While the development of new solid electrolytes (SEs) is crucial for advancing energy storage technologies, revisiting existing materials with significantly improved knowledge of their physical properties and synthesis control offers significant opportunities for breakthroughs. Na1+xZr2SixP3−xO12 (NaSICON) SEs have recently regained attention for applications in both solid-state and aqueous redox flow batteries due to their improved electrochemical and mechanical properties, along with their inherent electrochemical stability, air robustness, and low manufacturing cost. Recent improvements in NaSICON have primarily targeted macroscopic property enhancements and synthesis techniques. To enable further breakthroughs in the performance of NaSICON SEs, future efforts should focus on understanding how modified synthesis conditions influence atomic and microscopic-scale features, such as conduction channels, electronic structures, phase distributions, and grain boundaries. These features ultimately control ion conductivity, mechanical properties, and electrochemical stability of NaSICON and its interfaces. Here, we review the current understanding of the structure-chemistry-property relationships of NaSICON SEs, focusing on atomic and microscopic levels. First, we introduce the proposed ionic conduction mechanisms in NaSICON crystallites. Then, we explore experimental investigations at phase and grain boundaries to assess ionic conduction and interfacial stability. We also examine strategies to address interfacial challenges such as high resistance and chemical reactions between SEs and electrodes, highlighting the difficulties in analyzing interfaces at the nano/atomic scale. Finally, we provide an outlook on advancing microscopy and spectroscopy techniques to enhance insights into NaSICON SEs ionic conduction and interfacial stability, supporting the development of improved long-duration energy storage devices.

1.
M.
Armand
and
J.-M.
Tarascon
, “
Building better batteries
,”
Nature
451
,
652
657
(
2008
).
2.
V.
Etacheri
,
R.
Marom
,
R.
Elazari
,
G.
Salitra
, and
D.
Aurbach
, “
Challenges in the development of advanced Li-ion batteries: A review
,”
Energy Environ. Sci.
4
,
3243
3262
(
2011
).
3.
R.
Thirupathi
,
V.
Kumari
,
S.
Chakrabarty
, and
S.
Omar
, “
Recent progress and prospects of NASICON framework electrodes for Na-ion batteries
,”
Prog. Mater. Sci.
137
,
101128
(
2023
).
4.
Y.
Li
et al, “
Recent advance on NASICON electrolyte in solid-state sodium metal batteries
,”
Energy Storage Mater.
56
,
582
599
(
2023
).
5.
R.
Rajagopalan
et al, “
Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON material
,”
Energy Storage Mater.
34
,
171
193
(
2021
).
6.
Z. L.
Jian
,
Y. S.
Hu
,
X. L.
Ji
, and
W.
Chen
, “
NASICON-structured materials for energy storage
,”
Adv. Mater.
29
,
1601925
(
2017
).
7.
Z.
Zhang
and
L. F.
Nazar
, “
Exploiting the paddle-wheel mechanism for the design of fast ion conductors
,”
Nat. Rev. Mater.
7
,
389
405
(
2022
).
8.
J.
Janek
and
W. G.
Zeier
, “
Challenges in speeding up solid-state battery development
,”
Nat. Energy
8
,
230
240
(
2023
).
9.
Y. S.
Meng
,
V.
Srinivasan
, and
K.
Xu
, “
Designing better electrolytes
,”
Science
378
,
eabq3750
(
2022
).
10.
Y.
Liu
,
Y.
Zhu
, and
Y.
Cui
, “
Challenges and opportunities towards fast-charging battery materials
,”
Nat. Energy
4
,
540
550
(
2019
).
11.
A.
Manthiram
,
X.
Yu
, and
S.
Wang
, “
Lithium battery chemistries enabled by solid-state electrolytes
,”
Nat. Rev. Mater.
2
,
16103
(
2017
).
12.
S.
Ohno
et al, “
Materials design of ionic conductors for solid state batteries
,”
Prog. Energy
2
,
022001
(
2020
).
13.
J.
Serra Moreno
et al, “
Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization
,”
J. Power Sources
248
,
695
702
(
2014
).
14.
K.
Vignarooban
,
P.
Badami
,
M. A. K. L.
Dissanayake
,
P.
Ravirajan
, and
A. M.
Kannan
, “
Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries
,”
Ionics
23
,
2817
2822
(
2017
).
15.
D.
Kumar
and
S. A.
Hashmi
, “
Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles
,”
J. Power Sources
195
,
5101
5108
(
2010
).
16.
H.
Gao
,
B.
Guo
,
J.
