Skyrmionic devices exhibit energy-efficient and high-integration data storage and computing capabilities due to their small size, topological protection, and low drive current requirements. So, to realize these devices, an extensive study, from fundamental physics to practical applications, becomes essential. In this article, we present an exhaustive review of the advancements in understanding the fundamental physics behind magnetic skyrmions and the novel data storage and computing technologies based on them. We begin with an in-depth discussion of fundamental concepts such as topological protection, stability, statics, and dynamics essential for understanding skyrmions, henceforth the foundation of skyrmion technologies. For the realization of CMOS-compatible skyrmion functional devices, the writing and reading of the skyrmions are crucial. We discuss the developments in different writing schemes such as STT, SOT, and VCMA. The reading of skyrmions is predominantly achieved via two mechanisms: the magnetoresistive tunnel junction TMR effect and topological resistivity. So, a thorough investigation into the skyrmion Hall effect, topological properties, and emergent fields is also provided, concluding the discussion on skyrmion reading developments. Based on the writing and reading schemes, we discuss the applications of the skyrmions in conventional logic, unconventional logic, memory applications, and neuromorphic computing, including a model of a skyrmion-based SNN architecture achieving over 90% accuracy on MNIST and fashion-MNIST datasets. Furthermore, we outline the potential of skyrmion-hosting Majorana zero modes in emerging topological quantum computation and helicity-dependent skyrmion qubits.

1.
T. H. R.
Skyrme
, “
A unified field theory of mesons and baryons
,”
Nucl. Phys.
31
,
556
569
(
1962
).
2.
A.
Bogdanov
,
U. K.
Roessler
,
M.
Wolf
, and
K.-H.
Müller
, “
Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets
,”
Phys. Rev. B
66
,
214410
(
2002
).
3.
A. N.
Bogdanov
and
D.
Yablonskii
, “
Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets
,”
Zh. Eksp. Teor. Fiz
95
,
178
(
1989
), http://www.jetp.ras.ru/cgi-bin/dn/e_068_01_0101.pdf.
4.
A.
Fert
,
V.
Cros
, and
J.
Sampaio
, “
Skyrmions on the track
,”
Nat. Nanotechnol.
8
,
152
156
(
2013
).
5.
N. S.
Kiselev
,
A.
Bogdanov
,
R.
Schäfer
, and
U.
Rößler
, “
Chiral skyrmions in thin magnetic films: New objects for magnetic storage technologies?
,”
J. Phys. D: Appl. Phys.
44
,
392001
(
2011
).
6.
S.
Mühlbauer
,
B.
Binz
,
F.
Jonietz
,
C.
Pfleiderer
,
A.
Rosch
,
A.
Neubauer
,
R.
Georgii
, and
P.
Böni
, “
Skyrmion lattice in a chiral magnet
,”
Science
323
,
915
919
(
2009
).
7.
X.
Yu
,
Y.
Onose
,
N.
Kanazawa
,
J. H.
Park
,
J.
Han
,
Y.
Matsui
,
N.
Nagaosa
, and
Y.
Tokura
, “
Real-space observation of a two-dimensional skyrmion crystal
,”
Nature
465
,
901
904
(
2010
).
8.
W.
Jiang
,
G.
Chen
,
K.
Liu
,
J.
Zang
,
S. G.
Te Velthuis
, and
A.
Hoffmann
, “
Skyrmions in magnetic multilayers
,”
Phys. Rep.
704
,
1
49
(
2017
).
9.
A.
Neubauer
,
C.
Pfleiderer
,
B.
Binz
,
A.
Rosch
,
R.
Ritz
,
P.
Niklowitz
, and
P.
Böni
, “
Topological Hall effect in the A phase of MnSi
,”
Phys. Rev. Lett.
102
,
186602
(
2009
).
10.
M.
Heide
,
G.
Bihlmayer
, and
S.
Blügel
, “
Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/w (110)
,”
Phys. Rev. B
78
,
140403
(
2008
).
11.
Y.
Oreg
,
G.
Refael
, and
F.
Von Oppen
, “
Helical liquids and Majorana bound states in quantum wires
,”
Phys. Rev. Lett.
105
,
177002
(
2010
).
12.
J. M.
Coey
,
Magnetism and Magnetic Materials
(
Cambridge University Press
,
2010
).
13.
W.
Münzer
,
A.
Neubauer
,
T.
Adams
,
S.
Mühlbauer
,
C.
Franz
,
F.
Jonietz
,
R.
Georgii
,
P.
Böni
,
B.
Pedersen
,
M.
Schmidt
et al, “
Skyrmion lattice in the doped semiconductor Fe1-xCoxSi
,”
Phys. Rev. B
81
,
041203
(
2010
).
14.
C.
Pfleiderer
and
A.
Rosch
, “
Single skyrmions spotted
,”
Nature
465
,
880
881
(
2010
).
15.
N.
Nagaosa
,
J.
Sinova
,
S.
Onoda
,
A. H.
MacDonald
, and
N. P.
Ong
, “
Anomalous Hall effect
,”
Rev. Mod. Phys.
82
,
1539
(
2010
).
16.
N.
Nagaosa
and
Y.
Tokura
, “
Topological properties and dynamics of magnetic skyrmions
,”
Nat. Nanotechnol.
8
,
899
911
(
2013
).
17.
X.
Yu
,
N.
Kanazawa
,
Y.
Onose
,
K.
Kimoto
,
W.
Zhang
,
S.
Ishiwata
,
Y.
Matsui
, and
Y.
Tokura
, “
Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe
,”
Nat. Mater.
10
,
106
109
(
2011
).
18.
H. V.
Gomonay
,
R. V.
Kunitsyn
, and
V. M.
Loktev
, “
Symmetry and the macroscopic dynamics of antiferromagnetic materials in the presence of spin-polarized current
,”
Phys. Rev. B
85
,
134446
(
2012
).
19.
Y.
Li
,
N.
Kanazawa
,
X.
Yu
,
A.
Tsukazaki
,
M.
Kawasaki
,
M.
Ichikawa
,
X.
Jin
,
F.
Kagawa
, and
Y.
Tokura
, “
Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi
,”
Phys. Rev. Lett.
110
,
117202
(
2013
).
20.
W.
Jiang
,
P.
Upadhyaya
,
W.
Zhang
,
G.
Yu
,
M. B.
Jungfleisch
,
F. Y.
Fradin
,
J. E.
Pearson
,
Y.
Tserkovnyak
,
K. L.
Wang
,
O.
Heinonen
et al, “
Blowing magnetic skyrmion bubbles
,”
Science
349
,
283
286
(
2015
).
21.
J.
Sampaio
,
V.
Cros
,
S.
Rohart
,
A.
Thiaville
, and
A.
Fert
, “
Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures
,”
Nat. Nanotechnol.
8
,
839
844
(
2013
).
22.
J.
Iwasaki
,
M.
Mochizuki
, and
N.
Nagaosa
, “
Current-induced skyrmion dynamics in constricted geometries
,”
Nat. Nanotechnol.
8
,
742
747
(
2013
).
23.
O.
Heinonen
,
W.
Jiang
,
H.
Somaily
,
S. G.
Te Velthuis
, and
A.
Hoffmann
, “
Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents
,”
Phys. Rev. B
93
,
094407
(
2016
).
24.
D. M.
Crum
,
M.
Bouhassoune
,
J.
Bouaziz
,
B.
Schweflinghaus
,
S.
Blügel
, and
S.
Lounis
, “
Perpendicular reading of single confined magnetic skyrmions
,”
Nat. Commun.
6
,
8541
(
2015
).
25.
C.
Hanneken
,
F.
Otte
,
A.
Kubetzka
,
B.
Dupé
,
N.
Romming
,
K. V.
Bergmann
,
R.
Wiesendanger
, and
S.
Heinze
, “
Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance
,”
Nat. Nanotechnol.
10
,
1039
1042
(
2015
).
26.
S. S.
Parkin
,
M.
Hayashi
, and
L.
Thomas
, “
Magnetic domain-wall racetrack memory
,”
Science
320
,
190
194
(
2008
).
27.
X.
Yu
,
Y.
Tokunaga
,
Y.
Kaneko
,
W.
Zhang
,
K.
Kimoto
,
Y.
Matsui
,
Y.
Taguchi
, and
Y.
Tokura
, “
Biskyrmion states and their current-driven motion in a layered manganite
,”
Nat. Commun.
5
,
3198
(
2014
).
28.
N.
Romming
,
C.
Hanneken
,
M.
Menzel
,
J. E.
Bickel
,
B.
Wolter
,
K.
von Bergmann
,
A.
Kubetzka
, and
R.
Wiesendanger
, “
Writing and deleting single magnetic skyrmions
,”
Science
341
,
636
639
(
2013
).
29.
Y.
Zhou
and
M.
Ezawa
, “
A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry
,”
Nat. Commun.
5
,
4652
(
2014
).
30.
J.
Li
,
A.
Tan
,
K.
Moon
,
A.
Doran
,
M.
Marcus
,
A.
Young
,
E.
Arenholz
,
S.
Ma
,
R.
Yang
,
C.
Hwang
et al, “
Tailoring the topology of an artificial magnetic skyrmion
,”
Nat. Commun.
5
,
4704
(
2014
).
31.
F.
Jonietz
,
S.
Mühlbauer
,
C.
Pfleiderer
,
A.
Neubauer
,
W.
Münzer
,
A.
Bauer
,
T.
Adams
,
R.
Georgii
,
P.
Böni
,
R. A.
Duine
et al, “
Spin transfer torques in MnSi at ultralow current densities
,”
Science
330
,
1648
1651
(
2010
).
32.
X.
Yu
,
N.
