Electrochromic oxides have tremendous potential applications in smart windows, displays, and camouflage due to their capability for selective modulation of visible and near-infrared optical spectra. Although these applications are dependent on the optical performance, the origin of the optical absorption in electrochromic oxides is not clear. Here, we demonstrate that the electrochromism of all amorphous cathodic electrochromic oxides can be described by a combination of polaron and bipolaron hopping. Based on the valences of the metallic constituents, we model experimental optical absorption spectra by polaron theory and assign two prominent absorption peaks to polaronic and bipolaronic charge transfer excitations. However, in the special case of V2O5, three peaks were necessary to fit the optical spectra. The activation energies of polaronic and bipolaronic hopping were remarkably similar for all the cathodic oxides studied. Within the framework of polaron absorption, V2O5 would be categorized as a cathodic oxide, rather than as a mixed anodic/cathodic material as in the conventional picture. We emphasize that our findings here not only offer a profound understanding of all amorphous cathodic electrochromic oxides but also pave the way for exploring electrochromic oxides with dual-band modulations.

1.
S. M.
Islam
,
T. S.
Hernandez
,
M. D.
McGehee
, and
C. J.
Barile
, “
Hybrid dynamic windows using reversible metal electrodeposition and ion insertion
,”
Nat. Energy
4
(
3
),
223
229
(
2019
).
2.
A.
Llordes
,
G.
Garcia
,
J.
Gazquez
, and
D. J.
Milliron
, “
Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites
,”
Nature
500
(
7462
),
323
326
(
2013
).
3.
R. T.
Wen
,
C. G.
Granqvist
, and
G. A.
Niklasson
, “
Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films
,”
Nat. Mater.
14
(
10
),
996
1001
(
2015
).
4.
Z.
Wang
,
X.
Wang
,
S.
Cong
,
J.
Chen
,
H.
Sun
,
Z.
Chen
,
G.
Song
,
F.
Geng
,
Q.
Chen
, and
Z.
Zhao
, “
Towards full-colour tunability of inorganic electrochromic devices using ultracompact Fabry-Perot nanocavities
,”
Nat. Commun.
11
(
1
),
302
(
2020
).
5.
Y.
Wang
,
S.
Wang
,
X.
Wang
,
W.
Zhang
,
W.
Zheng
,
Y. M.
Zhang
, and
S. X.
Zhang
, “
A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer
,”
Nat. Mater.
18
(
12
),
1335
1342
(
2019
).
6.
H.
Li
,
L.
McRae
,
C. J.
Firby
, and
A. Y.
Elezzabi
, “
Rechargeable aqueous electrochromic batteries utilizing ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes
,”
Adv. Mater.
31
(
15
),
e1807065
(
2019
).
7.
H. H.
Chou
,
A.
Nguyen
,
A.
Chortos
,
J. W.
To
,
C.
Lu
,
J.
Mei
,
T.
Kurosawa
,
W. G.
Bae
,
J. B.
Tok
, and
Z.
Bao
, “
A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing
,”
Nat. Commun.
6
,
8011
(
2015
).
8.
S.
Lin
,
X.
Bai
,
H.
Wang
,
H.
Wang
,
J.
Song
,
K.
Huang
,
C.
Wang
,
N.
Wang
,
B.
Li
,
M.
Lei
, and
H.
Wu
, “
Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows
,”
Adv. Mater.
29
(
41
),
1703238
(
2017
).
9.
C. G.
Granqvist
,
Handbook of Inorganic Electrochromic Materials
(
Elsevier Science
,
1995
).
10.
Z.
Wang
,
X.
Wang
,
S.
Cong
,
F.
Geng
, and
Z.
Zhao
, “
Fusing electrochromic technology with other advanced technologies: A new roadmap for future development
,”
Mater. Sci. Eng. R
140
,
100524
(
2020
).
11.
C. G.
Granqvist
,
M. A.
Arvizu
,
İ.
Bayrak Pehlivan
,
H. Y.
Qu
,
R. T.
Wen
, and
G. A.
Niklasson
, “
Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review
,”
Electrochim. Acta
259
,
1170
1182
(
2018
).
12.
S.
Darmawi
,
S.
Burkhardt
,
T.
Leichtweiss
,
D. A.
Weber
,
S.
Wenzel
,
J.
Janek
,
M. T.
Elm
, and
P. J.
Klar
, “
Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide
,”
Phys. Chem. Chem. Phys.
17
(
24
),
15903
15911
(
2015
).
13.
M. F.
Saenger
,
T.
Höing
,
T.
Hofmann
, and
M.
Schubert
, “
Polaron transitions in charge intercalated amorphous tungsten oxide thin films
,”
Phys. Status Solidi A
205
(
4
),
914
917
(
2008
).