Song
,
K.
Park
, and
J. B.
Goodenough
, “
A composite gel–polymer/glass–fiber electrolyte for sodium-ion batteries
,”
Adv. Energy Mater.
5
,
1402235
(
2015
).
17.
Y.
Sun
et al, “
Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4
,”
J. Am. Chem. Soc.
141
,
5640
5644
(
2019
).
18.
Y.
Wang
et al, “
Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites
,”
J. Power Sources
293
,
735
740
(
2015
).
19.
X.
Lu
,
J. P.
Lemmon
,
V.
Sprenkle
, and
Z.
Yang
, “
Sodium-beta alumina batteries: Status and challenges
,”
JOM
62
,
31
36
(
2010
).
20.
J. B.
Goodenough
,
H.-P.
Hong
, and
J. A.
Kafalas
, “
Fast Na+-ion transport in skeleton structures
,”
Mater. Res. Bull.
11
,
203
220
(
1976
).
21.
H.-P.
Hong
, “
Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12
,”
Mater. Res. Bull.
11
,
173
182
(
1976
).
22.
H.
Jia
et al, “
Chalcogenide-based inorganic sodium solid electrolytes
,”
J. Mater. Chem. A
9
,
5134
5148
(
2021
).
23.
M.
Matsuo
et al, “
Sodium and magnesium ionic conduction in complex hydrides
,”
J. Alloys Compd.
580
,
S98
S101
(
2013
).
24.
H.
Oguchi
,
M.
Matsuo
,
S.
Kuromoto
,
H.
Kuwano
, and
S.
Orimo
, “
Sodium-ion conduction in complex hydrides NaAlH4 and Na3AlH6
,”
J. Appl. Phys.
111
,
036102
(
2012
).
25.
M.
Matsuo
et al, “
Sodium ionic conduction in complex hydrides with [BH4]− and [NH2]− anions
,”
Appl. Phys. Lett.
100
,
203904
(
2012
).
26.
H.
Kwak
et al, “
Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries
,”
Energy Storage Mater.
37
,
47
54
(
2021
).
27.
Y.
Qie
et al, “
Yttrium–sodium halides as promising solid-state electrolytes with high ionic conductivity and stability for Na-Ion batteries
,”
J. Phys. Chem. Lett.
11
,
3376
3383
(
2020
).
28.
H.
Huang
et al, “
Phase-structure-dependent Na ion transport in yttrium-iodide sodium superionic conductor Na3YI6
,”
J. Mater. Chem. A
9
,
26256
26265
(
2021
).
29.
H.
Huang
et al, “
Fast ion transport mechanism and electrochemical stability of trivalent metal iodide-based Na superionic conductors Na3XI6 (X = Sc, Y, La, and In)
,”
ACS Appl. Mater. Interfaces
14
,
36864
36874
(
2022
).
30.
W. S.
Tang
et al, “
Stabilizing superionic-conducting structures via mixed-anion solid solutions of Monocarba-closo-borate salts
,”
ACS Energy Lett.
1
,
659
664
(
2016
).
31.
J.
Huang
et al, “
Recent progress and strategic perspectives of inorganic solid electrolytes: Fundamentals, modifications, and applications in sodium metal batteries
,”
Chem. Soc. Rev.
52
,
4933
(
2023
).
32.
J.-F.
Wu
et al, “
Inorganic solid electrolytes for all-solid-state sodium batteries: Fundamentals and strategies for battery optimization
,”
Adv. Funct. Mater.
31
,
2008165
(
2021
).
33.
Z.
Zhang
et al, “
Na3Zr2Si2PO12: A stable Na+-ion solid electrolyte for solid-state batteries
,”
ACS Appl. Energy Mater.
3
,
7427
7437
(
2020
).
34.
T.-U.
Wi
et al, “
Chemical stability and degradation mechanism of solid electrolytes/aqueous media at a steady state for long-lasting sodium batteries
,”
Chem. Mater.
33
,
126
135
(
2021
).
35.
J.
Wolfenstine
,
W.
Go
,
Y.
Kim
, and
J.
Sakamoto
, “
Mechanical properties of NaSICON: A brief review
,”
Ionics
29
,
1
8
(
2023
).
36.
U.
Von Alpen
,
M. F.
Bell
, and
H. H.
Höfer
, “
Compositional dependence of the electrochemical and structural parameters in the Nasicon system (Na1+xSixZr2P3−xO12)
,”
Solid State Ionics
3–4
,
215
218
(
1981
).
37.
S.