Kanazawa
,
W.
Zhang
,
T.
Nagai
,
T.
Hara
,
K.
Kimoto
,
Y.
Matsui
,
Y.
Onose
, and
Y.
Tokura
, “
Skyrmion flow near room temperature in an ultralow current density
,”
Nat. Commun.
3
,
988
(
2012
).
33.
S.
Luo
and
L.
You
, “
Skyrmion devices for memory and logic applications
,”
APL Mater.
9
,
050901
(
2021
).
34.
X.
Zhang
,
M.
Ezawa
, and
Y.
Zhou
, “
Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions
,”
Sci. Rep.
5
,
9400
(
2015
).
35.
S.
Zhang
,
A. A.
Baker
,
S.
Komineas
, and
T.
Hesjedal
, “
Topological computation based on direct magnetic logic communication
,”
Sci. Rep.
5
,
15773
(
2015
).
36.
S.
Zhang
,
W.
Wang
,
D.
Burn
,
H.
Peng
,
H.
Berger
,
A.
Bauer
,
C.
Pfleiderer
,
G.
Van Der Laan
, and
T.
Hesjedal
, “
Manipulation of skyrmion motion by magnetic field gradients
,”
Nat. Commun.
9
,
2115
(
2018
).
37.
N.
Kanazawa
,
Y.
Onose
,
T.
Arima
,
D.
Okuyama
,
K.
Ohoyama
,
S.
Wakimoto
,
K.
Kakurai
,
S.
Ishiwata
, and
Y.
Tokura
, “
Large topological Hall effect in a short-period helimagnet MnGe
,”
Phys. Rev. Lett.
106
,
156603
(
2011
).
38.
N.
Kanazawa
,
M.
Kubota
,
A.
Tsukazaki
,
Y.
Kozuka
,
K.
Takahashi
,
M.
Kawasaki
,
M.
Ichikawa
,
F.
Kagawa
, and
Y.
Tokura
, “
Discretized topological Hall effect emerging from skyrmions in constricted geometry
,”
Phys. Rev. B
91
,
041122
(
2015
).
39.
S.
Li
,
W.
Kang
,
Y.
Huang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
, “
Magnetic skyrmion-based artificial neuron device
,”
Nanotechnology
28
,
31LT01
(
2017
).
40.
Y.
Huang
,
W.
Kang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
, “
Magnetic skyrmion-based synaptic devices
,”
Nanotechnology
28
,
08LT02
(
2017
).
41.
C. A.
Akosa
,
H.
Li
,
G.
Tatara
, and
O. A.
Tretiakov
, “
Tuning the skyrmion Hall effect via engineering of spin-orbit interaction
,”
Phys. Rev. Appl.
12
,
054032
(
2019
).
42.
K.
Hamamoto
,
M.
Ezawa
, and
N.
Nagaosa
, “
Purely electrical detection of a skyrmion in constricted geometry
,”
Appl. Phys. Lett.
108
,
112401
(
2016
).
43.
R.
Wiesendanger
, “
Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics
,”
Nat. Rev. Mater.
1
,
1
11
(
2016
).
44.
W.
Kang
,
Y.
Huang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
, “
Skyrmion-electronics: An overview and outlook
,”
Proc. IEEE
104
,
2040
2061
(
2016
).
45.
A.
Fert
,
N.
Reyren
, and
V.
Cros
, “
Magnetic skyrmions: Advances in physics and potential applications
,”
Nat. Rev. Mater.
2
,
1
15
(
2017
).
46.
A.
Leonov
,
T.
Monchesky
,
N.
Romming
,
A.
Kubetzka
,
A.
Bogdanov
, and
R.
Wiesendanger
, “
The properties of isolated chiral skyrmions in thin magnetic films
,”
New J. Phys.
18
,
065003
(
2016
).
47.
B.
Göbel
,
I.
Mertig
, and
O. A.
Tretiakov
, “
Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles
,”
Phys. Rep.
895
,
1
28
(
2021
).
48.
F. N.
Rybakov
and
N. S.
Kiselev
, “
Chiral magnetic skyrmions with arbitrary topological charge
,”
Phys. Rev. B
99
,
064437
(
2019
).
49.
F.
Zheng
,
F. N.
Rybakov
,
N. S.
Kiselev
,
D.
Song
,
A.
Kovács
,
H.
Du
,
S.
Blügel
, and
R. E.
Dunin-Borkowski
, “
Magnetic skyrmion braids
,”
Nat. Commun.
12
,
5316
(
2021
).
50.
F. N.
Rybakov
,
A. B.
Borisov
,
S.
Blügel
, and
N. S.
Kiselev
, “
New spiral state and skyrmion lattice in 3D model of chiral magnets
,”
New J. Phys.
18
,
045002
(
2016
).
51.
A.
Abanov
and
V. L.
Pokrovsky
, “
Skyrmion in a real magnetic film
,”
Phys. Rev. B
58
,
R8889
(
1998
).
52.
V.
Stefanovich
et al, “
Two-dimensional small-radius solitons in magnets
,”
Sov. J. Exp. Theor. Phys.
64
,
376
(
1986
), https://ui.adsabs.harvard.edu/abs/1986JETP...64..376L/abstract.
53.
U. K.
Roessler
,
A.
Bogdanov
, and
C.
Pfleiderer
, “
Spontaneous skyrmion ground states in magnetic metals
,”
Nature
442
,
797
801
(
2006
).
54.
U. K.
Rößler
,
A. A.
Leonov
, and
A. N.
Bogdanov
, “
Chiral skyrmionic matter in non-centrosymmetric magnets
,”
J. Phys. Conf. Ser.
303
,
012105
(
2011
).
55.
G.
Derrick
, “
Comments on nonlinear wave equations as models for elementary particles
,”
J. Math. Phys.
5
,
1252
1254
(
1964
).
56.
B.
Binz
,
A.
Vishwanath
, and
V.
Aji
, “
Theory of the helical spin crystal: A candidate for the partially ordered state of MnSi
,”
Phys. Rev. Lett.
96
,
207202
(
2006
).
57.
M.
Beg
,
R.
Carey
,
W.
Wang
,
D.
Cortés-Ortuño
,
M.
Vousden
,
M.-A.
Bisotti
,
M.
Albert
,
D.
Chernyshenko
,
O.
Hovorka
,
R. L.
Stamps
et al, “
Ground state search, hysteretic behaviour and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures
,”
Sci. Rep.
5
,
17137
(
2015
).
58.
R.
Rajaraman
, Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory (North-Holland Publishing Company, 1982).
59.
H.-B.
Braun
, “
Topological effects in nanomagnetism: From superparamagnetism to chiral quantum solitons
,”
Adv. Phys.
61
,
1
116
(
2012
).
60.
Referred to as antisymmetric exchange analogous to symmetric Heisenberg exchange.
61.
I.
Dzyaloshinskii
, “
The theory of helicoidal structures in antiferromagnets. II
,”
Met. J. Exptl. Theoret. Phys.(USSR)
47
,
336
(
1964
), http://www.jetp.ras.ru/cgi-bin/dn/e_020_01_0223.pdf.
62.
A.
Bogdanov
and
A.
Hubert
, “
Thermodynamically stable magnetic vortex states in magnetic crystals
,”
J. Magn. Magn. Mater.
138
,
255
269
(
1994
).
63.
M.
Kataoka
and
O.
Nakanishi
, “
Helical spin density wave due to antisymmetric exchange interaction
,”
J. Phys. Soc. Jpn.
50
,
3888
3896
(
1981
).
64.
S.
Li
,
X.
Wang
, and
T.
Rasing
, “
Magnetic skyrmions: Basic properties and potential applications
,”
Interdiscip. Mater.
2
,
260
289
(
2023
).
65.
S.
Seki
,
S.
Ishiwata
, and
Y.
Tokura
, “
Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3
,”
Phys. Rev. B
86
,
060403
(
2012
).
66.
Y.
Tokunaga
,
X.
Yu
,
J.
White
,
H. M.
Rønnow
,
D.
Morikawa
,
Y.
Taguchi
, and
Y.
Tokura
, “
A new class of chiral materials hosting magnetic skyrmions beyond room temperature
,”
Nat. Commun.
6
,
7638
(
2015
).
67.
T.
Kurumaji
,
T.
Nakajima
,
M.
Hirschberger
,
A.
Kikkawa
,
Y.
Yamasaki
,
H.
Sagayama
,
H.
Nakao
,
Y.
Taguchi
,
T.-h.
Arima
, and
Y.
Tokura
, “
Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet
,”
Science
365
,
914
918
(
2019
).
68.
M.
Hirschberger
,
T.
Nakajima
,
S.
Gao
,
L.
Peng
,
A.
Kikkawa
,
T.
Kurumaji
,
M.
Kriener
,
Y.
Yamasaki
,
H.
Sagayama
,
H.
Nakao
et al, “
Skyrmion phase and competing magnetic orders on a breathing kagomé lattice
,”
Nat. Commun.
10
,
5831
(
2019
).
69.
N. D.
Khanh
,
T.
Nakajima
,
X.
Yu
,
S.
Gao
,
K.
Shibata
,
M.
Hirschberger
,
Y.
Yamasaki
,
H.
Sagayama
,
H.
Nakao
,
L.
Peng
et al, “
Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet
,”
Nat. Nanotechnol.
15
,
444
449
(
2020
).
70.
R.
Takagi
,
N.
Matsuyama
,
V.
Ukleev
,
L.
Yu
,
J. S.
White
,
S.
Francoual
,
J. R.
Mardegan
,
S.
Hayami
,
H.
Saito
,
K.
Kaneko
et al, “
Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound
,”
Nat. Commun.
