bull.
35
,
281
288
(
2010
).
6.
S.
Koizumi
,
K.
Watanabe
,
M.
Hasegawa
, and
H.
Kanda
, “
Ultraviolet emission from a diamond PN junction
,”
Science
292
,
1899
1901
(
2001
).
7.
R. J.
Williams
,
J.
Nold
,
M.
Strecker
,
O.
Kitzler
,
A.
McKay
,
T.
Schreiber
, and
R. P.
Mildren
, “
Efficient Raman frequency conversion of high-power fiber lasers in diamond
,”
Laser Photonics Rev.
9
,
405
411
(
2015
).
8.
N.
Kurinsky
,
T. C.
Yu
,
Y.
Hochberg
, and
B.
Cabrera
, “
Diamond detectors for direct detection of sub-GeV dark matter
,”
Phys. Rev. D
99
,
123005
(
2019
).
9.
M. O.
Baykan
,
S. E.
Thompson
, and
T.
Nishida
, “
Strain effects on three-dimensional, two-dimensional, and one-dimensional silicon logic devices: Predicting the future of strained silicon
,”
J. Appl. Phys.
108
,
093716
(
2010
).
10.
S. E.
Thompson
,
G.
Sun
,
Y. S.
Choi
, and
T.
Nishida
, “
Uniaxial-process-induced strained-Si: Extending the CMOS roadmap
,”
IEEE Trans. Electron Devices
53
,
1010
1020
(
2006
).
11.
M.
Lundstrom
, “
Moore's law forever?
,”
Science
299
,
210
211
(
2003
).
12.
D.
Yu
,
Y.
Zhang
, and
F.
Liu
, “
First-principles study of electronic properties of biaxially strained silicon: Effects on charge carrier mobility
,”
Phys. Rev. B
78
,
245204
(
2008
).
13.
S. E.
Thompson
,
M.
Armstrong
,
C.
Auth
,
S.
Cea
,
R.
Chau
,
G.
Glass
,
T.
Hoffman
,
J.
Klaus
,
Z.
Ma
,
B.
Mcintyre
et al, “
A logic nanotechnology featuring strained-silicon
,”
IEEE Electron Device Lett.
25
,
191
193
(
2004
).
14.
M. V.
Fischetti
and
S. E.
Laux
, “
Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys
,”
J. Appl. Phys.
80
,
2234
2252
(
1996
).
15.
F.
Murphy-Armando
and
S.
Fahy
, “
Giant enhancement of n-type carrier mobility in highly strained germanium nanostructures
,”
J. Appl. Phys.
109
,
113703
(
2011
).
16.
J. D.
Sau
and
M. L.
Cohen
, “
Possibility of increased mobility in Ge-Sn alloy system
,”
Phys. Rev. B
75
,
045208
(
2007
).
17.
J.
Haines
,
J.
Leger
, and
G.
Bocquillon
, “
Synthesis and design of superhard materials
,”
Annu. Rev. Mater. Res.
31
,
1
23
(
2001
).
18.
C.
Dang
,
J.-P.
Chou
,
B.
Dai
,
C.-T.
Chou
,
Y.
Yang
,
R.
Fan
,
W.
Lin
,
F.
Meng
,
A.
Hu
,
J.
Zhu
et al, “
Achieving large uniform tensile elasticity in microfabricated diamond
,”
Science
371
,
76
78
(
2021
).
19.
P.
Yu
,
Fundamentals of Semiconductors
(
Springer
,
2005
).
20.
S.
Poncé
,
D.
Jena
, and
F.
Giustino
, “
Route to high hole mobility in GaN via reversal of crystal-field splitting
,”
Phys. Rev. Lett.
123
,
096602
(
2019a
).
21.
S.
Poncé
,
D.
Jena
, and
F.
Giustino
, “
Hole mobility of strained GaN from first principles
,”
Phys. Rev. B
100
,
085204
(
2019b
).
22.
Y.
Zheng
,
S.
Lu
, and
X.
Hu
, “
Direct band gap conversion and transport properties modification of diamond polytypes via strain engineering
,”
Carbon
226
,
119210
(
2024
).
23.
J. M.
Ziman
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
(
Oxford University Press
,
2001
).
24.
F.