Susman
,
C. J.
Delbecq
,
J. A.
McMillan
, and
M. F.
Roche
, “
NASIGLAS: A new vitreous electrolyte
,”
Solid State Ionics
9–10
,
667
673
(
1983
).
38.
Y.
Noguchi
,
E.
Kobayashi
,
L. S.
Plashnitsa
,
S.
Okada
, and
J.
Yamaki
, “
Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds
,”
Electrochim. Acta
101
,
59
65
(
2013
).
39.
T.
Lan
et al, “
Room-temperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials
,”
Nano Energy
65
,
104040
(
2019
).
40.
S.
Modak
,
J.
Valle
,
K.-T.
Tseng
,
J.
Sakamoto
, and
D. G.
Kwabi
, “
Correlating stability and performance of NaSICON membranes for aqueous redox flow batteries
,”
ACS Appl. Mater. Interfaces
14
,
19332
19341
(
2022
).
41.
T.
Ortmann
et al, “
Deposition of sodium metal at the copper-NaSICON interface for reservoir-free solid-state sodium batteries
,”
Adv. Energy Mater.
14
(15),
2302729
(
2024
).
42.
Q.
Zhang
et al, “
Effect on ionic conductivity of Na3+xZr2−xMxSi2PO12 (M=Y, La) by doping rare-earth elements
,”
IOP Conf. Ser.: Mater. Sci. Eng.
423
,
012122
(
2018
).
43.
J.
Yang
et al, “
Ultrastable all-solid-state sodium rechargeable batteries
,”
ACS Energy Lett.
5
,
2835
(
2020
).
44.
Y.
Liu
et al, “
A niobium-substituted sodium superionic conductor with conductivity higher than 5.5 mS cm−1 prepared by solution-assisted solid-state reaction method
,”
J. Power Sources
518
,
230765
(
2022
).
45.
Y.
Shao
et al, “
A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity
,”
Energy Storage Mater
23
,
514
521
(
2019
).
46.
D. T.
Qui
,
J. J.
Capponi
,
J. C.
Joubert
, and
R. D.
Shannon
, “
Crystal structure and ionic conductivity in Na4Zr2Si3O12
,”
J. Solid State Chem.
39
,
219
229
(
1981
).
47.
W.
Bogusz
,
F.
Krok
, and
W.
Jakubowski
, “
Bulk and grain boundary electrical conductivities of NASICON
,”
Solid State Ionics
2
,
171
174
(
1981
).
48.
J.-P.
Boilot
,
P.
Colomban
, and
G.
Collin
, “
Nasicon: Amorphous to crystalline compounds
,”
Solid State Ionics
18–19
,
974
980
(
1986
).
49.
K. D.
Kreuer
,
H.
Kohler
,
U.
Warhus
, and
H.
Schulz
, “
NASICON solid electrolytes part III: Sodium conductivity enhancement along domain and grain boundaries
,”
Mater. Res. Bull.
21
,
149
159
(
1986
).
50.
A.
Ahmad
,
T. A.
Wheat
,
A. K.
Kuriakose
,
J. D.
Canaday
, and
A. G.
McDonald
, “
Dependence of the properties of Nasicons on their composition and processing
,”
Solid State Ionics
24
,
89
97
(
1987
).
51.
F.
Krok
,
D.
Kony
,
J. R.
Dygas
,
W.
Jakubowski
, and
W.
Bogusz
, “
On some properties of NASICON doped with MgO and CoO
,”
Solid State Ionics
36
,
251
254
(
1989
).
52.
R. O.
Fuentes
,
F.
Figueiredo
,
F. M. B.
Marques
, and
J. I.
Franco
, “
Optimised NASICON ceramics for Na+ sensing
,”
Ionics
8
,
383
390
(
2002
).
53.
F.
Lalère
et al, “
An all-solid state NASICON sodium battery operating at 200 °C
,”
J. Power Sources
247
,
975
980
(
2014
).
54.
D. T.
Qui
et al, “
Thermal expansion of the framework in Nasicon-type structure and its relation to Na+ mobility
,”
Solid State Ionics
3–4
,
219
222
(
1981
).
55.
H.
Kohler
,
H.
Schulz
, and
O.
Melnikov
, “
Composition and conduction mechanism of the NASICON structure X-ray diffraction study on two crystals at different temperatures
,”
Mater. Res. Bull.
18
,
1143
1152
(
1983
).
56.
Z.
Zhang
et al, “
Correlated migration invokes higher Na+‐ion conductivity in NaSICON‐type solid electrolytes
,”
Adv. Energy Mater.