13
,
1472
(
2022
).
71.
I.
Kézsmárki
,
S.
Bordács
,
P.
Milde
,
E.
Neuber
,
L.
Eng
,
J.
White
,
H. M.
Rønnow
,
C.
Dewhurst
,
M.
Mochizuki
,
K.
Yanai
et al, “
Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8
,”
Nat. Mater.
14
,
1116
1122
(
2015
).
72.
H.
Zhang
,
D.
Raftrey
,
Y.-T.
Chan
,
Y.-T.
Shao
,
R.
Chen
,
X.
Chen
,
X.
Huang
,
J. T.
Reichanadter
,
K.
Dong
,
S.
Susarla
et al, “
Room-temperature skyrmion lattice in a layered magnet (Fe0.5Co0.5)5GeTe2
,”
Sci. Adv.
8
,
eabm7103
(
2022
).
73.
S.
Heinze
,
K. V.
Bergmann
,
M.
Menzel
,
J.
Brede
,
A.
Kubetzka
,
R.
Wiesendanger
,
G.
Bihlmayer
, and
S.
Blügel
, “
Spontaneous atomic-scale magnetic skyrmion lattice two dimensions
,”
Nat. Phys.
7
,
713
718
(
2011
).
74.
N.
Romming
,
A.
Kubetzka
,
C.
Hanneken
,
K.
von Bergmann
, and
R.
Wiesendanger
, “
Field-dependent size and shape of single magnetic skyrmions
,”
Phys. Rev. Lett.
114
,
177203
(
2015
).
75.
O.
Boulle
,
J.
Vogel
,
H.
Yang
,
S.
Pizzini
,
D.
de Souza Chaves
,
A.
Locatelli
,
T. O.
Menteş
,
A.
Sala
,
L. D.
Buda-Prejbeanu
,
O.
Klein
et al, “
Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures
,”
Nat. Nanotechnol.
11
,
449
454
(
2016
).
76.
C.
Moreau-Luchaire
,
C.
Moutafis
,
N.
Reyren
,
J.
Sampaio
,
C.
Vaz
,
N.
Van Horne
,
K.
Bouzehouane
,
K.
Garcia
,
C.
Deranlot
,
P.
Warnicke
et al, “
Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature
,”
Nat. Nanotechnol.
11
,
444
448
(
2016
).
77.
A.
Soumyanarayanan
,
N.
Reyren
,
A.
Fert
, and
C.
Panagopoulos
, “
Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces
,”
Nature
539
,
509
517
(
2016
).
78.
S.
Woo
,
K.
Litzius
,
B.
Krüger
,
M.-Y.
Im
,
L.
Caretta
,
K.
Richter
,
M.
Mann
,
A.
Krone
,
R. M.
Reeve
,
M.
Weigand
et al, “
Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
,”
Nat. Mater.
15
,
501
506
(
2016
).
79.
G.
Chen
,
A.
Mascaraque
,
A. T.
N'Diaye
, and
A. K.
Schmid
, “
Room temperature skyrmion ground state stabilized through interlayer exchange coupling
,”
Appl. Phys. Lett.
106
,
242404
(
2015
).
80.
Y.
Wu
,
S.
Zhang
,
J.
Zhang
,
W.
Wang
,
Y. L.
Zhu
,
J.
Hu
,
G.
Yin
,
K.
Wong
,
C.
Fang
,
C.
Wan
et al, “
Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure
,”
Nat. Commun.
11
,
3860
(
2020
).
81.
Y.
Wu
,
B.
Francisco
,
Z.
Chen
,
W.
Wang
,
Y.
Zhang
,
C.
Wan
,
X.
Han
,
H.
Chi
,
Y.
Hou
,
A.
Lodesani
et al, “
A van der waals interface hosting two groups of magnetic skyrmions
,”
Adv. Mater.
34
,
2110583
(
2022
).
82.
M.
Yang
,
Q.
Li
,
R.
Chopdekar
,
R.
Dhall
,
J.
Turner
,
J.
Carlström
,
C.
Ophus
,
C.
Klewe
,
P.
Shafer
,
A.
N'Diaye
et al, “
Creation of skyrmions in van der Waals ferromagnet Fe3GeTe2 on (Co/Pd)n superlattice
,”
Sci. Adv.
6
,
eabb5157
(
2020
).
83.
N.
Kanazawa
,
J.-H.
Kim
,
D.
Inosov
,
J.
White
,
N.
Egetenmeyer
,
J.
Gavilano
,
S.
Ishiwata
,
Y.
Onose
,
T.-h.
Arima
,
B.
Keimer
et al, “
Possible skyrmion-lattice ground state in the B20 chiral-lattice magnet MnGe as seen via small-angle neutron scattering
,”
Phys. Rev. B
86
,
134425
(
2012
).
84.
A. K.
Nayak
,
V.
Kumar
,
T.
Ma
,
P.
Werner
,
E.
Pippel
,
R.
Sahoo
,
F.
Damay
,
U. K.
Rößler
,
C.
Felser
, and
S. S.
Parkin
, “
Magnetic antiskyrmions above room temperature in tetragonal Heusler materials
,”
Nature
548
,
561
566
(
2017
).
85.
L.
Peng
,
R.
Takagi
,
W.
Koshibae
,
K.
Shibata
,
K.
Nakajima
,
T.-h.
Arima
,
N.
Nagaosa
,
S.
Seki
,
X.
Yu
, and
Y.
Tokura
, “
Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet
,”
Nat. Nanotechnol.
15
,
181
186
(
2020
).
86.
K.
Karube
,
L.
Peng
,
J.
Masell
,
X.
Yu
,
F.
Kagawa
,
Y.
Tokura
, and
Y.
Taguchi
, “
Room-temperature antiskyrmions and sawtooth surface textures in a non-centrosymmetric magnet with S4 symmetry
,”
Nat. Mater.
20
,
335
340
(
2021
).
87.
L.
Caretta
,
M.
Mann
,
F.
Büttner
,
K.
Ueda
,
B.
Pfau
,
C. M.
Günther
,
P.
Hessing
,
A.
Churikova
,
C.
Klose
,
M.
Schneider
et al, “
Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet
,”
Nat. Nanotechnol.
13
,
1154
1160
(
2018
).
88.
S.
Woo
,
K. M.
Song
,
X.
Zhang
,
Y.
Zhou
,
M.
Ezawa
,
X.
Liu
,
S.
Finizio
,
J.
Raabe
,
N. J.
Lee
,
S.-I.
Kim
et al, “
Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films
,”
Nat. Commun.
9
,
959
(
2018
).
89.
T.
Dohi
,
S.
DuttaGupta
,
S.
Fukami
, and
H.
Ohno
, “
Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles
,”
Nat. Commun.
10
,
5153
(
2019
).
90.
W.
Legrand
,
J.-Y.
Chauleau
,
D.
Maccariello
,
N.
Reyren
,
S.
Collin
,
K.
Bouzehouane
,
N.
Jaouen
,
V.
Cros
, and
A.
Fert
, “
Hybrid chiral domain walls and skyrmions in magnetic multilayers
,”
Sci. Adv.
4
,
eaat0415
(
2018
).
91.
R.
Chen
,
Y.
Gao
,
X.
Zhang
,
R.
Zhang
,
S.
Yin
,
X.
Chen
,
X.
Zhou
,
Y.
Zhou
,
J.
Xia
,
Y.
Zhou
et al, “
Realization of isolated and high-density skyrmions at room temperature in uncompensated synthetic antiferromagnets
,”
Nano Lett.
20
,
3299
3305
(
2020
).
92.
H.
Jani
,
J.-C.
Lin
,
J.
Chen
,
J.
Harrison
,
F.
Maccherozzi
,
J.
Schad
,
S.
Prakash
,
C.-B.
Eom
,
A.
Ariando
,
T.
Venkatesan
et al, “
Antiferromagnetic half-skyrmions and bimerons at room temperature
,”
Nature
590
,
74
79
(
2021
).
93.
W.
Wang
,
Y.
Zhang
,
G.
Xu
,
L.
Peng
,
B.
Ding
,
Y.
Wang
,
Z.
Hou
,
X.
Zhang
,
X.
Li
,
E.
Liu
et al, “
A centrosymmetric hexagonal magnet with superstable biskyrmion magnetic nanodomains in a wide temperature range of 100k to 340k
,” arXiv:1605.06186 (
2016
).
94.
Also known as “baby skyrmions.”
95.
S. L.
Sondhi
,
A.
Karlhede
,
S.
Kivelson
, and
E.
Rezayi
, “
Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies
,”
Phys. Rev. B
47
,
16419
(
1993
).
96.
L.
Brey
,
H.
Fertig
,
R.
Côté
, and
A.
MacDonald
, “
Skyrme crystal in a two-dimensional electron gas
,”
Phys. Rev. Lett.
75
,
2562
(
1995
).
97.
T.
Grover
and
T.
Senthil
, “
Topological spin Hall states, charged skyrmions, and superconductivity in two dimensions
,”
Phys. Rev. Lett.
100
,
156804
(
2008
).
98.
A.
Knigavko
,
B.
Rosenstein
, and
Y.
Chen
, “
Magnetic skyrmions and their lattices in triplet superconductors
,”
Phys. Rev. B
60
,
550
(
1999
).
99.
A.
Knigavko
and
B.
Rosenstein
, “
Magnetic skyrmion lattices in heavy fermion superconductor UPt3
,”
Phys. Rev. Lett.
82
,
1261
(
1999
).
100.
J.
Garaud
and
E.
Babaev
, “
Skyrmionic state and stable half-quantum vortices in chiral p-wave superconductors
,”
Phys. Rev. B
86
,
060514
(
2012
).
