In response to the challenges posed by traditional computing architectures in handling big data and AI demands, neuromorphic computing has emerged as a promising alternative inspired by the brain's efficiency. This study focuses on three-terminal synaptic transistors utilizing graphene and P(VDF-TrFE) to achieve dynamic reconfigurability between excitatory and inhibitory response modes, which are crucial for mimicking biological functions. The devices operate by applying different top gate spikes (±25 V and ±10 V) to modulate the polarization degree of P(VDF-TrFE), thereby regulating the carrier type and concentration in the graphene channel. This results in the effective realization of enhancement and inhibition processes in two neural-like states: excitatory and inhibitory modes, accompanied by good neural plasticity with paired-pulse facilitation and spike-time-dependent plasticity. With these features, the synaptic devices achieve brain-like memory enhancement and human-like perception functions, exhibiting excellent stability, durability over 1000 cycles, and a long retention period exceeding 10 years. Additionally, the performance of the artificial neural network is evaluated for handwritten digit recognition, achieving a high recognition accuracy of 92.28%. Our study showcases the development of highly stable, dynamically reconfigurable artificial synaptic transistors capable of emulating complex neural functions, providing a foundation for emerging neuromorphic computing systems and AI technologies.

1.
N.
Jones
, “
How to stop data centres from gobbling up the world's electricity
,”
Nature
561
,
163
166
(
2018
).
2.
P. A.
Merolla
,
J. V.
Arthur
,
R.
Alvarez-Icaza
,
A. S.
Cassidy
,
J.
Sawada
,
F.
Akopyan
,
B. L.
Jackson
,
N.
Imam
,
C.
Guo
,
Y.
Nakamura
,
B.
Brezzo
,
I.
Vo
,
S. K.
Esser
,
R.
Appuswamy
,
B.
Taba
,
A.
Amir
,
M. D.
Flickner
,
W. P.
Risk
,
R.
Manohar
, and
D. S.
Modha
, “
A million spiking-neuron integrated circuit with a scalable communication network and interface
,”
Science
345
,
668
673
(
2014
).
3.
M. A.
Zidan
,
J. P.
Strachan
, and
W. D.
Lu
, “
The future of electronics based on memristive systems
,”
Nat. Electron.
1
,
22
29
(
2018
).
4.
C.
Liu
,
X.
Yan
,
X.
Song
,
S.
Ding
,
D. W.
Zhang
, and
P.
Zhou
, “
A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications
,”
Nat. Nanotech.
13
,
404
(
2018
).
5.
Y. H.
Jung
,
B.
Park
,
J. U.
Kim
, and
T.
Kim
, “
Bioinspired Electronics for Artificial Sensory Systems
,”
Adv. Mater.
31
,
1803637
(
2019
).
6.
Y.
Chen
,
Y.
Zhou
,
F.
Zhuge
,
B.
Tian
,
M.
Yan
,
Y.
Li
,
Y.
He
, and
X. S.
Miao
, “
Graphene-ferroelectric transistors as complementary synapses for supervised learning in spiking neural network
,”
Npj 2D Mater. Appl.
3
,
31
(
2019
).
7.
C. J.
Wan
,
L. Q.
Zhu
,
Y. H.
Liu
,
P.
Feng
,
Z. P.
Liu
,
H. L.
Cao
,
P.
Xiao
,
Y.
Shi
, and
Q.
Wan
, “
Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems
,”
Adv. Mater.
28
,
3557
(
2016
).
8.
H.
Wang
,
M.
Yang
,
Q.
Tang
,
X.
Zhao
,
Y.
Tong
, and
Y.
Liu
, “
Flexible, conformal organic synaptic transistors on elastomer for biomedical applications
,”
Adv. Funct. Mater.
29
,
1901107
(
2019
).
9.
V. M.
Ho
,
J.
Lee
, and
K. C.
Martin
, “
The cell biology of synaptic plasticity
,”
Science
334
,
623
628
(
2011
).