9
,
1902373
(
2019
).
57.
Z.
Zou
et al, “
Identifying migration channels and bottlenecks in monoclinic NASICON‐type solid electrolytes with hierarchical ion‐transport algorithms
,”
Adv. Funct. Mater.
31
,
2107747
(
2021
).
58.
Q.
Ma
et al, “
Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm−1 and its primary applications in symmetric battery cells
,”
J. Mater. Chem. A.
7
,
7766
7776
(
2019
).
59.
H.
Park
,
K.
Jung
,
M.
Nezafati
,
C.-S.
Kim
, and
B.
Kang
, “
Sodium ion diffusion in Nasicon (Na3Zr2Si2PO12) solid electrolytes: Effects of excess sodium
,”
ACS Appl. Mater. Interfaces
8
,
27814
27824
(
2016
).
60.
J. P.
Boilot
,
G.
Collin
, and
P.
Colomban
, “
Crystal structure of the true Nasicon: Na3Zr2Si2PO12
,”
Mater. Res. Bull.
22
,
669
676
(
1987
).
61.
J.
Wang
et al, “
Design principles for NASICON super-ionic conductors
,”
Nat. Commun.
14
,
5210
(
2023
).
62.
S.
Song
,
H. M.
Duong
,
A. M.
Korsunsky
,
N.
Hu
, and
L.
Lu
, “
A Na+ superionic conductor for room-temperature sodium batteries
,”
Sci. Rep.
6
,
32330
(
2016
).
63.
Y.
Lu
et al, “
A high‐performance monolithic solid‐state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte
,”
Adv. Energy Mater.
9
,
1901205
(
2019
).
64.
Z.
Deng
et al, “
Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes
,”
Nat. Commun.
13
,
4470
(
2022
).
65.
M.
Guin
and
F.
Tietz
, “
Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries
,”
J. Power Sources
273
,
1056
1064
(
2015
).
66.
B.
Ouyang
et al, “
Synthetic accessibility and stability rules of NASICONs
,”
Nat. Commun.
12
,
5752
(
2021
).
67.
T.
Ortmann
et al, “
Kinetics and pore formation of the sodium metal anode on NASICON-Type Na3.4Zr2Si2.4P0.6O12 for sodium solid-state batteries
,”
Adv. Energy Mater.
13
,
2202712
(
2023
).
68.
J. F.
Ihlefeld
et al, “
Scaling effects in sodium zirconium silicate phosphate (Na1+xZr2SixP3−xO12) ion-conducting thin films
,”
J. Am. Ceram. Soc.
99
,
2729
2736
(
2016
).
69.
S.
Naqash
,
D.
Sebold
,
F.
Tietz
, and
O.
Guillon
, “
Microstructure–conductivity relationship of Na3Zr2(SiO4)2(PO4) ceramics
,”
J. Am. Ceram. Soc.
102
,
1057
1070
(
2019
).
70.
Z.
Zhang
et al, “
A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life
,”
Adv. Energy Mater.
7
,
1601196
(
2017
).
71.
C.
Wang
et al, “
Grain boundary design of solid electrolyte actualizing stable all-solid-state sodium batteries
,”
Small
17
,
2103819
(
2021
).
72.
Y.
Zhao
,
C.
Wang
,
Y.
Dai
, and
H.
Jin
, “
Homogeneous Na+ transfer dynamic at Na/Na3Zr2Si2PO12 interface for all solid-state sodium metal batteries
,”
Nano Energy
88
,
106293
(
2021
).
73.
C.
Wang
,
H.
Jin
, and
Y.
Zhao
, “
Surface potential regulation realizing stable sodium/Na3Zr2Si2PO12 interface for room-temperature sodium metal batteries
,”
Small
17
,
2100974
(
2021
).
74.
C.
Wang
,
J.
Gao
,
X.
Gao
, and
Y.
Zhao
, “
Stabilizing the Na/Na3Zr2Si2PO12 interface through intrinsic feature regulation of Na3Zr2Si2PO12
,”
Cell Rep. Phys. Sci.
2
,
100478
(
2021
).
75.
M.
Samiee
,
B.
Radhakrishnan
,
Z.
Rice
,
Z.
Deng
,
Y.
Shirley Meng
,
S.
Ping Ong
, and
J.
Luo
, “
Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases
,”
J. Power Sources
347
,
229
237
(
2017
).
76.
Y.
Ji
and
T.