14.
N. S.
Hush
, “
Intervalence-transfer absorption. Part 2. Theoretical considerations and spectroscopic data
,”
Prog. Inorg. Chem.
8
,
391
444
(
1967
).
15.
B. W.
Faughnan
,
R. S.
Crandall
, and
P. M.
Heyman
, “
Electrochromism in WO3 amorphous films
,”
RCA Rev.
36
,
177
197
(
1975
), see https://www.rsp-italy.it/Electronics/Magazines/RCA%20Review/_contents/RCA%20Review%201975-03.pdf#page=179.
16.
O. F.
Schirmer
,
V.
Wittwer
,
G.
Baur
, and
G.
Brandt
, “
Dependence of WO3 electrochromic absorption on crystallinity
,”
J. Electrochem. Soc.
124
(
5
),
749
753
(
1977
).
17.
N.
Bondarenko
,
O.
Eriksson
, and
N. V.
Skorodumova
, “
Polaron mobility in oxygen-deficient and lithium-doped tungsten trioxide
,”
Phys. Rev. B
92
(
16
),
165119
(
2015
).
18.
C. A.
Triana
,
C. G.
Granqvist
, and
G. A.
Niklasson
, “
Electrochromism and small-polaron hopping in oxygen deficient and lithium intercalated amorphous tungsten oxide films
,”
J. Appl. Phys.
118
(
2
),
024901
(
2015
).
19.
L.
Berggren
,
J. C.
Jonsson
, and
G. A.
Niklasson
, “
Optical absorption in lithiated tungsten oxide thin films: Experiment and theory
,”
J. Appl. Phys.
102
(
8
),
083538
(
2007
).
20.
R.
Zhang
,
Q.
Zhou
,
S.
Huang
,
Y.
Zhang
, and
R. T.
Wen
, “
Capturing ion trapping and detrapping dynamics in electrochromic thin films
,”
Nat. Commun.
15
(
1
),
2294
(
2024
).
21.
E.
Avendaño
,
H.
Rensmo
,
A.
Azens
,
A.
Sandell
,
G. d M.
Azevedo
,
H.
Siegbahn
,
G. A.
Niklasson
, and
C. G.
Granqvist
, “
Coloration mechanism in proton-intercalated electrochromic hydrated NiOy and Ni1−xVxOy thin films
,”
J. Electrochem. Soc.
156
(
8
),
P132
(
2009
).
22.
I. G.
Austin
and
N. F.
Mott
, “
Polarons in crystalline and non-crystalline materials
,”
Adv. Phys.
18
(
71
),
41
102
(
1969
).
23.
V. N.
Bogomolov
and
D. N.
Mirlin
, “
Optical absorption by polarons in rutile (TiO2) single crystals
,”
Phys. Status Solidi B
27
(
1
),
443
453
(
1968
).
24.
O. F.
Schirmer
and
E.
Salje
, “
The W5+ polaron in crystalline low temperature WO3: ESR and optical absorption
,”
Solid State Commun.
33
(
3
),
333
336
(
1980
).
26.
V. V.
Bryksin
, “
Optical intraband absorption in disordered systems with a strong electron-phonon interaction [English translation: Sov. Phys. Solid State 24 (1982) 627–631]
,”
Fiz. Tverd. Tela
24
,
1110
1117
(
1982
).
27.
D.
Emin
, “
Optical properties of large and small polarons and bipolarons
,”
Phys. Rev. B
48
(
18
),
13691
13702
(
1993
).
28.
B. E.
Sernelius
, “
Free-polaron absorption
,”
Phys. Rev. B
48
(
10
),
7043
7049
(
1993
).
29.
T.
He
, “
Optical absorption of free small polarons at high temperatures
,”
Phys. Rev. B
51
(
23
),
16689
16694
(
1995
).
30.
W. Q.
Hong
, “
Extraction of extinction coefficient of weak absorbing thin films from special absorption
,”
J. Phys. D: Appl. Phys.
22
(
9
),
1384
1385
(
1989
).
31.
O. F.
Schirmer
,
P.
Koidl
, and
H. G.
Reik
, “
Bound small polaron optical absorption in V-type centres in MgO
,”
Phys. Status Solidi B
62
,
385
391
(
1974
).
32.
L.
Berggren
,
A.
Azens
, and
G. A.
Niklasson
, “
Polaron absorption in amorphous tungsten oxide films
,”
J. Appl. Phys.
90
(
4
),
1860
1863
(
2001
).
33.
C. A.
Triana
,
C. G.
Granqvist
, and
G. A.
Niklasson
, “
Optical absorption and small-polaron hopping in oxygen deficient and lithium-ion-intercalated amorphous titanium oxide films
,”
J. Appl. Phys.
119
(
1
),
015701
(
2016
).