101.
D. F.
Agterberg
,
E.
Babaev
, and
J.
Garaud
, “
Microscopic prediction of skyrmion lattice state in clean interface superconductors
,”
Phys. Rev. B
90
,
064509
(
2014
).
102.
E.-G.
Moon
, “
Skyrmions with quadratic band touching fermions: A way to achieve charge 4e superconductivity
,”
Phys. Rev. B
85
,
245123
(
2012
).
103.
T.
Yokoyama
and
J.
Linder
, “
Josephson effect through magnetic skyrmions
,”
Phys. Rev. B
92
,
060503
(
2015
).
104.
Q.
Li
,
J.
Toner
, and
D.
Belitz
, “
Elasticity and melting of skyrmion flux lattices in p-wave superconductors
,”
Phys. Rev. Lett.
98
,
187002
(
2007
).
105.
T.-L.
Ho
, “
Spinor Bose condensates in optical traps
,”
Phys. Rev. Lett.
81
,
742
(
1998
).
106.
U.
Al Khawaja
and
H.
Stoof
, “
Skyrmions in a ferromagnetic Bose–Einstein condensate
,”
Nature
411
,
918
920
(
2001
).
107.
K.-P.
Marzlin
,
W.
Zhang
, and
B. C.
Sanders
, “
Creation of skyrmions in a spinor Bose-Einstein condensate
,”
Phys. Rev. A
62
,
013602
(
2000
).
108.
R. A.
Battye
,
N.
Cooper
, and
P. M.
Sutcliffe
, “
Stable skyrmions in two-component Bose-Einstein condensates
,”
Phys. Rev. Lett.
88
,
080401
(
2002
).
109.
C.
Savage
and
J.
Ruostekoski
, “
Energetically stable particlelike skyrmions in a trapped Bose-Einstein condensate
,”
Phys. Rev. Lett.
91
,
010403
(
2003
).
110.
L.
Leslie
,
A.
Hansen
,
K.
Wright
,
B.
Deutsch
, and
N.
Bigelow
, “
Creation and detection of skyrmions in a Bose-Einstein condensate
,”
Phys. Rev. Lett.
103
,
250401
(
2009
).
111.
J.-y.
Choi
,
W. J.
Kwon
, and
Y.-i.
Shin
, “
Observation of topologically stable 2D skyrmions in an antiferromagnetic spinor Bose-Einstein condensate
,”
Phys. Rev. Lett.
108
,
035301
(
2012
).
112.
A.
Vilenkin
and
E. P. S.
Shellard
,
Cosmic Strings and Other Topological Defects
(
Cambridge University Press
,
1994
).
113.
E.
Mascot
,
J.
Bedow
,
M.
Graham
,
S.
Rachel
, and
D. K.
Morr
, “
Topological superconductivity in skyrmion lattices
,”
NPJ Quantum Mater.
6
,
6
(
2021
).
114.
J.-i.
Fukuda
and
S.
Žumer
, “
Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal
,”
Nat. Commun.
2
,
246
(
2011
).
115.
H.
Ge
,
X.-Y.
Xu
,
L.
Liu
,
R.
Xu
,
Z.-K.
Lin
,
S.-Y.
Yu
,
M.
Bao
,
J.-H.
Jiang
,
M.-H.
Lu
, and
Y.-F.
Chen
, “
Observation of acoustic skyrmions
,”
Phys. Rev. Lett.
127
,
144502
(
2021
).
116.
L.
Du
,
A.
Yang
,
A. V.
Zayats
, and
X.
Yuan
, “
Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum
,”
Nat. Phys.
15
,
650
654
(
2019
).
117.
Y.
Shen
,
Q.
Zhang
,
P.
Shi
,
L.
Du
,
X.
Yuan
, and
A. V.
Zayats
, “
Optical skyrmions and other topological quasiparticles of light
,”
Nat. Photonics
18
,
15
25
(
2024
).
118.
X.
Zhang
,
J.
Xia
,
O. A.
Tretiakov
,
M.
Ezawa
,
G.
Zhao
,
Y.
Zhou
,
X.
Liu
, and
M.
Mochizuki
, “
Chiral skyrmions interacting with chiral flowers
,”
Nano Lett.
23
,
11793
11801
(
2023
).
119.
K.
Karube
,
J.
White
,
N.
Reynolds
,
J.
Gavilano
,
H.
Oike
,
A.
Kikkawa
,
F.
Kagawa
,
Y.
Tokunaga
,
H. M.
Rønnow
,
Y.
Tokura
et al, “
Robust metastable skyrmions and their triangular–square lattice structural transition in a high-temperature chiral magnet
,”
Nat. Mater.
15
,
1237
1242
(
2016
).
120.
S.
Divic
,
H.
Ling
,
T.
Pereg-Barnea
, and
A.
Paramekanti
, “
Magnetic skyrmion crystal at a topological insulator surface
,”
Phys. Rev. B
105
,
035156
(
2022
).
121.
M.
Lee
,
W.
Kang
,
Y.
Onose
,
Y.
Tokura
, and
N. P.
Ong
, “
Unusual Hall effect anomaly in MnSi under pressure
,”
Phys. Rev. Lett.
102
,
186601
(
2009
).
122.
M.-K.
Lee
and
M.
Mochizuki
, “
Reservoir computing with spin waves in a skyrmion crystal
,”
Phys. Rev. Appl.
18
,
014074
(
2022
).
123.
S.
Das
,
Y.
Tang
,
Z.
Hong
,
M.
Gonçalves
,
M.
McCarter
,
C.
Klewe
,
K.
Nguyen
,
F.
Gómez-Ortiz
,
P.
Shafer
,
E.
Arenholz
et al, “
Observation of room-temperature polar skyrmions
,”
Nature
568
,
368
372
(
2019
).
124.
Y.-T.
Shao
,
S.
Das
,
Z.
Hong
,
R.
Xu
,
S.
Chandrika
,
F.
Gómez-Ortiz
,
P.
García-Fernández
,
L.-Q.
Chen
,
H. Y.
Hwang
,
J.
Junquera
et al, “
Emergent chirality in a polar meron to skyrmion phase transition
,”
Nat. Commun.
14
,
1355
(
2023
).
125.
S.
Huang
,
C.
Zhou
,
G.
Chen
,
H.
Shen
,
A. K.
Schmid
,
K.
Liu
, and
Y.
Wu
, “
Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii-Moriya interaction
,”
Phys. Rev. B
96
,
144412
(
2017
).
126.
W.
Legrand
,
D.
Maccariello
,
F.
Ajejas
,
S.
Collin
,
A.
Vecchiola
,
K.
Bouzehouane
,
N.
Reyren
,
V.
Cros
, and
A.
Fert
, “
Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets
,”
Nat. Mater.
19
,
34
42
(
2020
).
127.
J.
Jena
,
B.
Göbel
,
V.
Kumar
,
I.
Mertig
,
C.
Felser
, and
S.
Parkin
, “
Evolution and competition between chiral spin textures in nanostripes with D2d symmetry
,”
Sci. Adv.
6
,
eabc0723
(
2020
).
128.
M.
Hoffmann
,
B.
Zimmermann
,
G. P.
Müller
,
D.
Schürhoff
,
N. S.
Kiselev
,
C.
Melcher
, and
S.
Blügel
, “
Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions
,”
Nat. Commun.
8
,
308
(
2017
).
129.
N.
Bindal
,
R. K.
Raj
, and
B. K.
Kaushik
, “
Antiferromagnetic skyrmion based shape-configured leaky-integrate-fire neuron device
,”
J. Phys. D: Appl. Phys.
55
,
345007
(
2022
).
130.
D.
Prychynenko
,
M.
Sitte
,
K.
Litzius
,
B.
Krüger
,
G.
Bourianoff
,
M.
Kläui
,
J.
Sinova
, and
K.
Everschor-Sitte
, “
Magnetic skyrmion as a nonlinear resistive element: A potential building block for reservoir computing
,”
Phys. Rev. Appl.
9
,
014034
(
2018
).
131.
X.
Yu
,
W.
Koshibae
,
Y.
Tokunaga
,
K.
Shibata
,
Y.
Taguchi
,
N.
Nagaosa
, and
Y.
Tokura
, “
Transformation between meron and skyrmion topological spin textures in a chiral magnet
,”
Nature
564
,
95
98
(
2018
).
132.
O.
Amin
,
S.
Poole
,
S.
Reimers
,
L.
Barton
,
A.
Dal Din
,
F.
Maccherozzi
,
S.
Dhesi
,
V.
Novák
,
F.
Krizek
,
J.
Chauhan
et al, “
Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature
,”
Nat. Nanotechnol.
18
,
849
853
(
2023
).
133.
M.
Bhukta
,
T.
Dohi
,
V. K.
Bharadwaj
,
R.
Zarzuela
,
M.-A.
Syskaki
,
M.
Foerster
,
M. A.
Niño
,
J.
Sinova
,
R.
Frömter
, and
M.
Kläui
, “
Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets
,”
Nat. Commun.
15
,
1641
(
2024
).
134.
S.
Bohlens
,
B.
Krüger
,
A.
Drews
,
M.
Bolte
,
G.
Meier
, and
D.
Pfannkuche
, “
Current controlled random-access memory based on magnetic vortex handedness
,”
Appl. Phys. Lett.
93
,
142508
(
2008
).
135.
J.
Xia
,
X.
Zhang
,
X.
Liu
,
Y.
Zhou
, and
M.
Ezawa
, “
Qubits based on merons in magnetic nanodisks
,”
Commun. Mater.
3
,
88
(
2022
).
136.
Y. A.
Kharkov
,
O. P.
Sushkov
, and
M.
