This study utilized co-sputtering to fabricate Mo-doped VO2 films and identified an optimal concentration exhibiting a lower phase transition temperature (Th = 55.8 °C) and a broader hysteresis window (Δ T = 13.6 °C). At the atomistic scale, it is demonstrated that Mo dopant-induced localized strain accelerates the phase transition, which leads to the relaxation of the tetragonal structure. Furthermore, the effects of Mo doping on the phase transition process and electrical properties are characterized at the nanoscale using conductive atomic force microscopy and Kelvin probe force microscopy, and the potential application in selectors can be evaluated. The results indicated that Mo doping destabilizes the M1 phase by introducing a high density of electrons, thereby significantly reducing the electron–electron interactions as per the Mott model. Moreover, the device exhibited stable threshold and memristive properties at room temperature, quickly switching from high to low-resistance states at a threshold voltage of 2.37 V and maintaining stability over more than 1000 cycles with a selectivity >102. The present work not only highlights the role of Mo doping in enhancing the functional properties of VO2 but also demonstrates its feasibility in high-performance selectors devices.

1.
N.
Shen
,
S.
Chen
,
W.
Wang
,
R.
Shi
,
P.
Chen
,
D.
Kong
,
Y.
Liang
,
A.
Amini
,
J.
Wang
, and
C.
Cheng
,
J. Mater. Chem. A
7
(
9
),
4516
4524
(
2019
).
2.
S. H.
Bae
,
S.
Lee
,
H.
Koo
,
L.
Lin
,
B. H.
Jo
,
C.
Park
, and
Z. L.
Wang
,
Adv. Mater.
25
(
36
),
5098
(
2013
).
3.
Y. J.
Lee
,
Y.
Kim
,
H.
Gim
,
K.
Hong
, and
H. W.
Jang
,
Adv. Mater.
36
(
5
),
2305353
(
2023
).
4.
N.
Manca
,
T.
Kanki
,
F.
Endo
,
E.
Ragucci
,
L.
Pellegrino
, and
D.
Marré
,
ACS Appl. Electron. Mater.
3
(
1
),
211
218
(
2021
).
5.
C.-Y.
Lin
,
P.-H.
Chen
,
T.-C.
Chang
,
K.-C.
Chang
,
S.-D.
Zhang
,
T.-M.
Tsai
,
C.-H.
Pan
,
M.-C.
Chen
,
Y.-T.
Su
,
Y.-T.
Tseng
,
Y.-F.
Chang
,
Y.-C.
Chen
,
H.-C.
Huang
, and
S. M.
Sze
,
Nanoscale
9
(
25
),
8586
8590
(
2017
).
6.
N. B.
Aetukuri
,
A. X.
Gray
,
M.
Drouard
,
M.
Cossale
,
L.
Gao
,
A. H.
Reid
,
R.
Kukreja
,
H.
Ohldag
,
C. A.
Jenkins
,
E.
Arenholz
,
K. P.
Roche
,
H. A.
Dürr
,
M. G.
Samant
, and
S. S. P.
Parkin
,
Nat. Phys.
9
(
10
),
661
666
(
2013
).
7.
U.
Dilna
and
S. N.
Prasad
,
Mater. Sci. Semicond. Process.
171
,
108008
(
2024
).
8.
G. R.
Khan
,
K.
Asokan
, and
B.
Ahmad
,
Thin Solid Films
625
,
155
162
(
2017
).
9.
H.
Yu
,
A. N. M. N.
Islam
,
S.
Mondal
,
A.
Sengupta
, and
S.
Ramanathan
,
IEEE Trans. Electron Devices
69
(
6
),
3135
3141
(
2022
).
10.
J.
Lappalainen
,
J.
Mizsei
, and
M.
Huotari
,
J. Appl. Phys.
125
(
4
),
044501
(
2019
).
11.
J. Y.
Son
and
Y. H.
Shin
,
Appl. Phys. Lett.
92
(
22
),
222106
(
2008
).
12.
Y.
Chen
,
Y.
Zhang
,
Z.
Wang
,
T.
Zhan
,
Y. C.
Wang
,
H.
Zou
,
H.
Ren
,
G.
Zhang
,
C.
Zou
, and
Z. L.
Wang
,
Adv. Mater.
30
(
45
),
45
(
2018
).
13.
L.
Pellegrino
,
N.
Manca
,
T.
Kanki
,
H.
Tanaka
,
M.
Biasotti
,
E.
Bellingeri
,
A. S.
Siri
, and
D.
Marré
,
Adv. Mater.
