Two-dimensional materials with multiple degrees of freedom, including spin, valleys, and orbitals, open up an exciting avenue for engineering multifunctional devices. Beyond spintronics, these degrees of freedom can lead to novel quantum effects such as valley-dependent Hall effects and orbital magnetism, which could revolutionize next-generation electronics. However, achieving independent control over valley polarization and orbital magnetism has been a challenge due to the need for large electric fields. A recent breakthrough involving pentalayer rhombohedral graphene has demonstrated the ability to individually manipulate anomalous Hall signals and orbital magnetic hysteresis, forming what is known as a valley-magnetic quartet. Here, we leverage the electrically tunable ferro-valleytricity of pentalayer rhombohedral graphene to develop nonvolatile memory and in-memory computation applications. We propose an architecture for a dense, scalable, and selector-less nonvolatile memory array that harnesses the electrically tunable ferro-valleytricity. In our designed array architecture, nondestructive read and write operations are conducted by sensing the valley state through two different pairs of terminals, allowing for independent optimization of read/write peripheral circuits. The power consumption of our PRG-based array is remarkably low, with only ∼6 nW required per write operation and ∼2.3 nW per read operation per cell. This consumption is orders of magnitude lower than that of the majority of state-of-the-art cryogenic memories. Additionally, we engineer in-memory computation by implementing majority logic operations within our proposed nonvolatile memory array without modifying the peripheral circuitry. Our framework presents a promising pathway toward achieving ultra-dense cryogenic memory and in-memory computation capabilities.

1.
S.
Ghosh
et al, “
Overview of circuits, systems, and applications of spintronics
,”
IEEE J. Emerging Sel. Top. Circuits Syst.
6
,
265
(
2016
).
2.
A.
Aziz
and
S. K.
Gupta
, “
Threshold switch augmented STT MRAM: Design space analysis and device-circuit co-design
,”
IEEE Trans. Electron Devices
65
,
5381
(
2018
).
3.
O.
Gunawan
,
Y. P.
Shkolnikov
,
K.
Vakili
,
T.
Gokmen
,
E. P.
De Poortere
, and
M.
Shayegan
, “
Valley susceptibility of an interacting two-dimensional electron system
,”
Phys. Rev. Lett.
97
,
186404
(
2006
).
4.
O.
Gunawan
,
B.
Habib
,
E. P.
De Poortere
, and
M.
Shayegan
, “
Quantized conductance in an AlAs two-dimensional electron system quantum point contact
,”
Phys. Rev. B
74
,
155436
(
2006
).
5.
M.
Shayegan
,
E. P.
De Poortere
,
O.
Gunawan
,
Y. P.
Shkolnikov
,
E.
Tutuc
, and
K.
Vakili
, “
Two-dimensional electrons occupying multiple valleys in AlAs
,”
Phys. Status Solidi B
243
,
3629
(
2006
).
6.
A.
Rycerz
,
J.
Tworzydło
, and
C. W. J.
Beenakker
, “
Valley filter and valley valve in graphene
,”
Nat. Phys.
3
,
172
(
2007
).
7.
J. R.
Schaibley
,
H.
Yu
,
G.
Clark
,
P.
Rivera
,
J. S.
Ross
,
K. L.
Seyler
,
W.
Yao
, and
X.
Xu
, “
Valleytronics in 2D materials
,”
Nat. Rev. Mater.
1
,
16055
(
2016
).
8.
M. S.
Hossain
,
M. K.
Ma
,
K. A.
Villegas-Rosales
,
Y. J.
Chung
,
L. N.
Pfeiffer
,
K. W.
West
,
K. W.
Baldwin
, and
M.
Shayegan
, “
Spontaneous valley polarization of itinerant electrons
,”
Phys. Rev. Lett.
127
,
116601
(
2021
).
9.
S.
Vosoughi-nia
,
G.
Rashedi
,
Y.
Hajati
, and
H.