Mostovoy
, “
Bound states of skyrmions and merons near the Lifshitz point
,”
Phys. Rev. Lett.
119
,
207201
(
2017
).
137.
N.
Gao
,
S.-G.
Je
,
M.-Y.
Im
,
J. W.
Choi
,
M.
Yang
,
Q.-c.
Li
,
T.
Wang
,
S.
Lee
,
H.-S.
Han
,
K.-S.
Lee
et al, “
Creation and annihilation of topological meron pairs in in-plane magnetized films
,”
Nat. Commun.
10
,
5603
(
2019
).
138.
F.
Zheng
,
N. S.
Kiselev
,
L.
Yang
,
V. M.
Kuchkin
,
F. N.
Rybakov
,
S.
Blügel
, and
R. E.
Dunin-Borkowski
, “
Skyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet
,”
Nat. Phys.
18
,
863
868
(
2022
).
139.
F.
Zheng
,
N. S.
Kiselev
,
F. N.
Rybakov
,
L.
Yang
,
W.
Shi
,
S.
Blügel
, and
R. E.
Dunin-Borkowski
, “
Hopfion rings in a cubic chiral magnet
,”
Nature
623
,
718
723
(
2023
).
140.
X.
Li
,
S.
Zhang
,
H.
Li
,
D. A.
Venero
,
J. S.
White
,
R.
Cubitt
,
Q.
Huang
,
J.
Chen
,
L.
He
,
G.
van der Laan
et al, “
Oriented 3D magnetic biskyrmions in MnNiGa bulk crystals
,”
Adv. Mater.
31
,
1900264
(
2019
).
141.
M.
Augustin
,
S.
Jenkins
,
R. F.
Evans
,
K. S.
Novoselov
, and
E. J.
Santos
, “
Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3
,”
Nat. Commun.
12
,
185
(
2021
).
142.
B.
Göbel
,
J.
Henk
, and
I.
Mertig
, “
Forming individual magnetic biskyrmions by merging two skyrmions in a centrosymmetric nanodisk
,”
Sci. Rep.
9
,
9521
(
2019
).
143.
L.
Peng
,
Y.
Zhang
,
W.
Wang
,
M.
He
,
L.
Li
,
B.
Ding
,
J.
Li
,
Y.
Sun
,
X.-G.
Zhang
,
J.
Cai
et al, “
Real-space observation of nonvolatile zero-field biskyrmion lattice generation in MnNiGa magnet
,”
Nano Lett.
17
,
7075
7079
(
2017
).
144.
D.
Capic
,
D. A.
Garanin
, and
E. M.
Chudnovsky
, “
Stability of biskyrmions in centrosymmetric magnetic films
,”
Phys. Rev. B
100
,
014432
(
2019
).
145.
I. R.
de Assis
,
I.
Mertig
, and
B.
Göbel
, “
Biskyrmion-based artificial neuron
,”
Neuromorph. Comput. Eng.
3
,
014012
(
2023
).
146.
X.
Zhang
,
J.
Xia
,
Y.
Zhou
,
D.
Wang
,
X.
Liu
,
W.
Zhao
, and
M.
Ezawa
, “
Control and manipulation of a magnetic skyrmionium in nanostructures
,”
Phys. Rev. B
94
,
094420
(
2016
).
147.
S.
Zhang
,
F.
Kronast
,
G.
van der Laan
, and
T.
Hesjedal
, “
Real-space observation of skyrmionium in a ferromagnet-magnetic topological insulator heterostructure
,”
Nano Lett.
18
,
1057
1063
(
2018
).
148.
M.
Finazzi
,
M.
Savoini
,
A. R.
Khorsand
,
A.
Tsukamoto
,
A.
Itoh
,
L.
Duò
,
A.
Kirilyuk
,
T.
Rasing
, and
M.
Ezawa
, “
Laser-induced magnetic nanostructures with tunable topological properties
,”
Phys. Rev. Lett.
110
,
177205
(
2013
).
149.
J.
Xia
,
X.
Zhang
,
M.
Ezawa
,
O. A.
Tretiakov
,
Z.
Hou
,
W.
Wang
,
G.
Zhao
,
X.
Liu
,
H. T.
Diep
, and
Y.
Zhou
, “
Current-driven skyrmionium in a frustrated magnetic system
,”
Appl. Phys. Lett.
117
,
012403
(
2020
).
150.
B.
Göbel
,
A. F.
Schäffer
,
J.
Berakdar
,
I.
Mertig
, and
S. S.
Parkin
, “
Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device
,”
Sci. Rep.
9
,
12119
(
2019
).
151.
J.
Barker
and
O. A.
Tretiakov
, “
Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature
,”
Phys. Rev. Lett.
116
,
147203
(
2016
).
152.
X.
Zhang
,
Y.
Zhou
, and
M.
Ezawa
, “
Antiferromagnetic skyrmion: Stability, creation and manipulation
,”
Sci. Rep.
6
,
24795
(
2016
).
153.
B.
Göbel
,
A.
Mook
,
J.
Henk
, and
I.
Mertig
, “
Antiferromagnetic skyrmion crystals: Generation, topological Hall, and topological spin Hall effect
,”
Phys. Rev. B
96
,
060406
(
2017
).
154.
C.
Jin
,
C.
Song
,
J.
Wang
, and
Q.
Liu
, “
Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect
,”
Appl. Phys. Lett.
109
,
182404
(
2016
).
155.
J.
Jiang
,
J.
Tang
,
T.
Bai
,
Y.
Wu
,
J.
Qin
,
W.
Xia
,
R.
Chen
,
A.
Yan
,
S.
Wang
,
M.
Tian
et al, “
Thermal stability of skyrmion tubes in nanostructured cuboids
,”
Nano Lett.
24
,
1587
1593
(
2024
).
156.
M.
Birch
,
D.
Cortés-Ortuño
,
L.
Turnbull
,
M.
Wilson
,
F.
Groß
,
N.
Träger
,
A.
Laurenson
,
N.
Bukin
,
S.
Moody
,
M.
Weigand
et al, “
Real-space imaging of confined magnetic skyrmion tubes
,”
Nat. Commun.
11
,
1726
(
2020
).
157.
J.
Xia
,
X.
Zhang
,
K.-Y.
Mak
,
M.
Ezawa
,
O. A.
Tretiakov
,
Y.
Zhou
,
G.
Zhao
, and
X.
Liu
, “
Current-induced dynamics of skyrmion tubes in synthetic antiferromagnetic multilayers
,”
Phys. Rev. B
103
,
174408
(
2021
).
158.
N.
Kanazawa
,
J.
White
,
H.
Rønnow
,
C.
Dewhurst
,
D.
Morikawa
,
K.
Shibata
,
T.
Arima
,
F.
Kagawa
,
A.
Tsukazaki
,
Y.
Kozuka
et al, “
Topological spin-hedgehog crystals of a chiral magnet as engineered with magnetic anisotropy
,”
Phys. Rev. B
96
,
220414
(
2017
).
159.
J.
Wild
,
T. N.
Meier
,
S.
Pöllath
,
M.
Kronseder
,
A.
Bauer
,
A.
Chacon
,
M.
Halder
,
M.
Schowalter
,
A.
Rosenauer
,
J.
Zweck
et al, “
Entropy-limited topological protection of skyrmions
,”
Sci. Adv.
3
,
e1701704
(
2017
).
160.
M. T.
Birch
,
R.
Takagi
,
S.
Seki
,
M. N.
Wilson
,
F.
Kagawa
,
A.
Štefančič
,
G.
Balakrishnan
,
R.
Fan
,
P.
Steadman
,
C. J.
Ottley
,
M.
Crisanti
,
R.
Cubitt
,
T.
Lancaster
,
Y.
Tokura
, and
P. D.
Hatton
, “
Increased lifetime of metastable skyrmions by controlled doping
,”
Phys. Rev. B
100
,
014425
(
2019
).
161.
F.
Kagawa
,
H.
Oike
,
W.
Koshibae
,
A.
Kikkawa
,
Y.
Okamura
,
Y.
Taguchi
,
N.
Nagaosa
, and
Y.
Tokura
, “
Current-induced viscoelastic topological unwinding of metastable skyrmion strings
,”
Nat. Commun.
8
,
1332
(
2017
).
162.
M.-Y.
Im
,
H.-S.
Han
,
M.-S.
Jung
,
Y.-S.
Yu
,
S.
Lee
,
S.
Yoon
,
W.
Chao
,
P.
Fischer
,
J.-I.
Hong
, and
K.-S.
Lee
, “
Dynamics of the Bloch point in an asymmetric permalloy disk
,”
Nat. Commun.
10
,
593
(
2019
).
163.
M.
Lang
,
M.
Beg
,
O.
Hovorka
, and
H.
Fangohr
, “
Bloch points in nanostrips
,”
Sci. Rep.
13
,
6910
(
2023
).
164.
F. N.
Rybakov
,
A. B.
Borisov
,
S.
Blügel
, and
N. S.
Kiselev
, “
New type of stable particlelike states in chiral magnets
,”
Phys. Rev. Lett.
115
,
117201
(
2015
).
165.
F.
Zheng
,
F. N.
Rybakov
,
A. B.
Borisov
,
D.
Song
,
S.
Wang
,
Z.-A.
Li
,
H.
Du
,
N. S.
Kiselev
,
J.
Caron
,
A.
Kovács
et al, “
Experimental observation of chiral magnetic bobbers in B20-type FeGe
,”
Nat. Nanotechnol.
13
,
451
455
(
2018
).
166.
A. S.
Ahmed
,
J.
Rowland
,
B. D.
Esser
,
S. R.
Dunsiger
,
D. W.
McComb
,
M.