Komatsu
, “
Synthesis and Na+ ion conductivity of stoichiometric Na3Zr2Si2PO12 by liquid-phase sintering with NaPO3 glass
,”
Materials
14
,
3790
(
2021
).
77.
K.
Noi
,
K.
Suzuki
,
N.
Tanibata
,
A.
Hayashi
, and
M.
Tatsumisago
, “
Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive
,”
J. Am. Ceram. Soc.
101
,
1255
1265
(
2018
).
78.
K.
Suzuki
,
K.
Noi
,
A.
Hayashi
, and
M.
Tatsumisago
, “
Low temperature sintering of Na1+xZr2SixP3−xO12 by the addition of Na3BO3
,”
Scr. Mater.
145
,
67
70
(
2018
).
79.
J. A. S.
Oh
et al, “
Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: Effect of liquid phase sintering
,”
ACS Appl. Mater. Interfaces
11
,
40125
40133
(
2019
).
80.
H.
Wang
et al, “
Enhanced ionic conductivity of a Na3Zr2Si2PO12 solid electrolyte with Na2SiO3 obtained by liquid phase sintering for solid-state Na+ batteries
,”
Nanoscale
14
,
823
832
(
2022
).
81.
X. G.
Cao
,
X. H.
Zhang
,
T.
Tao
, and
H. Y.
Zhang
, “
Effects of antimony tin oxide (ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes
,”
Ceram. Int.
46
,
8405
8412
(
2020
).
82.
Z.
Sun
et al, “
Active control of interface dynamics in NASICON-based rechargeable solid-state sodium batteries
,”
Nano Lett.
22
,
7187
7194
(
2022
).
83.
K.
Okubo
et al, “
A dense NASICON sheet prepared by tape-casting and low temperature sintering
,”
Electrochim. Acta
278
,
176
181
(
2018
).
84.
M. L.
Bayard
and
G. G.
Barna
, “
A complex impedance analysis of the ionic conductivity of Na1+xZr2SixP3−xO12 ceramics
,”
J. Electroanal. Chem. Interfacial Electrochem.
91
,
201
209
(
1978
).
85.
A.
Hooper
, “
Conductivity studies of dense polycrystalline Na3Zr2PSi2O12
,”
J. Electroanal. Chem. Interfacial Electrochem.
109
,
161
166
(
1980
).
86.
R. S.
Gordon
,
G. R.
Miller
,
B. J.
McEntire
,
E. D.
Beck
, and
J. R.
Rasmussen
, “
Fabrication and characterization of Nasicon electrolytes
,”
Solid State Ionics
3–4
,
243
248
(
1981
).
87.
I. K.
Lloyd
,
T. K.
Gupta
, and
B. O.
Hall
, “
Sintering and characterization of alkaline-earth-doped and zirconium-defficient Na3Zr2Si2PO12
,”
Solid State Ionics
11
,
39
44
(
1983
).
88.
A. K.
Kuriakose
,
T. A.
Wheat
,
A.
Ahmad
, and
J.
Dirocco
, “
Synthesis, sintering, and microstructure of Nasicons
,”
J. Am. Ceram. Soc.
67
,
179
183
(
1984
).
89.
Reed
,
S. J. B.
, “
Electron probe microanalysis
,” in
Microprobe Techniques in the Earth Sciences
, edited by
P. J.
Potts
,
J. F. W.
Bowles
,
S. J. B.
Reed
, and
M. R.
Cave
(
Springer
,
Boston, MA
,
1995
), pp.
49
89
.
90.
M.
Kimura
,
K.-T.
Tseng
,
J.
Wolfenstine
, and
J.
Sakamoto
, “
The use of hot-pressing to reduce grain boundary resistance in Nasicon of nominal composition Na3Zr2Si2PO12
,”
Solid State Ionics
411
,
116561
(
2024
).
91.
W.
Go
,
J.
Kim
,
J.
Pyo
,
J. B.
Wolfenstine
, and
Y.
Kim
, “
Investigation on the structure and properties of Na3.1Zr1.55Si2.3P0.7O11 as a solid electrolyte and its application in a seawater battery
,”
ACS Appl. Mater. Interfaces
13
,
52727
52735
(
2021
).
92.
R. O.
Fuentes
,
F. M.
Figueiredo
,
F. M. B.
Marques
, and
J. I.
Franco
, “
Influence of microstructure on the electrical properties of NASICON materials
,”
Solid State Ionics
140
,
173
179
(
2001
).
93.
O.
Bouquin
,
H.
Perthuis
, and
P.