Li
, “
Perfect valley and spin polarizations in a superlattice of ferromagnetic gapped graphene with spin-orbit coupling
,”
J. Magn. Magn. Mater.
488
,
165329
(
2019
).
10.
Q. Q.
Zhang
,
X. T.
An
, and
J. J.
Liu
, “
Electrical tuning of valley polarization in monolayer transition metal dichalcogenides
,”
Phys. Rev. B
107
,
035411
(
2023
).
11.
K. F.
Mak
,
K. L.
McGill
,
J.
Park
, and
P. L.
McEuen
, “
The valley hall effect in MoS2 transistors
,”
Science
344
(
6191
),
1489
1492
(
2014
).
12.
L.
Ju
et al, “
Topological valley transport at bilayer graphene domain walls
,”
Nature
520
,
650
(
2015
).
13.
J.
Yin
,
C.
Tan
,
D.
Barcons-Ruiz
,
I.
Torre
,
K.
Watanabe
,
T.
Taniguchi
,
J. C. W.
Song
,
J.
Hone
, and
F. H. L.
Koppens
, “
Tunable and giant valley-selective Hall effect in gapped bilayer graphene
,”
Science
375
,
1398
(
2022
).
14.
D.
Xiao
,
M. C.
Chang
, and
Q.
Niu
, “
Berry phase effects on electronic properties
,”
Rev. Mod. Phys.
82
,
1959
(
2010
).
15.
H.
Zhou
et al, “
Half- and quarter-metals in rhombohedral trilayer graphene
,”
Nature
598
,
429
(
2021
).
16.
H.
Zhou
et al, “
Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene
,”
Science
375
,
774
(
2022
).
17.
S. C.
de la Barrera
,
S.
Aronson
,
Z.
Zheng
,
K.
Watanabe
,
T.
Taniguchi
,
Q.
Ma
,
P.
Jarillo-Herrero
, and
R.
Ashoori
, “
Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field
,”
Nat. Phys.
18
,
771
(
2022
).
18.
Y.
Shi
et al, “
Electronic phase separation in multilayer rhombohedral graphite
,”
Nature
584
,
210
(
2020
).
19.
G.
Chen
et al, “
Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice
,”
Nature
579
,
56
(
2020
).
20.
H.
Sun
,
S. S.
Li
,
W. X.
Ji
, and
C. W.
Zhang
, “
Valley-dependent topological phase transition and quantum anomalous valley Hall effect in single-layer RuClBr
,”
Phys. Rev. B
105
,
195112
(
2022
).
21.
Z.
Song
,
R.
Quhe
,
S.
Liu
,
Y.
Li
,
J.
Feng
,
Y.
Yang
,
J.
Lu
, and
J.
Yang
, “
Tunable valley polarization and valley orbital magnetic moment hall effect in honeycomb systems with broken inversion symmetry
,”
Sci. Rep
5
,
13906
(
2015
).
22.
A. L.
Sharpe
,
E. J.
Fox
,
A. W.
Barnard
,
J.
Finney
,
K.
Watanabe
,
T.
Taniguchi
,
M. A.
Kastner
, and
D.
Goldhaber-Gordon
, “
Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene
,”
Science
365
,
605
(
2019
).
23.
M.
Serlin
,
C. L.
Tschirhart
,
H.
Polshyn
,
Y.
Zhang
,
J.
Zhu
,
K.
Watanabe
,
T.
Taniguchi
,
L.
Balents
, and
A. F.
Young
, “
Intrinsic quantized anomalous Hall effect in a moiré heterostructure
,”
Science
367
(
80
),
900
(
2020
).
24.
H.
Polshyn
et al, “
Electrical switching of magnetic order in an orbital Chern insulator
,”
Nature
588
,
66
(
2020
).
25.
S.
Chen
et al, “
Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene
,”
Nat. Phys.
17
,
374
(
2021
).
26.
T.