Giustino
, “
Electron-phonon interactions from first principles
,”
Rev. Mod. Phys.
89
,
015003
(
2017
).
25.
G.
Brunin
,
H. P. C.
Miranda
,
M.
Giantomassi
,
M.
Royo
,
M.
Stengel
,
M. J.
Verstraete
,
X.
Gonze
,
G.-M.
Rignanese
, and
G.
Hautier
, “
Electron-phonon beyond Fröhlich: Dynamical quadrupoles in polar and covalent solids
,”
Phys. Rev. Lett.
125
,
136601
(
2020
).
26.
V. A.
Jhalani
,
J.-J.
Zhou
,
J.
Park
,
C. E.
Dreyer
, and
M.
Bernardi
, “
Piezoelectric electron-phonon interaction from ab initio dynamical quadrupoles: Impact on charge transport in wurtzite GaN
,”
Phys. Rev. Lett.
125
,
136602
(
2020
).
27.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
et al, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys. Condens. Matter
21
,
395502
(
2009
).
28.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
29.
D.
Hamann
, “
Optimized norm-conserving Vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
30.
M. J.
Van Setten
,
M.
Giantomassi
,
E.
Bousquet
,
M. J.
Verstraete
,
D. R.
Hamann
,
X.
Gonze
, and
G.-M.
Rignanese
, “
The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
,”
Comput. Phys. Commun.
226
,
39
54
(
2018
).
31.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
32.
G.
Fugallo
,
M.
Lazzeri
,
L.
Paulatto
, and
F.
Mauri
, “
ab initio variational approach for evaluating lattice thermal conductivity
,”
Phys. Rev. B
88
,
045430
(
2013
).
33.
S.
Baroni
,
S.
De Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
, “
Phonons and related crystal properties from density-functional perturbation theory
,”
Rev. Mod. Phys.
73
,
515
(
2001
).
34.
X.
Gonze
,
B.
Amadon
,
G.
Antonius
,
F.
Arnardi
,
L.
Baguet
,
J.-M.
Beuken
,
J.
Bieder
,
F.
Bottin
,
J.
Bouchet
,
E.
Bousquet
et al, “
The ABINIT project: Impact, environment and recent developments
,”
Comput. Phys. Commun.
248
,
107042
(
2020
).
35.
A. H.
Romero
,
D. C.
Allan
,
B.
Amadon
,
G.
Antonius
,
T.
Applencourt
,
L.
Baguet
,
J.
Bieder
,
F.
Bottin
,
J.
Bouchet
,
E.
Bousquet
et al, “
ABINIT: Overview and focus on selected capabilities
,”
J. Chem. Phys.
152
,
124102
(
2020
).
36.
S.
Poncé
,
E. R.
Margine
,
C.
Verdi
, and
F.
Giustino
, “
EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions
,”
Comput. Phys. Commun.
209
,
116
133
(
2016
).
37.
P.
Dean
,
E.
Lightowlers
, and
D.
Wight
, “
Intrinsic and extrinsic recombination radiation from natural and synthetic aluminum-doped diamond
,”
Phys. Rev.
140
,
A352
(
1965
).
38.
V. S.
Vavilov
and
E. A.
Konorova
, “
Semiconducting diamonds
,”
Sov. Phys. Usp.
19
,
301
(
1976
).
39.
J.
Isberg
,
A.
Lindblom
,
A.
Tajani
, and
D.
Twitchen
, “
Temperature dependence of hole drift mobility in high-purity single-crystal CVD diamond
,”
Phys. Status Solidi (a)
202
,
2194
2198
(
2005
).
40.
M.
Gabrysch
,
S.
Majdi
,
D. J.
Twitchen
, and
J.
Isberg
, “
Electron and hole drift velocity in chemical vapor deposition diamond
,”
J. Appl. Phys.
109
,
063719
(
2011
).
41.
J.
Sun
,
S.
Li
,
Z.
Tong
,
C.
Shao
,
M.
An
,
X.
Zhu
,
C.
Zhang
,
X.
Chen
,
R.
Wang
,
Y.
Xiong
et al, “
Giant enhancement of hole mobility for 4H-silicon carbide through suppressing interband electron–phonon scattering
,”
Nano Lett.
24
,
10569
10576
(
2024
).