10.
Q.
Xia
and
J. J.
Yang
, “
Memristive crossbar arrays for brain-inspired computing
,”
Nat. Mater.
18
,
518
(
2019
).
11.
J.
Wang
,
D.
He
,
R.
Chen
,
H.
Xu
,
H.
Wang
,
M.
Yang
,
Q.
Zhang
,
C.
Jiang
,
W.
Li
,
X.
Ouyang
, and
X.
Xiao
, “
Low operating voltage memtransistors based on ion bombarded p-type GeSe nanosheets for artificial synapse applications
,”
InfoMat
5
,
e12476
(
2023
).
12.
H.
Tian
,
W.
Mi
,
X.
Wang
,
H.
Zhao
,
Q.
Xie
,
C.
Li
,
Y.
Li
,
Y.
Yang
, and
T.
Ren
, “
Graphene dynamic synapse with modulatable plasticity
,”
Nano Lett.
15
,
8013
8019
(
2015
).
13.
P. B.
Pillai
and
M. M.
De Souza
, “
Nanoionics-based three-terminal synaptic device using zinc oxide
,”
ACS Appl. Mater. Interfaces
9
,
1609
1618
(
2017
).
14.
M.
Jin
,
H.
Lee
,
J. H.
Lee
,
D.
Han
,
C.
Im
,
J.
Kim
,
M.
Jeon
,
E.
Lee
, and
Y. S.
Kim
, “
Ferroelectrically modulated ion dynamics in Li+ electrolyte-gated transistors for neuromorphic computing
,”
Appl. Phys. Rev.
10
,
011407
(
2023
).
15.
H.
Wan
,
Y.
Cao
,
L.
Lo
,
J.
Zhao
,
N.
Sepulveda
, and
C.
Wang
, “
Flexible carbon nanotube synaptic transistor for neurological electronic skin applications
,”
ACS Nano
14
,
10402
10412
(
2020
).
16.
M.
Prezioso
,
F.
Merrikh-Bayat
,
B. D.
Hoskins
,
G. C.
Adam
,
K. K.
Likharev
, and
D. B.
Strukov
, “
Training and operation of an integrated neuromorphic network based on metal-oxide memristors
,”
Nature
521
,
61
64
(
2015
).
17.
L. F.
Abbott
and
S. B.
Nelson
, “
Synaptic plasticity: Taming the beast
,”
Nat. Neurosci.
3
,
1178
1183
(
2000
).
18.
S.
Seo
,
S.
Jo
,
S.
Kim
,
J.
Shim
,
S.
Oh
,
J.
Kim
,
K.
Heo
,
J.
Choi
,
C.
Choi
,
S.
Oh
,
D.
Kuzum
,
H. S. P.
Wong
, and
J.
Park
, “
Artificial optic-neural synapse for colored and color-mixed pattern recognition
,”
Nat. Commun.
9
,
5106
(
2018
).
19.
C.
Liu
,
H.
Chen
,
S.
Wang
,
Q.
Liu
,
Y.
Jiang
,
D. W.
Zhang
,
M.
Liu
, and
P.
Zhou
, “
Two-dimensional materials for next-generation computing technologies
,”
Nat. Nanotechnol.
15
,
545
557
(
2020
).
20.
D.
Akinwande
,
C.
Huyghebaert
,
C.
Wang
,
M. I.
Serna
,
S.
Goossens
,
L.
Li
,
H. S. P.
Wong
, and
F. H. L.
Koppens
, “
Graphene and two-dimensional materials for silicon technology
,”
Nature
573
,
507
518
(
2019
).
21.
X.
Zhang
,
H.
Huang
,
X.
Yao
,
Z.
Lo
,
C.
Zhou
,
X.
Zhang
,
P.
Chen
,
L.
Fu
,
X.
Zhou
,
J.
Wang
,
W.
Hu
,
W.
Lu
,
J.
Zou
,
H. H.
Tan
, and
C.