Li
et al, “
Quantum anomalous Hall effect from intertwined moiré bands
,”
Nature
600
,
641
(
2021
).
27.
T.
Han
et al, “
Orbital multiferroicity in pentalayer rhombohedral graphene
,”
Nature
623
,
41
(
2023
).
28.
S.
Alam
,
M. S.
Hossain
, and
A.
Aziz
, “
A non-volatile cryogenic random-access memory based on the quantum anomalous Hall effect
,”
Sci. Rep.
11
(
1
),
7892
(
2021
).
29.
S.
Alam
,
M. S.
Hossain
, and
A.
Aziz
, “
A cryogenic memory array based on superconducting memristors
,”
Appl. Phys. Lett.
119
,
082602
(
2021
).
30.
S.
Alam
,
M. S.
Hossain
,
S. R.
Srinivasa
, and
A.
Aziz
, “
Cryogenic memory technologies
,”
Nat. Electron.
6
(
3
),
185
198
(
2023
).
31.
M. M.
Islam
,
S.
Alam
,
M. S.
Hossain
,
K.
Roy
, and
A.
Aziz
, “
A review of cryogenic neuromorphic hardware
,”
J. Appl. Phys.
133
(
7
),
070701
(
2023
).
32.
M.
Ashbach
,
M. M.
Islam
,
S.
Alam
,
A.
Aziz
, and
S.
George
, “
Quantum anomalous Hall effect ternary content addressable memory
,” in
IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
(
IEEE
,
2024
), pp.
730
734
.
33.
S.
Alam
,
M. M.
Islam
,
M. S.
Hossain
,
K.
Ni
,
V.
Narayanan
, and
A.
Aziz
, “
Cryogenic memory array based on ferroelectric SQUID and heater cryotron
,” in
Device Research Conference (DRC)
(
2022
).
34.
M. M.
Islam
,
J.
Hutchins
,
S.
Alam
,
M. S.
Hossain
,
A.
Jaiswal
, and
A.
Aziz
, “
Quantum anomalous Hall effect-based variation robust binary content addressable memory
,” in
IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS)
(
IEEE
,
2023
), pp.
331
335
.
35.
See https://news.synopsys.com/home?item=122439 for “
Synopsys' HSPICE advances circuit simulation performance and analysis
,” accessed: 08-Apr-2024.
36.
Q.
Liu
,
K.
Fujiwara
,
X.
Meng
,
S. R.
Whiteley
,
T.
Van Duzer
,
N.
Yoshikawa
,
Y.
Thakahashi
,
T.
Hikida
, and
N.
Kawai
, “
Latency and power measurements on a 64-kb hybrid Josephson-CMOS memory
,”
IEEE Trans. Appl. Supercond.
17
,
526
(
2007
).
37.
Y. J.
Feng
,
X.
Meng
,
S. R.
Whiteley
,
T.
Van Duzer
,
K.
Fujiwara
,
H.
Miyakawa
, and
N.
Yoshikawa
, “
Josephson-CMOS hybrid memory with ultra-high-speed interface circuit
,”
IEEE Trans. Appl. Supercond.
13
,
467
470
(
2003
).
38.
P. F.
Yuh
, “
A 2-kbit superconducting memory chip
,”
IEEE Trans. Appl. Supercond.
3
,
3013
(
1993
).
39.
S.
Tahara
,
I.
Ishida
,
S.
Nagasawa
,
M.
Hidaka
,
H.
Tsuge
, and
Y.
Wada
, “
4-kbit Josephson nondestructive read-out RAM operated At 580 psec and 6.7 mW
,”
IEEE Trans. Magn.
27
,
2626
(
1991
).
40.
A.
Kirichenko
,
O.
Mukhanov
, and
D. K.
Brock
, “
A single flux quantum cryogenic random access memory
,” in Extended Abstracts of the 7th International Superconductive Electronics Conference (
1999
).
You do not currently have access to this content.