Randeria
, and
R. K.
Kawakami
, “
Chiral bobbers and skyrmions in epitaxial FeGe/Si(111) films
,”
Phys. Rev. Mater.
2
,
041401
(
2018
).
167.
K.
Di
,
V. L.
Zhang
,
H. S.
Lim
,
S. C.
Ng
,
M. H.
Kuok
,
X.
Qiu
, and
H.
Yang
, “
Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film
,”
Appl. Phys. Lett.
106
,
052403
(
2015
).
168.
J.
Zhu
,
Y.
Wu
,
Q.
Hu
,
L.
Kong
,
J.
Tang
,
M.
Tian
, and
H.
Du
, “
Current-driven transformations of a skyrmion tube and a bobber in stepped nanostructures of chiral magnets
,”
Sci. China Phys. Mech. Astron.
64
,
227511
(
2021
).
169.
D.
Foster
,
C.
Kind
,
P. J.
Ackerman
,
J.-S. B.
Tai
,
M. R.
Dennis
, and
I. I.
Smalyukh
, “
Two-dimensional skyrmion bags in liquid crystals and ferromagnets
,”
Nat. Phys.
15
,
655
659
(
2019
).
170.
L.
Yang
,
A. S.
Savchenko
,
F.
Zheng
,
N. S.
Kiselev
,
F. N.
Rybakov
,
X.
Han
,
S.
Blügel
, and
R. E.
Dunin-Borkowski
, “
Embedded skyrmion bags in thin films of chiral magnets
,”
Adv. Mater.
36
,
2403274
(
2024
).
171.
J.
Tang
,
Y.
Wu
,
W.
Wang
,
L.
Kong
,
B.
Lv
,
W.
Wei
,
J.
Zang
,
M.
Tian
, and
H.
Du
, “
Magnetic skyrmion bundles and their current-driven dynamics
,”
Nat. Nanotechnol.
16
,
1086
1091
(
2021
).
172.
L.
Bo
,
R.
Zhao
,
C.
Hu
,
X.
Zhang
,
X.
Zhang
, and
M.
Mochizuki
, “
Controllable creation of skyrmion bags in a ferromagnetic nanodisk
,”
Phys. Rev. B
107
,
224431
(
2023
).
173.
C.
Kind
,
S.
Friedemann
, and
D.
Read
, “
Existence and stability of skyrmion bags in thin magnetic films
,”
Appl. Phys. Lett.
116
,
022413
(
2020
).
174.
C.
Kind
and
D.
Foster
, “
Magnetic skyrmion binning
,”
Phys. Rev. B
103
,
L100413
(
2021
).
175.
V. E.
Korepin
and
L. D.
Faddeev
, “
Quantization of solitons
,”
Theor. Math. Phys.
25
,
1039
1049
(
1975
).
176.
F. N.
Rybakov
,
N. S.
Kiselev
,
A. B.
Borisov
,
L.
Döring
,
C.
Melcher
, and
S.
Blügel
, “
Magnetic hopfions in solids
,”
APL Mater.
10
,
111113
(
2022
).
177.
P. J.
Ackerman
and
I. I.
Smalyukh
, “
Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids
,”
Nat. Mater.
16
,
426
432
(
2017
).
178.
P. J.
Ackerman
and
I. I.
Smalyukh
, “
Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions
,”
Phys. Rev. X
7
,
011006
(
2017
).
179.
N.
Kent
,
N.
Reynolds
,
D.
Raftrey
,
I. T.
Campbell
,
S.
Virasawmy
,
S.
Dhuey
,
R. V.
Chopdekar
,
A.
Hierro-Rodriguez
,
A.
Sorrentino
,
E.
Pereiro
et al, “
Creation and observation of hopfions in magnetic multilayer systems
,”
Nat. Commun.
12
,
1562
(
2021
).
180.
F.
Wilczek
and
A.
Zee
, “
Linking numbers, spin, and statistics of solitons
,”
Phys. Rev. Lett.
51
,
2250
(
1983
).
181.
X. S.
Wang
,
A.
Qaiumzadeh
, and
A.
Brataas
, “
Current-driven dynamics of magnetic hopfions
,”
Phys. Rev. Lett.
123
,
147203
(
2019
).
182.
Y.
Liu
,
W.
Hou
,
X.
Han
, and
J.
Zang
, “
Three-dimensional dynamics of a magnetic hopfion driven by spin transfer torque
,”
Phys. Rev. Lett.
124
,
127204
(
2020
).
183.
Z.
Zhang
,
K.
Lin
,
Y.
Zhang
,
A.
Bournel
,
K.
Xia
,
M.
Kläui
, and
W.
Zhao
, “
Magnon scattering modulated by omnidirectional hopfion motion in antiferromagnets for meta-learning
,”
Sci. Adv.
9
,
eade7439
(
2023
).
184.
In field theory description, breaking symmetry results in new vacuum, i.e., ±m0, and with different vacuum the particle spectrum is considered to be different to that of the unbroken symmetry state (such as m=0 in our example).
185.
A.
Leonov
and
M.
Mostovoy
, “
Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet
,”
Nat. Commun.
6
,
8275
(
2015
).
186.
S.-Z.
Lin
and
S.
Hayami
, “
Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions
,”
Phys. Rev. B
93
,
064430
(
2016
).
187.
W.
Brown
,
Micromagnefics
(
John Wiley and Sons
,
New York
,
1963
).
188.
O. N.
Mryasov
,
U.
Nowak
,
K. Y.
Guslienko
, and
R. W.
Chantrell
, “
Temperature-dependent magnetic properties of FePt: Effective spin Hamiltonian model
,”
Europhys. Lett.
69
,
805
(
2005
).
189.
S.
Blundell
,
Magnetism in Condensed Matter
(
Oxford
,
2001
).
190.
P.
Grünberg
,
C.
Mayr
,
W.
Vach
, and
M.
Grimsditch
, “
Determination of magnetic parameters by means of Brillouin scattering. Examples: Fe, Ni, Ni0.8Fe0.2
,”
J. Magn. Magn. Mater.
28
,
319
325
(
1982
).
191.
X.
Liu
,
M.
Steiner
,
R.
Sooryakumar
,
G.
Prinz
,
R.
Farrow
, and
G.
Harp
, “
Exchange stiffness, magnetization, and spin waves in cubic and hexagonal phases of cobalt
,”
Phys. Rev. B
53
,
12166
(
1996
).
192.
L.
Szunyogh
,
B.
Lazarovits
,
L.
Udvardi
,
J.
Jackson
, and
U.
Nowak
, “
Giant magnetic anisotropy of the bulk antiferromagnets IrMn and IrMn3 from first principles
,”
Phys. Rev. B
79
,
020403
(
2009
).
193.
S.
Parkin
and
D.
Mauri
, “
Spin engineering: Direct determination of the Ruderman-Kittel-Kasuya-Yosida far-field range function in ruthenium
,”
Phys. Rev. B
44
,
7131
(
1991
).
194.
M. A.
Ruderman
and
C.
Kittel
, “
Indirect exchange coupling of nuclear magnetic moments by conduction electrons
,”
Phys. Rev.
96
,
99
(
1954
).
195.
T.
Kasuya
, “
A theory of metallic ferro-and antiferromagnetism on Zener's model
,”
Prog. Theor. Phys.
16
,
45
57
(
1956
).
196.
K.
Yosida
, “
Magnetic properties of Cu-Mn alloys
,”
Phys. Rev.
106
,
893
(
1957
).
197.
I.
Dzyaloshinsky
, “
A thermodynamic theory of weak ferromagnetism antiferromagnetics
,”
J. Phys. Chem. Solids
4
,
241
255
(
1958
).
198.
T.
Moriya
, “
Anisotropic superexchange interaction and weak ferromagnetism
,”
Phys. Rev.
120
,
91
(
1960
).
199.
Y.
Ishikawa
,
K.
Tajima
,
D.
Bloch
, and
M.
Roth
, “
Helical spin structure in manganese silicide MnSi
,”
Solid State Commun.
19
,
525
528
(
1976
).
200.
Y.
Ishikawa
,
G.
Shirane
,
J.
Tarvin
, and
M.
Kohgi
, “
Magnetic excitations in the weak itinerant ferromagnet MnSi
,”
Phys. Rev. B
16
,
4956
(
1977
).
201.
A.
Crépieux
and
C.
Lacroix
, “
Dzyaloshinsky–Moriya interactions induced by symmetry breaking at a surface
,”
J. Magn. Magn. Mater.
182
,
341
349
(
1998
).
202.
M.
Benitez
,
A.
Hrabec
,
A.
Mihai
,
T.
Moore
,
G.
Burnell
,
D.
McGrouther
,
C.
Marrows
, and
S.
McVitie
, “
Magnetic microscopy and topological stability of homochiral Néel domain walls in a Pt/Co/AlOx trilayer
,”
Nat. Commun.
6
,
8957
(
2015
).
203.
A.
Bogdanov
and
U.
Rößler
, “
Chiral symmetry breaking in magnetic thin films and multilayers
,”
Phys. Rev. Lett.
87
,
037203
(
2001
).
204.
X.
Wang
,
H.
Yuan
, and
X.
Wang
, “
A theory on skyrmion size
,”
Commun. Phys.
1
,
31
(
2018
).
205.
S.-G.
Je
,
D.-H.
Kim
,
S.-C.
Yoo
,
B.-C.
Min
,
K.-J.
Lee
, and
S.-B.
Choe
, “
Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction
,”
Phys. Rev. B
88
,
214401
(
2013
).
206.
A.
Hrabec
,
N.
Porter
,
A.
Wells
,
M.
Benitez
,
G.