24
(
21
),
2929
2934
(
2012
).
14.
Y.
Wang
,
L.
Seewald
,
Y. Y.
Sun
,
P.
Keblinski
,
X.
Sun
,
S.
Zhang
,
T. M.
Lu
,
J. M.
Johnson
,
J.
Hwang
, and
J.
Shi
,
Adv. Mater.
28
(
40
),
8975
8982
(
2016
).
15.
M. K.
Dietrich
,
F.
Kuhl
,
A.
Polity
, and
P. J.
Klar
,
Appl. Phys. Lett.
110
(
14
),
141907
(
2017
).
16.
H.
Ma
,
J.
Hou
,
X.
Wang
,
J.
Zhang
,
Z.
Yuan
,
L.
Xiao
,
Y.
Wei
,
S.
Fan
,
K.
Jiang
, and
K.
Liu
, “
Flexible
,”
Nano Lett.
17
(
1
),
421
428
(
2017
).
17.
R.
Yuan
,
P. J.
Tiw
,
L.
Cai
,
Z.
Yang
,
C.
Liu
,
T.
Zhang
,
C.
Ge
,
R.
Huang
, and
Y.
Yang
,
Nat. Commun.
14
(
1
),
3695
(
2023
).
18.
K.
Yang
,
Y.
Wang
,
P. J.
Tiw
,
C.
Wang
,
X.
Zou
,
R.
Yuan
,
C.
Liu
,
G.
Li
,
C.
Ge
,
S.
Wu
,
T.
Zhang
,
R.
Huang
, and
Y.
Yang
,
Nat. Commun.
15
(
1
),
1693
(
2024
).
19.
Y.
Zhao
,
J.
Hao
,
C.
Chen
, and
Z.
Fan
,
J. Phys. Condens. Matter
24
(
3
),
035601
(
2012
).
20.
J.
Zhang
,
Z.
Zhao
,
J.
Li
,
H.
Jin
,
F.
Rehman
,
P.
Chen
,
Y.
Jiang
,
C.
Chen
,
M.
Cao
, and
Y.
Zhao
,
ACS Appl. Mater. Interfaces
9
(
32
),
27135
27141
(
2017
).
21.
P.
Schofield
,
A.
Bradicich
,
R. M.
Gurrola
,
Y.
Zhang
,
T. D.
Brown
,
M.
Pharr
,
P. J.
Shamberger
, and
S.
Banerjee
,
Adv. Mater.
35
(
37
),
2205294
(
2022
).
22.
S. M.
Bohaichuk
,
M.
Muñoz Rojo
,
G.
Pitner
,
C. J.
McClellan
,
F.
Lian
,
J.
Li
,
J.
Jeong
,
M. G.
Samant
,
S. S. P.
Parkin
,
H. S. P.
Wong
, and
E.
Pop
,
ACS Nano
13
(
10
),
11070
11077
(
2019
).
23.
H.
Asayesh-Ardakani
,
A.
Nie
,
P. M.
Marley
,
Y.
Zhu
,
P. J.
Phillips
,
S.
Singh
,
F.
Mashayek
,
G.
Sambandamurthy
,
K.-B.
Low
,
R. F.
Klie
,
S.
Banerjee
,
G. M.
Odegard
, and
R.
Shahbazian-Yassar
,
Nano Lett.
15
(
11
),
7179
7188
(
2015
).
24.
M.
Pattanayak
,
M. N. F.
Hoque
,
Y.-C.
Ho
,
W.
Li
,
Z.
Fan
, and
A. A.
Bernussi
,
Appl. Mater. Today
30
,
101642
(
2023
).
25.
C.
Ling
,
Z.
Zhao
,
X.
Hu
,
J.
Li
,
X.
Zhao
,
Z.
Wang
,
Y.
Zhao
, and
H.
Jin
,
ACS Appl. Nano Mater.
2
(
10
),
6738
6746
(
2019
).
26.
J. A. J.
Rupp
,
R.
Waser
, and
D. J.
Wouters
, in
IEEE 8th International Memory Workshop (IMW)
(IEEE,
2016
).
27.
N.
Émond
,
A.
Ibrahim
,
B.
Torriss
,
A.
Hendaoui
,
I.
Al-Naib
,
T.
Ozaki
, and
M.
Chaker
,
Appl. Phys. Lett.
111
(
9
),
092105
(
2017
).
28.
Z.
Yang
,
C.
Ko
,
V.
Balakrishnan
,
G.
Gopalakrishnan
, and
S.
Ramanathan
,
Phys. Rev. B
82
(
20
),
205101
(
2010
).