Colomban
, “
Low-temperature sintering and optimal physical properties: A challenge—The NASICON ceramics case
,”
J. Mater. Sci. Lett.
4
,
956
959
(
1985
).
94.
P. G.
Komorowski
,
S. A.
Argyropoulos
,
R. G. V.
Hancock
,
J.
Gulens
,
P.
Taylor
,
J. D.
Canaday
,
A. K.
Kuriakose
,
T. A.
Wheat
, and
A.
Ahmad
, “
Characterization of protonically exchanged NASICON
,”
Solid State Ionics
48
,
295
301
(
1991
).
95.
F.
Mauvy
,
E.
Siebert
, and
P.
Fabry
, “
Reactivity of NASICON with water and interpretation of the detection limit of a NASICON based Na+ ion selective electrode
,”
Talanta
48
,
293
303
(
1999
).
96.
R. O.
Fuentes
,
F.
Figueiredo
,
F. M. B.
Marques
, and
J. I.
Franco
, “
Reaction of NASICON with water
,”
Solid State Ionics
139
,
309
314
(
2001
).
97.
M.
Hou
et al, “
Multiscale investigation into chemically stable NASICON solid electrolyte in acidic solutions
,”
ACS Appl. Mater. Interfaces
13
,
33262
33271
(
2021
).
98.
R. W.
Rice
, “
Grain size and porosity dependence of ceramic fracture energy and toughness at 22 °C
,”
J. Mater. Sci.
31
,
1969
1983
(
1996
).
99.
J. M.
Valle
et al, “
Characterization of hot-pressed von Alpen type NASICON ceramic electrolytes
,”
Solid State Ionics
369
,
115712
(
2021
).
100.
J. F.
Nonemacher
,
S.
Naqash
,
F.
Tietz
, and
J.
Malzbender
, “
Micromechanical assessment of Al/Y-substituted NASICON solid electrolytes
,”
Ceram. Int.
45
,
21308
21314
(
2019
).
101.
Q.
Zhang
et al, “
Hunting sodium dendrites in NASICON-based solid-state electrolytes
,”
Energy Mater. Adv.
2021
,
9870879
.
102.
Z.
Gao
et al, “
TiO2 as second phase in Na3Zr2Si2PO12 to suppress dendrite growth in sodium metal solid-state batteries
,”
Adv. Energy Mater.
12
,
2103607
(
2022
).
103.
J.-I.
Jung
et al, “
Progressive assessment on the decomposition reaction of Na superionic conducting ceramics
,”
ACS Appl. Mater. Interfaces
9
,
304
310
(
2017
).
104.
E.
Allcorn
,
G.
Nagasubramanian
,
H. D.
Pratt
,
E.
Spoerke
, and
D.
Ingersoll
, “
Elimination of active species crossover in a room temperature, neutral pH, aqueous flow battery using a ceramic NaSICON membrane
,”
J. Power Sources
378
,
353
361
(
2018
).
105.
J.
Chen
,
D. H. C.
Chua
, and
P. S.
Lee
, “
The advances of metal sulfides and in situ characterization methods beyond Li ion batteries: Sodium, potassium, and aluminum ion batteries
,”
Small Methods
4
,
1900648
(
2020
).
106.
W.
Zhou
,
Y.
Li
,
S.
Xin
, and
J. B.
Goodenough
, “
Rechargeable sodium all-solid-state battery
,”
ACS Cent. Sci.
3
,
52
57
(
2017
).
107.
X.
Miao
et al, “
AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte
,”
Energy Storage Mater
30
,
170
178
(
2020
).
108.
H.
Fu
et al, “
Reducing interfacial resistance by Na-SiO2 composite anode for NASICON-based solid-state sodium battery
,”
ACS Mater. Lett.
2
,
127
132
(
2020
).
109.
Y.
Uchida
et al, “
Insights into sodium ion transfer at the Na/NASICON interface improved by uniaxial compression
,”
ACS Appl. Energy Mater.
2
,
2913
2920
(
2019
).
110.
X.
Yu
and
A.
Manthiram
, “
Sodium-sulfur batteries with a polymer-coated NASICON-type sodium-ion solid electrolyte
,”
Matter
1
,
439
451
(
2019
).
111.
L.
Ran
et al, “
Enhanced safety and performance of high-voltage solid-state sodium battery through trilayer, multifunctional electrolyte design
,”
Energy Storage Mater.
41
,
8
13
(
2021
).
112.
J.
Yang
et al, “
Guided-formation of a favorable interface for stabilizing Na metal solid-state batteries
,”
J. Mater. Chem. A.
8
,
7828
7835
(
2020
).