Burnell
,
S.
McVitie
,
D.
McGrouther
,
T.
Moore
, and
C.
Marrows
, “
Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films
,”
Phys. Rev. B
90
,
020402
(
2014
).
207.
S.
Rohart
and
A.
Thiaville
, “
Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction
,”
Phys. Rev. B
88
,
184422
(
2013
).
208.
W. F.
Brown
,
Magnetostatic Principles in Ferromagnetism
, Vol.
1
(
North-Holland Publishing Company
,
1962
).
209.
M.
Hassan
,
S.
Koraltan
,
A.
Ullrich
,
F.
Bruckner
,
R. O.
Serha
,
K. V.
Levchenko
,
G.
Varvaro
,
N. S.
Kiselev
,
M.
Heigl
,
C.
Abert
et al, “
Dipolar skyrmions and antiskyrmions of arbitrary topological charge at room temperature
,”
Nat. Phys.
20
,
615
622
(
2024
).
210.
M.
Johnson
,
P.
Bloemen
,
F. D.
Broeder
, and
J. D.
Vries
, “
Magnetic anisotropy in metallic multilayers
,”
Rep. Prog. Phys.
59
,
1409
(
1996
).
211.
U.
Parlak
,
M.
Aköz
,
S. T.
Öztürk
, and
M.
Erkovan
, “
Thickness dependent magnetic properties of polycrystalline nickel thin films
,”
Acta Phys. Pol. A
127
,
995
997
(
2015
).
212.
F.
Den Broeder
,
W.
Hoving
, and
P.
Bloemen
, “
Magnetic anisotropy of multilayers
,”
J. Magn. Magn. Mater.
93
,
562
570
(
1991
).
213.
Y.
Yoshimura
,
K.-J.
Kim
,
T.
Taniguchi
,
T.
Tono
,
K.
Ueda
,
R.
Hiramatsu
,
T.
Moriyama
,
K.
Yamada
,
Y.
Nakatani
, and
T.
Ono
, “
Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii–Moriya interaction
,”
Nat. Phys.
12
,
157
161
(
2016
).
214.
A. H.
Lone
,
S.
Shringi
,
K.
Mishra
, and
S.
Srinivasan
, “
Cross-sectional area dependence of tunnel magnetoresistance, thermal stability, and critical current density in MTJ
,”
IEEE Trans. Magn.
57
,
1
10
(
2021
).
215.
F.
Bloch
and
F.
Bloch
,
Zur theorie des austauschproblems und der remanenzerscheinung der ferromagnetika
(
Springer
,
1932
).
216.
L.
Néel
, “
L'anisotropie superficielle des substances ferromagnétiques
,”
C. R. Hebd. Seances Acad. Sci.
237
(23),
1468
1470
(
1953
), https://hal.science/hal-02878463/document.
217.
V. P.
Kravchuk
, “
Influence of Dzialoshinskii–Moriya interaction on static and dynamic properties of a transverse domain wall
,”
J. Magn. Magn. Mater.
367
,
9
14
(
2014
).
218.
P.
Landeros
,
O.
Suarez
,
A.
Cuchillo
, and
P.
Vargas
, “
Equilibrium states and vortex domain wall nucleation in ferromagnetic nanotubes
,”
Phys. Rev. B
79
,
024404
(
2009
).
219.
K.-S.
Ryu
,
L.
Thomas
,
S.-H.
Yang
, and
S.
Parkin
, “
Chiral spin torque at magnetic domain walls
,”
Nat. Nanotechnol.
8
,
527
533
(
2013
).
220.
D.
Craik
,
Magnetism: Principles and Applications
(
John Wiley and Sons Inc
.,
New York
,
1995
).
221.
Fixed chirality means that the magnetization rotates consistently in the same direction when transitioning between up and down domains. The conventional right-handed chirality with positive DMI (D0) and left-handed chirality with negative DMI (D0).
222.
A.
Thiaville
,
S.
Rohart
,
É.
Jué
,
V.
Cros
, and
A.
Fert
, “
Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films
,”
Europhys. Lett.
100
,
57002
(
2012
).
223.
A.
Bogdanov
and
A.
Hubert
, “
The stability of vortex-like structures in uniaxial ferromagnets
,”
J. Magn. Magn. Mater.
195
,
182
192
(
1999
).
224.
M. N.
Wilson
,
A.
Butenko
,
A.
Bogdanov
, and
T.
Monchesky
, “
Chiral skyrmions in cubic helimagnet films: The role of uniaxial anisotropy
,”
Phys. Rev. B
89
,
094411
(
2014
).
225.
R.
Keesman
,
A.
Leonov
,
P.
van Dieten
,
S.
Buhrandt
,
G.
Barkema
,
L.
Fritz
, and
R.
Duine
, “
Degeneracies and fluctuations of Néel skyrmions in confined geometries
,”
Phys. Rev. B
92
,
134405
(
2015
).
226.
F.
Rybakov
,
A.
Borisov
, and
A.
Bogdanov
, “
Three-dimensional skyrmion states in thin films of cubic helimagnets
,”
Phys. Rev. B
87
,
094424
(
2013
).
227.
S.
Komineas
and
N.
Papanicolaou
, “
Skyrmion dynamics in chiral ferromagnets
,”
Phys. Rev. B
92
,
064412
(
2015
).
228.
A.
Butenko
,
A.
Leonov
,
U.
Rößler
, and
A.
Bogdanov
, “
Stabilization of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimagnets
,”
Phys. Rev. B
82
,
052403
(
2010
).
229.
S.-Z.
Lin
,
C.
Reichhardt
,
C. D.
Batista
, and
A.
Saxena
, “
Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep
,”
Phys. Rev. B
87
,
214419
(
2013
).
230.
J.-V.
Kim
,
F.
Garcia-Sanchez
,
J.
Sampaio
,
C.
Moreau-Luchaire
,
V.
Cros
, and
A.
Fert
, “
Breathing modes of confined skyrmions in ultrathin magnetic dots
,”
Phys. Rev. B
90
,
064410
(
2014
).
231.
X.
Zhang
,
G.
Zhao
,
H.
Fangohr
,
J. P.
Liu
,
W.
Xia
,
J.
Xia
, and
F.
Morvan
, “
Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory
,”
Sci. Rep.
5
,
7643
(
2015
).
232.
A.
Hubert
and
R.
Schäfer
,
Magnetic Domains: The Analysis of Magnetic Microstructures
(
Springer Science & Business Media
,
2008
).
233.
H.-B.
Braun
, “
Fluctuations and instabilities of ferromagnetic domain-wall pairs in an external magnetic field
,”
Phys. Rev. B
50
,
16485
(
1994
).
234.
M.
Castro
and
S.
Allende
, “
Skyrmion core size dependence as a function of the perpendicular anisotropy and radius in magnetic nanodots
,”
J. Magn. Magn. Mater.
417
,
344
348
(
2016
).
235.
N.
Vidal-Silva
,
A.
Riveros
, and
J.
Escrig
, “
Stability of Neel skyrmions in ultra-thin nanodots considering Dzyaloshinskii-Moriya and dipolar interactions
,”
J. Magn. Magn. Mater.
443
,
116
123
(
2017
).
236.
P.
Milde
,
D.
Köhler
,
J.
Seidel
,
L.
Eng
,
A.
Bauer
,
A.
Chacon
,
J.
Kindervater
,
S.
Mühlbauer
,
C.
Pfleiderer
,
S.
Buhrandt
et al, “
Unwinding of a skyrmion lattice by magnetic monopoles
,”
Science
340
,
1076
1080
(
2013
).
237.
S.
Huang
and
C.
Chien
, “
Extended skyrmion phase in epitaxial FeGe (111) thin films
,”
Phys. Rev. Lett.
108
,
267201
(
2012
).
238.
M.
Mochizuki
and
Y.
Watanabe
, “
Writing a skyrmion on multiferroic materials
,”
Appl. Phys. Lett.
107
,
082409
(
2015
).
239.
R.
Tomasello
,
E.
Martinez
,
R.
Zivieri
,
L.
Torres
,
M.
Carpentieri
, and
G.
Finocchio
, “
A strategy for the design of skyrmion racetrack memories
,”
Sci. Rep.
4
,
1
7
(
2014
).
240.
J.
Müller
,
A.
Rosch
, and
M.
Garst
, “
Edge instabilities and skyrmion creation in magnetic layers
,”
New J. Phys.
18
,
065006
(
2016
).
241.
D. A.
Garanin
,
D.
Capic
,
S.
Zhang
,
X.
Zhang
, and
E. M.
Chudnovsky
, “
Writing skyrmions with a magnetic dipole
,”
J. Appl. Phys.
124
,
113901
(
2018
).
242.
S.
Zhang
,
J.
Zhang
,
Q.
Zhang
,
C.
Barton
,
V.
Neu
,
Y.
Zhao
,
Z.
Hou
,
Y.
Wen
,
C.
Gong
,
O.
Kazakova
et al, “
Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field
,”
Appl. Phys. Lett.
112
,
132405
(
2018
).
243.
S.
Woo
,
K. M.
Song
,
H.-S.
Han
,
M.-S.
Jung
,
M.-Y.
Im
,
K.-S.
Lee
,
K. S.
Song
,
P.
Fischer
,
J.-I.
Hong
,
J. W.
Choi
et al, “
Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved x-ray microscopy
,”
Nat. Commun.
8
,
15573
(
2017
).
244.
P.-J.
Hsu
,
A.
Kubetzka
,
A.
Finco
,
N.
Romming
,
K. V.
Bergmann
, and
R.
Wiesendanger
, “
Electric-field-driven switching of individual magnetic skyrmions
,”
Nat. Nanotechnol.