42.
N.
Roisin
,
G.
Brunin
,
G.-M.
Rignanese
,
D.
Flandre
,
J.-P.
Raskin
, and
S.
Poncé
, “
Phonon-limited mobility for electrons and holes in highly-strained silicon
,”
Npj Comput. Mater.
10
,
242
(
2024
).
43.
J. C.
Hensel
and
G.
Feher
, “
Cyclotron resonance experiments in uniaxially stressed silicon: Valence band inverse mass parameters and deformation potentials
,”
Phys. Rev.
129
,
1041
(
1963
).
44.
A.
Blacha
,
H.
Presting
, and
M.
Cardona
, “
Deformation potentials of k = 0 states of tetrahedral semiconductors
,”
Phys. Status Solidi (b)
126
,
11
36
(
1984
).
45.
W.
Lambrecht
,
B.
Segall
,
M.
Methfessel
, and
M.
Van Schilfgaarde
, “
Calculated elastic constants and deformation potentials of cubic SiC
,”
Phys. Rev. B
44
,
3685
(
1991
).
46.
C.
Kittel
and
P.
McEuen
,
Introduction to Solid State Physics
(
John Wiley & Sons
,
2018
).
47.
W.
Kleiner
and
L.
Roth
, “
Deformation potential in germanium from optical absorption lines for exciton formation
,”
Phys. Rev. Lett.
2
,
334
(
1959
).
48.
G.
Bir
and
G.
Pikus
,
Symetry and Strain-Induced Effects in Semiconductors
(
John Willey & Sons
,
New York
,
1974
).
49.
E.
Brillas
and
C. A.
Mart
et al,
Synthetic Diamond Films: Preparation, Electrochemistry, Characterization, and Applications
(
John Wiley & Sons
,
2011
).
50.
Y.-H.
Liang
and
E.
Towe
, “
Progress in efficient doping of high aluminum-containing group iii-nitrides
,”
Appl. Phys. Rev.
5
,
011107
(
2018
).
51.
Y.
Yan
,
J.
Li
,
S.-H.
Wei
, and
M.
Al-Jassim
, “
Possible approach to overcome the doping asymmetry in wideband gap semiconductors
,”
Phys. Rev. Lett.
98
,
135506
(
2007
).
52.
M. W.
Geis
,
T. C.
Wade
,
C. H.
Wuorio
,
T. H.
Fedynyshyn
,
B.
Duncan
,
M. E.
Plaut
,
J. O.
Varghese
,
S. M.
Warnock
,
S. A.
Vitale
, and
M. A.
Hollis
, “
Progress toward diamond power field-effect transistors
,”
Phys. Status Solidi (a)
215
,
1800681
(
2018
).
53.
K. H.
Lee
,
S.
Saada
,
J.-C.
Arnault
,
R.
Moalla
,
G.
Saint-Girons
,
R.
Bachelet
,
H.
Bensalah
,
I.
Stenger
,
J.
Barjon
,
A.
Tallaire
et al, “
Epitaxy of iridium on SrTiO3/Si (001): A promising scalable substrate for diamond heteroepitaxy
,”
Diamond Relat. Mater.
66
,
67
76
(
2016
).
54.
Y.-H.
Tang
and
B.
Golding
, “
Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth
,”
Appl. Phys. Lett.
108
,
052101
(
2016
).
55.
A.
Fischer
,
H.
Kühne
, and
H.
Richter
, “
New approach in equilibrium theory for strained layer relaxation
,”
Phys. Rev. Lett.
73
,
2712
(
1994
).
56.
A.
Banerjee
,
D.
Bernoulli
,
H.
Zhang
,
M.-F.
Yuen
,
J.
Liu
,
J.
Dong
,
F.
Ding
,
J.
Lu
,
M.
Dao
,
W.
Zhang
et al, “
Ultralarge elastic deformation of nanoscale diamond
,”
Science
360
,
300
302
(
2018
).
57.
J.
Zhu
,
F.
Liu
,
G.
Stringfellow
, and
S.-H.
Wei
, “
Strain-enhanced doping in semiconductors: Effects of dopant size and charge state
,”
Phys. Rev. Lett.
105
,
195503
(
2010
).
You do not currently have access to this content.