29.
F.
Chen
,
L.
Yuan
,
X.
Wu
,
Y.
Huang
,
Y.
Wang
, and
X.
Weng
,
Ceram. Int.
49
(
15
),
25585
25593
(
2023
).
30.
Y.
Li
,
J.
Chen
,
L.
Su
,
X.
Zhang
,
Q.
Zheng
,
Y.
Huo
, and
D.
Lin
,
J. Colloid Interface Sci.
652
,
440
448
(
2023
).
31.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
(
1
),
558
561
(
1993
).
32.
B.
Liu
,
K.
Tang
,
K.
Song
,
P. A.
van Aken
,
Y.
Yu
,
J.
Maier
,
M. K.
Song
, and
P.
van Aken
,
Phys. Rev. B
49
,
16223
16233
(
1994
).
33.
P. E.
Blöchl
,
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
35.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
,
Phys. Rev. B
57
(
9
),
1505
(
1998
).
36.
S.
Biermann
,
A.
Poteryaev
,
A. I.
Lichtenstein
, and
A.
Georges
,
Phys. Rev. Lett.
94
(
2
),
026404
(
2005
).
37.
J.
Wei
,
H.
Ji
,
W.
Guo
,
A. H.
Nevidomskyy
, and
D.
Natelson
,
Nat. Nanotechnol.
7
(
6
),
357
362
(
2012
).
38.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
(
12
),
5188
5192
(
1976
).
39.
S.
Amador-Alvarado
,
J. M.
Flores-Camacho
,
A.
Solis-Zamudio
,
R.
Castro-García
,
J. S.
Përez-Huerta
,
E.
Antúnez-Cerõn
,
J.
Ortega-Gallegos
,
J.
Madrigal-Melchor
,
V.
Agarwal
, and
D.
Ariza-Flores
,
Sci. Rep.
10
(
1
),
2045
(
2020
).
40.
L.
Wang
,
M. H.
Deng
,
X. H.
Xu
,
Z. C.
Hou
,
M.
Li
,
L.
Chen
,
A. Y.
Cui
,
K.
Jiang
,
L. Y.
Shang
,
J. H.
Chu
, and
Z. G.
Hu
,
Adv. Opt. Mater.
11
(
22
),
2300854
(
2023
).
41.
Z.
Zhang
,
F.
Zuo
,
C.
Wan
,
A.
Dutta
,
J.
Kim
,
J.
Rensberg
,
R.
Nawrodt
,
H. H.
Park
,
T. J.
Larrabee
,
X.
Guan
,
Y.
Zhou
,
S. M.
Prokes
,
C.
Ronning
,
V. M.
Shalaev
,
A.
Boltasseva
,
M. A.
Kats
, and
S.
Ramanathan
,
Phys. Rev. Appl.
7
,
2331
7019
(
2017
).
42.
V.
Grillo
and
F.
Rossi
,
Ultramicroscopy
125
,
112
129
(
2013
).
43.
L.
Wang
,
Y.-Q.
Hao
,
W.
Ma
, and
S.
Liang
,
Rare Met.
40
(
5
),
1337
1346
(
2021
).
44.
D.
Lee
,
T.
Min
,
G.
Lee
,
J.
Kim
,
S.
Song
,
J.
Lee
,
J. S.
Bae
,
H.
Kang
,
J.
Lee
, and
S.
Park
,
J. Phys. Chem. Lett.
11
(
22
),
9680
9688
(
2020
).
45.
L.
Chen
,
L.
Wang
,
K.
Jiang
,
J. Z.
Zhang
,
Y. W.
Li
,
L. Y.
Shang
,
L. Q.
Zhu
,
S. J.
Gong
, and
Z. G.
Hu
,
J. Phys. Chem. Lett.
14
(
25
),
5760
5767
(
2023
).
46.
A.
Sohn
,
H.
Kim
,
D.-W.
Kim
,
C.
Ko
,
S.
Ramanathan
,
J.
Park
,
G.
Seo
,
B.-J.
Kim
,
J.-H.
Shin
, and
H.-T.
Kim
,
Appl. Phys. Lett.
101
(
19
),
191605
(
2012
).
47.
A.
Sohn
,
H.
Kim
,
D.-W.
Kim
,
C.
Ko
,
S.
Ramanathan
,
J.
Park
,
G.
Seo
,
B.-J.
Kim
,
J.-H.
Shin
, and
H.-T.
Kim
,
Appl. Phys. Lett.
107
(
10
),
171603
(
2015
).
You do not currently have access to this content.