Jagadish
, “
Ultrasensitive mid-wavelength infrared photodetection based on a single InAs nanowire
,”
ACS Nano
13
,
3492
3499
(
2019
).
22.
X.
Zhang
,
X.
Yao
,
Z.
Li
,
C.
Zhou
,
X.
Yuan
,
Z.
Tang
,
W.
Hu
,
X.
Gan
,
J.
Zou
,
P.
Chen
, and
W.
Lu
, “
Surface-states-modulated high-performance InAs nanowire phototransistor
,”
J. Phys. Chem. Lett.
11
,
6413
6419
(
2020
).
23.
V.
Pelgrin
,
H. H.
Yoon
,
E.
Cassan
, and
Z.
Sun
, “
Hybrid integration of 2D materials for on-chip nonlinear photonics
,”
Light Adv. Manuf.
4
,
168
(
2023
).
24.
M.
Wang
,
X.
Zhuang
,
F.
Liu
,
Y.
Chen
,
Z.
Sa
,
Y.
Yin
,
Z.
Lv
,
H.
Wei
,
K.
Song
,
B.
Cao
, and
Z.
Yang
, “
New approach to low-power-consumption, high-performance photodetectors enabled by nanowire source-gated transistors
,”
Nano Lett.
22
,
9707
9713
(
2022
).
25.
G.
Wang
,
F.
Liu
,
R.
Chen
,
M.
Wang
,
Y.
Yin
,
J.
Zhang
,
Z.
Sa
,
P.
Li
,
J.
Wan
,
L.
Sun
,
Z.
Lv
,
Y.
Tan
,
F.
Chen
, and
Z.
Yang
, “
Tunable contacts of Bi2O2Se nanosheets MSM photodetectors by metal-assisted transfer approach for self-powered near-infrared photodetection
,”
Small
20
,
2306363
(
2024
).
26.
X.
Li
,
Z.
Wang
,
X.
Tang
,
P.
Yuan
,
L.
Li
,
C.
Shen
,
Y.
Jiang
,
X.
Song
, and
C.
Xia
, “
Logic computing field-effect transistors based on a monolayer WSe2 homojunction for the semi-adder and decoder
,”
Nano Lett.
24
,
11132
11139
(
2024
).
27.
A.
Ali
,
M.
Schrade
,
W.
Xing
,
P. E.
Vullum
,
O.
Koybasi
,
T.
Taniguchi
,
K.
Watanabe
, and
B. D.
Belle
, “
Two-dimensional heterostructure complementary logic enabled by optical writing
,”
Small Sci.
4
,
2300319
(
2024
).
28.
S.
Mukherjee
,
D.
Dutta
,
A.
Ghosh
, and
E.
Koren
, “
Graphene-In2Se3 van der Waals heterojunction neuristor for optical in-memory bimodal operation
,”
ACS Nano
17
,
22287
22298
(
2023
).
29.
A.
Ram
,
K.
Maity
,
C.
Marchand
,
A.
Mahmoudi
,
A. R.
Kshirsagar
,
M.
Soliman
,
T.
Taniguchi
,
K.
Watanabe
,
B.
Doudin
,
A.
Ouerghi
,
S.
Reichardt
,
I.
O'Connor
, and
J.
Dayen
, “
Reconfigurable multifunctional van der Waals ferroelectric devices and logic circuits
,”
ACS Nano
17
,
21865
21877
(
2023
).
30.
Z.
Wang
,
S.
Joshi
,
S. E.
Savel'Ev
,
H.
Jiang
,
R.
Midya
,
P.
Lin
,
M.
Hu
,
N.
Ge
,
J. P.
Strachan
,
Z.
Li
,
Q.
Wu
,
M.
Barne
,
G.
Li
,
H. L.
Xin
,
R. S.
Williams
,
Q.
Xia
, and
J. J.
Yang
, “
Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing
,”
Nat. Mater.
16
,
101
108
(
2017
).
31.