113.
J.
Yang
et al, “
Improving Na/Na3Zr2Si2PO12 Interface via SnOx/Sn film for high-performance solid-state sodium metal batteries
,”
Small Methods
5
,
2100339
(
2021
).
114.
X.
Wang
,
J.
Chen
,
Z.
Mao
, and
D.
Wang
, “
In situ construction of a stable interface induced by the SnS2 ultra-thin layer for dendrite restriction in a solid-state sodium metal battery
,”
J. Mater. Chem. A
9
,
16039
16045
(
2021
).
115.
H.
Tian
,
S.
Liu
,
L.
Deng
,
L.
Wang
, and
L.
Dai
, “
New-type Hf-based NASICON electrolyte for solid-state Na-ion batteries with superior long-cycling stability and rate capability
,”
Energy Storage Mater.
39
,
232
238
(
2021
).
116.
J. A. S.
Oh
et al, “
A robust solid–solid interface using sodium–tin alloy modified metallic sodium anode paving way for all-solid-state battery
,”
Adv. Energy Mater.
11
,
2101228
(
2021
).
117.
K.
Cao
et al, “
Hybrid design of bulk-na metal anode to minimize cycle-induced interface deterioration of solid Na metal battery
,”
Adv. Energy Mater.
12
,
2102579
(
2022
).
118.
X.
Wang
,
J.
Chen
,
D.
Wang
, and
Z.
Mao
, “
Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding
,”
Nat. Commun.
12
,
7109
(
2021
).
119.
J. A. S.
Oh
et al, “
Intrinsic low sodium/NASICON interfacial resistance paving the way for room temperature sodium-metal battery
,”
J. Colloid Interface Sci.
601
,
418
426
(
2021
).
120.
Y.
Cheng
et al, “
Na–K alloy anode for high-performance solid-state sodium metal batteries
,”
Nano Lett.
22
,
9614
9620
(
2022
).
121.
E.
Matios
et al, “
Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability
,”
ACS Appl. Mater. Interfaces
11
,
5064
5072
(
2019
).
122.
R. C.
Hill
et al, “
Can a coating mitigate molten Na dendrite growth in NaSICON under high current density?
,”
ACS Appl. Energy Mater.
7
,
810
819
(
2024
).
123.
H.
Liu
et al, “
Engineering the NASICON electrolyte/Na anode interface by tuning the phase of electrolyte for solid-state sodium battery
,”
Chem. Mater.
35
,
8686
8694
(
2023
).
124.
C.
Wang
et al, “
Optimizing the Na metal/solid electrolyte interface through a grain boundary design
,”
J. Mater. Chem. A.
10
,
5280
5286
(
2022
).
125.
X.
Miao
et al, “
Isotropous sulfurized polyacrylonitrile interlayer with homogeneous Na+ flux dynamics for solid-state Na metal batteries
,”
Adv. Energy Mater.
11
,
2003469
(
2021
).
126.
H.
Tang
et al, “
Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations
,”
Chem. Mater.
30
,
163
173
(
2018
).
127.
P.
Kehne
et al, “
Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance
,”
J. Power Sources
409
,
86
93
(
2019
).
128.
P.
Kehne
et al, “
Electrochemical performance of all-solid-state sodium-ion model cells with crystalline NaxCoO2 thin-film cathodes
,”
J. Electrochem. Soc.
166
,
A5328
(
2019
).
129.
C.
Guhl
et al, “
Interfaces in solid-state sodium-ion batteries: NaCoO2 thin films on solid electrolyte substrates
,”
Electrochim. Acta
268
,
226
233
(
2018
).
130.
H.
Gao
,
S.
Xin
,
L.
Xue
, and
J. B.
Goodenough
, “
Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte
,”
Chem
4
,
833
844
(
2018
).
131.
Z.
Jian
et al, “
Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries
,”
Electrochem. Commun.
14
,
86
89
(
2012
).
132.
R. A.
Shakoor
et al, “
A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries
,”
J. Mater. Chem.
22
,
20535
20541
(
2012
).
133.
B.
Pandit
et al, “
All-solid-state sodium-ion batteries operating at room temperature based on NASICON-type NaTi2(PO4)3 cathode and ceramic NASICON solid electrolyte: A complete in situ synchrotron X-ray study
,”
Chem. Eng. J.
472
,
144509
(
2023
).
134.
W.
Zhou
et al, “
NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction
,”
Nano Lett.
16
,
7836
7841
(
2016
).
135.
Y.