34.
M.
Denesuk
and
D. R.
Uhlmann
, “
Site‐saturation model for the optical efficiency of tungsten oxide‐based devices
,”
J. Electrochem. Soc.
143
(
9
),
L186
L188
(
1996
).
35.
A.
Larsson
,
B. E.
Sernelius
, and
G. A.
Niklasson
, “
Optical absorption of Li-intercalated polycrystalline tungsten oxide films: comparison to large polaron theory
,”
Solid State Ionics
165
(
1-4
),
35
41
(
2003
).
36.
M.
Takayanagi
,
T.
Tsuchiya
,
S.
Ueda
,
T.
Higuchi
, and
K.
Terabe
, “
In situ hard x-ray photoelectron spectroscopy on the origin of irreversibility in electrochromic LixWO3 thin films
,”
Appl. Surf. Sci.
568
,
150898
(
2021
).
37.
P. W.
Chen
,
C. T.
Chang
,
T. F.
Ko
,
S. C.
Hsu
,
K. D.
Li
, and
J. Y.
Wu
, “
Fast response of complementary electrochromic device based on WO3/NiO electrodes
,”
Sci. Rep.
10
(
1
),
8430
(
2020
).
38.
J.
Bae
,
D. G.
Seo
,
S. M.
Park
,
K. T.
Park
,
H.
Kim
,
H. C.
Moon
, and
S. H.
Kim
, “
Optimized low-temperature fabrication of WO3 films for electrochromic devices
,”
J. Phys. D: Appl. Phys.
50
(
46
),
465105
(
2017
).
39.
Z.
Wang
,
G.
Chen
,
H.
Zhang
,
L.
Liang
,
J.
Gao
, and
H.
Cao
, “
In situ TEM investigation of hexagonal WO3 irreversible transformation to Li2WO4
,”
Scr. Mater.
203
,
114090
(
2021
).
40.
S.
Apergi
,
C.
Koch
,
G.
Brocks
,
S.
Olthof
, and
S.
Tao
, “
Decomposition of organic perovskite precursors on MoO3: Role of halogen and surface defects
,”
ACS Appl. Mater. Interfaces
14
(
30
),
34208
34219
(
2022
).
41.
K.
Murugappan
,
E. M.
Anderson
,
D.
Teschner
,
T. E.
Jones
,
K.
Skorupska
, and
Y.
Román-Leshkov
, “
Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation
,”
Nat. Catal.
1
(
12
),
960
967
(
2018
).
42.
J.
Aziz
,
H.
Kim
,
S.
Rehman
,
M. F.
Khan
, and
D. K.
Kim
, “
Chemical nature of electrode and the switching response of RF-sputtered NbOx films
,”
Nanomaterials
10
(
11
),
2164
(
2020
).
43.
S.
Kasatikov
,
E.
Filatova
,
S.
Sakhonenkov
,
A.
Konashuk
, and
A.
Makarova
, “
Relationship between Ta oxidation state and its local atomic coordination symmetry in a wide range of oxygen nonstoichiometry extent of TaOx
,”
J. Phys. Chem. C
123
(
11
),
6849
6860
(
2019
).
44.
S.
Huang
,
R.
Zhang
,
P.
Shao
,
Y.
Zhang
, and
R. T.
Wen
, “
Electrochromic performance fading and restoration in amorphous TiO2 thin films
,”
Adv. Opt. Mater.
10
(
16
),
2200903
(
2022
).
45.
J.
Rodrı́guez
,
M.
Gómez
,
J.
Ederth
,
G. A.
Niklasson
, and
C. G.
Granqvist
, “
Thickness dependence of the optical properties of sputter deposited Ti oxide films
,”
Thin Solid Films
365
(
1
),
119
125
(
2000
).
46.
L. R.
De Jesus
,
G. A.
Horrocks
,
Y.
Liang
,
A.
Parija
,
C.
Jaye
,
L.
Wangoh
,
J.
Wang
,
D. A.
Fischer
,
L. F.
Piper
,
D.
Prendergast
, and
S.
Banerjee
, “
Mapping polaronic states and lithiation gradients in individual V2O5 nanowires
,”
Nat. Commun.
7
,
12022
(
2016
).
47.
N.
Emond
,
B.
Torriss
, and
M.
Chaker
, “
Natural and induced growth of VO2 (M) on VO2 (B) ultrathin films
,”
Sci. Rep.
8
(
1
),
7153
(
2018
).
48.
G. A.
Niklasson
and
C. G.
Granqvist
, “
Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide and devices based on these
,”
J. Mater. Chem.
17
,
127
156
(
2007
).
You do not currently have access to this content.