Y.
Wang
,
Y.
Zheng
,
J.
Gao
,
T.
Jin
,
E.
Li
,
X.
Lian
,
X.
Pan
,
C.
Han
,
H.
Chen
, and
W.
Chen
, “
Band-tailored van der Waals heterostructure for multilevel memory and artificial synapse
,”
InfoMat
3
,
917
928
(
2021
).
32.
X.
Zhang
,
Z.
Li
,
X.
Yao
,
H.
Huang
,
D.
Wei
,
C.
Zhou
,
Z.
Tang
,
X.
Yuan
,
P.
Chen
,
W.
Hu
,
J.
Zou
,
W.
Lu
, and
L.
Fu
, “
Light-induced positive and negative photoconductances of InAs nanowires toward rewritable nonvolatile memory
,”
ACS Appl. Electron. Mater.
1
,
1825
1831
(
2019
).
33.
S.
Dai
,
X.
Wu
,
D.
Liu
,
Y.
Chu
,
K.
Wang
,
B.
Yang
, and
J.
Huang
, “
Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors
,”
ACS Appl. Mater. Interfaces
10
,
21472
21480
(
2018
).
34.
F.
Zhang
,
C.
Li
,
Z.
Li
,
L.
Dong
, and
J.
Zhao
, “
Recent progress in three-terminal artificial synapses based on 2D materials: From mechanisms to applications
,”
Microsyst. Nanoeng.
9
,
21472
21480
(
2023
).
35.
J.
Shi
,
S. D.
Ha
,
Y.
Zhou
,
F.
Schoofs
, and
S.
Ramanathan
, “
A correlated nickelate synaptic transistor
,”
Nat. Commun.
4
,
267
(
2013
).
36.
Y.
Kaneko
,
Y.
Nishitani
, and
M.
Ueda
, “
Ferroelectric artificial synapses for recognition of a multishaded image
,”
IEEE Trans. Electron Devices
61
,
2827
2833
(
2014
).
37.
Y.
van de Burgt
,
E.
Lubberman
,
E. J.
Fuller
,
S. T.
Keene
,
G. C.
Faria
,
S.
Agarwal
,
M. J.
Marinella
,
A. A.
Talin
, and
A.
Salleo
, “
A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing
,”
Nat. Mater.
16
,
414
(
2017
).
38.
S.
Dai
,
Y.
Zhao
,
Y.
Wang
,
J.
Zhang
,
L.
Fang
,
S.
Jin
,
Y.
Shao
, and
J.
Huang
, “
Recent advances in transistor-based artificial synapses
,”
Adv. Funct. Mater.
29
,
1903700
(
2019
).
39.
D.
Kuzum
,
R. G. D.
Jeyasingh
,
B.
Lee
, and
H. S. P.
Wong
, “
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
,”
Nano Lett.
12
,
2179
2186
(
2012
).
40.
M.
Si
,
A. K.
Saha
,
S.
Gao
,
G.
Qiu
,
J.
Qin
,
Y.
Duan
,
J.
Jian
,
C.
Niu
,
H.
Wang
,
W.
Wu
,
S. K.
Gupta
, and
P. D.
Ye
, “
A ferroelectric semiconductor field-effect transistor
,”
Nat. Electron.
2
,
580
586
(
2019
).
41.
S.
Wang
,
L.
Liu
,
L.
Gan
,
H.
Chen
,
X.
Hou
,
Y.
Ding
,
S.
Ma
,
D. W.
Zhang
, and
P.
Zhou
, “
Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing
,”
Nat. Commun.
12
,
53
(
2021
).
42.
J.
Gao
,
X.
Lian
,
Z.
Chen
,
S.
Shi
,
E.
Li
,
Y.
Wang
,
T.
Jin
,
H.
Chen
,
L.
Liu
,
J.
Chen
,
Y.
Zhu
, and
W.
Chen
, “
Multifunctional MoTe2 Fe-FET enabled by ferroelectric polarization-assisted charge trapping
,”
Adv. Funct. Mater.