Zhao
,
X.
Gao
,
H.
Gao
,
A.
Dolocan
, and
J. B.
Goodenough
, “
Elevating energy density for sodium-ion batteries through multielectron reactions
,”
Nano Lett.
21
,
2281
2287
(
2021
).
136.
Z.
Jian
et al, “
Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium‐ion batteries
,”
Adv. Funct. Mater.
24
,
4265
4272
(
2014
).
137.
H.
Gao
,
L.
Xue
,
S.
Xin
,
K.
Park
, and
J. B.
Goodenough
, “
A plastic-crystal electrolyte interphase for all-solid-state sodium batteries
,”
Angew. Chem. (International ed. in English)
129
(
20
),
5633
5637
(
2017
).
138.
S.
Naqash
,
Q.
Ma
,
F.
Tietz
, and
O.
Guillon
, “
Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction
,”
Solid State Ionics
302
,
83
91
(
2017
).
139.
S.
Narayanan
,
S.
Reid
,
S.
Butler
, and
V.
Thangadurai
, “
Sintering temperature, excess sodium, and phosphorous dependencies on morphology and ionic conductivity of NASICON Na3Zr2Si2PO12
,”
Solid State Ionics
331
,
22
29
(
2019
).
140.
Z.
Li
et al, “
Air-breathing aqueous sulfur flow battery for ultralow-cost long-duration electrical storage
,”
Joule
1
,
306
327
(
2017
).
141.
T.
Chauve
et al, “
Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD
,”
Phil. Trans. R Soc. A
375
,
20150345
(
2017
).
142.
Z.
Ding
et al, “
The impact of microstructure on filament growth at the sodium metal anode in all-solid-state sodium batteries
,”
Adv. Energy Mater.
13
,
2302322
(
2023
).
143.
Z.
Gu
et al, “
Atomic-scale study clarifying the role of space-charge layers in a Li-ion-conducting solid electrolyte
,”
Nat. Commun.
14
,
1632
(
2023
).
144.
T.
Lee
et al, “
Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3
,”
Nat. Commun.
14
,
1940
(
2023
).
145.
C.
Ma
et al, “
Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes
,”
Energy Environ. Sci.
7
,
1638
1642
(
2014
).
146.
X.
Liu
et al, “
Elucidating the mobility of H+ and Li+ ions in (Li6.25−xHxAl0.25)La3Zr2O12 via correlative neutron and electron spectroscopy
,”
Energy Environ. Sci.
12
,
945
951
(
2019
).
147.
L.
Zhang
et al, “
Atomic defect mediated li-ion diffusion in a lithium lanthanum titanate solid-state electrolyte
,”
ACS Nano
16
,
6898
6905
(
2022
).
148.
X.
Liu
et al, “
Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes
,”
Nat. Mater.
20
,
1485
1490
(
2021
).
149.
Y.
Li
et al, “
Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy
,”
Science
358
,
506
510
(
2017
).
150.
C.
Ma
et al, “
Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions
,”
Angew. Chem. Int. Ed.
54
,
129
133
(
2015
).
151.
Y.
Li
et al, “
Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy
,”
Joule
2
,
2167
2177
(
2018
).
152.
D.
Cheng
et al, “
Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy
,”
Joule
4
,
2484
2500
(
2020
).
153.
R. A.
Vilá
et al, “
LiH formation and its impact on Li batteries revealed by cryogenic electron microscopy
,”
Sci. Adv.
9
,
eadf3609
(
2023
).
154.
Z.
Ding
et al, “
Exploring the influence of focused ion beam processing and scanning electron microscopy imaging on solid-state electrolytes
,”
Microscopy (Oxf)
72
,
326
335
(
2023
).
155.
H.
Zhang
,
C.
Wang
, and
G.
Zhou
, “
Ultra-microtome for the preparation of TEM specimens from battery cathodes
,”
Microsc. Microanal.
26
,
867
877
(
2020
).
156.
Z.
Gu
et al, “
Atomic-resolution electron microscopy unravelling the role of unusual asymmetric twin boundaries in the electron-beam-sensitive NASICON-type solid electrolyte
,”
Nano Lett.
23
,
11818
11826
(
2023
).
157.
Z. D.
Hood
et al, “
Elucidating interfacial stability between lithium metal anode and Li phosphorus oxynitride via in situ electron microscopy
,”
Nano Lett.
21
,
151
157
(
2021
).
158.
C.
Ma
et al, “
Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy
,”
Nano Lett.
16
,
7030
7036
(
2016
).
You do not currently have access to this content.