32
,
2110415
(
2022
).
43.
H.
Tian
,
X.
Cao
,
Y.
Xie
,
X.
Yan
,
A.
Kostelec
,
D.
Dimarzio
,
C.
Chang
,
L.
Zhao
,
W.
Wu
,
J.
Tice
,
J. J.
Cha
,
J.
Guo
, and
H.
Wang
, “
Emulating bilingual synaptic response using a junction-based artificial synaptic device
,”
ACS Nano
11
,
7156
7163
(
2017
).
44.
Y.
Yao
,
X.
Huang
,
S.
Peng
,
D.
Zhang
,
J.
Shi
,
G.
Yu
,
Q.
Liu
, and
Z.
Jin
, “
Reconfigurable artificial synapses between excitatory and inhibitory modes based on single-gate graphene transistors
,”
Adv. Electron. Mater.
5
,
1800887
(
2019
).
45.
M. T.
Sharbati
,
Y.
Du
,
J.
Torres
,
N. D.
Ardolino
,
M.
Yun
, and
F.
Xiong
, “
Low-power, electrochemically tunable graphene synapses for neuromorphic computing
,”
Adv. Mater.
30
,
1802353
(
2018
).
46.
Y.
Jiang
,
L.
Zhang
,
R.
Wang
,
H.
Li
,
L.
Li
,
S.
Zhang
,
X.
Li
,
J.
Su
,
X.
Song
, and
C.
Xia
, “
Asymmetric ferroelectric-gated two-dimensional transistor integrating self-rectifying photoelectric memory and artificial synapse
,”
ACS Nano
16
,
11218
11226
(
2022
).
47.
G.
Wu
,
X.
Zhang
,
G.
Feng
,
J.
Wang
,
K.
Zhou
,
J.
Zeng
,
D.
Dong
,
F.
Zhu
,
C.
Yang
,
X.
Zhao
,
D.
Gong
,
M.
Zhang
,
B.
Tian
,
C.
Duan
,
Q.
Liu
,
J.
Wang
,
J.
Chu
, and
M.
Liu
, “
Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing
,”
Nat. Mater.
22
,
1499
1506
(
2023
).
48.
B.
Cui
,
Z.
Fan
,
W.
Li
,
Y.
Chen
,
S.
Dong
,
Z.
Tan
,
S.
Cheng
,
B.
Tian
,
R.
Tao
,
G.
Tian
,
D.
Chen
,
Z.
Hou
,
M.
Qin
,
M.
Zeng
,
X.
Lu
,
G.
Zhou
,
X.
Gao
, and
J.
Liu
, “
Ferroelectric photosensor network: An advanced hardware solution to real-time machine vision
,”
Nat. Commun.
13
,
1707
(
2022
).
49.
F.
Schwierz
, “
Graphene transistors: Status, prospects, and problems
,”
Proc. IEEE
101
,
1567
1584
(
2013
).
50.
T. F.
Schranghamer
,
A.
Oberoi
, and
S.
Das
, “
Graphene memristive synapses for high precision neuromorphic computing
,”
Nat. Commun.
11
,
5474
(
2020
).
51.
D.
Feng
,
Z.
Niu
,
J.
Yang
,
W.
Xu
,
S.
Liu
,
X.
Mao
, and
X.
Li
, “
Flexible artificial synapse with relearning function based on ion gel-graphene FET
,”
Nano Energy
90
,
106526
(
2021
).
52.
D.
van Blooijs
,
M. A. A.
van den Boom
,
J. F. F.
van der Aar
,
G. M. M.
Huiskamp
,
G.
Castegnaro
,
M.
Demuru
,
W. J. E. M.
Zweiphenning
,
P.
van Eijsden
,
K. J. J.
Miller
,
F. S. S.
Leijten
, and
D.
Hermes
, “
Developmental trajectory of transmission speed in the human brain
,”
Nat. Neurosci.
26
,
537
(
2023
).
53.
S.
Luo
,
L.
Shao
,
D.
Ji
,
Y.
Chen
,
X.
Wang
,
Y.
Wu
,
D.
Kong
,
M.
Guo
,
D.
Wei
,
Y.
Zhao
,
Y.
Liu
, and
D.
Wei
, “
Highly bionic neurotransmitter-communicated neurons following integrate-and-fire dynamics
,”
Nano Lett.
23
,
4974
4982
(
2023
).
54.
E. A.
Lumpkin
and
M. J.
Caterina
, “
Mechanisms of sensory transduction in the skin
,”
Nature
445
,
858
865
(
2007
).
55.
D.
Kim
and
J.
Lee
, “
Neurotransmitter-induced excitatory and inhibitory functions in artificial synapses
,”
Adv. Funct. Mater.
32
,
2200497
(
2022
).
56.
J. K.
Zubieta
,
J. A.
Bueller
,
L. R.
Jackson
,
D. J.
Scott
,
Y. J.
Xu
,
R. A.
Koeppe
,
T. E.
Nichols
, and
C. S.
Stohler
, “
Placebo effects mediated by endogenous opioid activity on u-opioid receptors
,”
J. Neurosci.
25
,
7754
7762
(
2005
).
57.
D. V.
Buonomano
and
W.
Maass
, “
State-dependent computations: Spatiotemporal processing in cortical networks
,”
Nat. Rev. Neurosci.
10
,
113
125
(
2009
).
58.
R.
Xu
,
H.
Jang
,
M.
Lee
,
D.
Arnanov
,
Y.
Cho
,
H.
Kim
,
S.
Park
,
H.
Shin
, and
D.
Ham
, “
Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV
,”
Nano Lett.
19
,
2411
2417
(
2019
).
59.
S.
Song
,
K. D.
Miller
, and
L. F.
Abbott
, “
Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
,”
Nat. Neurosci.
3
,
919
926
(
2000
).
60.
P. J.
Sjoestroem
,
E. A.
Rancz
,
A.
Roth
, and
M.
Haeusser
, “
Dendritic excitability and synaptic plasticity
,”
Physiol. Rev.
88
,
769
840
(
2008
).
61.
G. Q.
Bi
and
M. M.
Poo
, “
Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
,”
J. Neurosci.
18
,
10464
10472
(
1998
).
62.
Z.
Dang
,
F.
Guo
,
H.
Duan
,
Q.
Zhao
,
Y.
Fu
,
W.
Jie
,
K.
Jin
, and
J.
Hao
, “
Black phosphorus/ferroelectric P(VDF-TrFE) field-effect transistors with high mobility for energy-efficient artificial synapse in high-accuracy neuromorphic computing
,”
Nano Lett.
23
,
6752
6759
(
2023
).
63.
X.
Wang
,
N.
Rivera-Bolanos
,
B.
Jiang
, and
G. A.
Ameer
, “
Advanced functional biomaterials for stem cell delivery in regenerative engineering and medicine
,”
Adv. Funct. Mater.
29
,
1809009
(
2019
).
64.
J.
Zeng
,
J.
Zhao
,
T.
Bu
,
G.
Liu
,
Y.
Qi
,
H.
Zhou
,
S.
Dong
, and
C.
Zhang
, “
A flexible tribotronic artificial synapse with bioinspired neurosensory behavior
,”
Nano-Micro Lett.
15
,
18
(
2023
).
65.
C.
Zhu
,
H.
Liu
,
W.
Wang
,
L.
Xiang
,
J.
Jiang
,
Q.
Shuai
,
X.
Yang
,
T.
Zhang
,
B.
Zheng
,
H.
Wang
,
D.
Li
, and
A.
Pan
, “
Optical synaptic devices with ultra-low power consumption for neuromorphic computing
,”
Light. Sci. Appl.
11
,
337
(
2022
).
You do not currently have access to this content.