12
,
123
126
(
2017
).
245.
S.
Woo
,
K. M.
Song
,
X.
Zhang
,
M.
Ezawa
,
Y.
Zhou
,
X.
Liu
,
M.
Weigand
,
S.
Finizio
,
J.
Raabe
,
M.-C.
Park
et al, “
Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved x-ray microscopy
,”
Nat. Electron.
1
,
288
296
(
2018
).
246.
D. C.
Ralph
and
M. D.
Stiles
, “
Spin transfer torques
,”
J. Magn. Magn. Mater.
320
,
1190
1216
(
2008
).
247.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C.
Back
, and
T.
Jungwirth
, “
Spin Hall effects
,”
Rev. Mod. Phys.
87
,
1213
(
2015
).
248.
K.
Everschor
,
M.
Garst
,
R.
Duine
, and
A.
Rosch
, “
Current-induced rotational torques in the skyrmion lattice phase of chiral magnets
,”
Phys. Rev. B
84
,
064401
(
2011
).
249.
Y.
Tchoe
and
J. H.
Han
, “
Skyrmion generation by current
,”
Phys. Rev. B
85
,
174416
(
2012
).
250.
W.
Koshibae
and
N.
Nagaosa
, “
Creation of skyrmions and antiskyrmions by local heating
,”
Nat. Commun.
5
,
5148
(
2014
).
251.
J.
Hagemeister
,
N.
Romming
,
K. V.
Bergmann
,
E.
Vedmedenko
, and
R.
Wiesendanger
, “
Stability of single skyrmionic bits
,”
Nat. Commun.
6
,
8455
(
2015
).
252.
C.
Heo
,
N. S.
Kiselev
,
A. K.
Nandy
,
S.
Blügel
, and
T.
Rasing
, “
Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states
,”
Sci. Rep.
6
,
1
11
(
2016
).
253.
W.
Wang
,
D.
Song
,
W.
Wei
,
P.
Nan
,
S.
Zhang
,
B.
Ge
,
M.
Tian
,
J.
Zang
, and
H.
Du
, “
Electrical manipulation of skyrmions in a chiral magnet
,”
Nat. Commun.
13
,
1593
(
2022
).
254.
S.-Z.
Lin
, “
Edge instability in a chiral stripe domain under an electric current and skyrmion generation
,”
Phys. Rev. B
94
,
020402
(
2016
).
255.
Y.
Liu
,
H.
Yan
,
M.
Jia
,
H.
Du
, and
A.
Du
, “
Topological analysis of spin-torque driven magnetic skyrmion formation
,”
Appl. Phys. Lett.
109
,
102402
(
2016
).
256.
W.
Koshibae
and
N.
Nagaosa
, “
Theory of skyrmions in bilayer systems
,”
Sci. Rep.
7
,
42645
(
2017
).
257.
F. D. M.
Haldane
, “
O (3) nonlinear σ model and the topological distinction between integer-and half-integer-spin antiferromagnets in two dimensions
,”
Phys. Rev. Lett.
61
,
1029
(
1988
).
258.
A.
Wachowiak
,
J.
Wiebe
,
M.
Bode
,
O.
Pietzsch
,
M.
Morgenstern
, and
R.
Wiesendanger
, “
Direct observation of internal spin structure of magnetic vortex cores
,”
Science
298
,
577
580
(
2002
).
259.
B.
Van Waeyenberge
,
A.
Puzic
,
H.
Stoll
,
K.
Chou
,
T.
Tyliszczak
,
R.
Hertel
,
M.
Fähnle
,
H.
Brückl
,
K.
Rott
,
G.
Reiss
et al, “
Magnetic vortex core reversal by excitation with short bursts of an alternating field
,”
Nature
444
,
461
464
(
2006
).
260.
F.
Büttner
,
C.
Moutafis
,
M.
Schneider
,
B.
Krüger
,
C.
Günther
,
J.
Geilhufe
,
C. v. K.
Schmising
,
J.
Mohanty
,
B.
Pfau
,
S.
Schaffert
et al, “
Dynamics and inertia of skyrmionic spin structures
,”
Nat. Phys.
11
,
225
228
(
2015
).
261.
B.
Zhang
,
W.
Wang
,
M.
Beg
,
H.
Fangohr
, and
W.
Kuch
, “
Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots
,”
Appl. Phys. Lett.
106
,
102401
(
2015
).
262.
A.
Fraerman
,
O.
Ermolaeva
,
E.
Skorohodov
,
N.
Gusev
,
V.
Mironov
,
S.
Vdovichev
, and
E.
Demidov
, “
Skyrmion states in multilayer exchange coupled ferromagnetic nanostructures with distinct anisotropy directions
,”
J. Magn. Magn. Mater.
393
,
452
456
(
2015
).
263.
P. F.
Bessarab
,
G. P.
Müller
,
I. S.
Lobanov
,
F. N.
Rybakov
,
N. S.
Kiselev
,
H.
Jónsson
,
V. M.
Uzdin
,
S.
Blügel
,
L.
Bergqvist
, and
A.
Delin
, “
Lifetime of racetrack skyrmions
,”
Sci. Rep.
8
,
3433
(
2018
).
264.
V.
Flovik
,
A.
Qaiumzadeh
,
A. K.
Nandy
,
C.
Heo
, and
T.
Rasing
, “
Generation of single skyrmions by picosecond magnetic field pulses
,”
Phys. Rev. B
96
,
140411
(
2017
).
265.
A. F.
Schäffer
,
H. A.
Dürr
, and
J.
Berakdar
, “
Ultrafast imprinting of topologically protected magnetic textures via pulsed electrons
,”
Appl. Phys. Lett.
111
,
032403
(
2017
).
266.
K.
Everschor
,
M.
Garst
,
B.
Binz
,
F.
Jonietz
,
S.
Mühlbauer
,
C.
Pfleiderer
, and
A.
Rosch
, “
Rotating skyrmion lattices by spin torques and field or temperature gradients
,”
Phys. Rev. B
86
,
054432
(
2012
).
267.
H.
Yuan
and
X.
Wang
, “
Skyrmion creation and manipulation by nano-second current pulses
,”
Sci. reports
6
,
1
8
(
2016
).
268.
G.
Yin
,
Y.
Li
,
L.
Kong
,
R. K.
Lake
,
C.-L.
Chien
, and
J.
Zang
, “
Topological charge analysis of ultrafast single skyrmion creation
,”
Phys. Rev. B
93
,
174403
(
2016
).
269.
W.
Legrand
,
D.
Maccariello
,
N.
Reyren
,
K.
Garcia
,
C.
Moutafis
,
C.
Moreau-Luchaire
,
S.
Collin
,
K.
Bouzehouane
,
V.
Cros
, and
A.
Fert
, “
Room-temperature current-induced generation and motion of sub-100 nm skyrmions
,”
Nano Lett.
17
,
2703
2712
(
2017
).
270.
I.
Lemesh
,
K.
Litzius
,
M.
Böttcher
,
P.
Bassirian
,
N.
Kerber
,
D.
Heinze
,
J.
Zázvorka
,
F.
Büttner
,
L.
Caretta
,
M.
Mann
et al, “
Current-induced skyrmion generation through morphological thermal transitions in chiral ferromagnetic heterostructures
,”
Adv. Mater.
30
,
1805461
(
2018
).
271.
A.
Hrabec
,
J.
Sampaio
,
M.
Belmeguenai
,
I.
Gross
,
R.
Weil
,
S. M.
Chérif
,
A.
Stashkevich
,
V.
Jacques
,
A.
Thiaville
, and
S.
Rohart
, “
Current-induced skyrmion generation and dynamics in symmetric bilayers
,”
Nat. Commun.
8
,
15765
(
2017
).
272.
F.
Büttner
,
I.
Lemesh
,
M.
Schneider
,
B.
Pfau
,
C. M.
Günther
,
P.
Hessing
,
J.
Geilhufe
,
L.
Caretta
,
D.
Engel
,
B.
Krüger
et al, “
Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques
,”
Nat. Nanotechnol.
12
,
1040
1044
(
2017
).
273.
S.
Finizio
,
K.
Zeissler
,
S.
Wintz
,
S.
Mayr
,
T.
Weßels
,
A. J.
Huxtable
,
G.
Burnell
,
C. H.
Marrows
, and
J.
Raabe
, “
Deterministic field-free skyrmion nucleation at a nanoengineered injector device
,”
Nano Lett.
19
,
7246
7255
(
2019
).
274.
A.
Soumyanarayanan
,
M.
Raju
,
A.
Gonzalez Oyarce
,
A. K.
Tan
,
M.-Y.
Im
,
A. P.
Petrović
,
P.
Ho
,
K.
Khoo
,
M.
Tran
,
C.
Gan
et al, “
Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers
,”
Nat. Mater.
16
,
898
904
(
2017
).
275.
Y.
Nahas
,
S.
Prokhorenko
,
L.
Louis
,
Z.
Gui
,
I.
Kornev
, and
L.
Bellaiche
, “
Discovery of stable skyrmionic state in ferroelectric nanocomposites
,”
Nat. Commun.
6
,
8542
(
2015
).
276.
D.
Maccariello
,
W.
Legrand
,
N.
Reyren
,
K.
Garcia
,
K.
Bouzehouane
,
S.
Collin
,
V.
Cros
, and
A.
Fert
, “
Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature
,”
Nat. Nanotechnol.
13
,
233
237
(
2018
).
277.
H.
Du
,
D.
Liang
,
C.
Jin
,
L.
Kong
,
M. J.
Stolt
,
W.
Ning
,
J.
Yang
,
Y.
Xing
,
J.
Wang
,
R.
Che
et al, “
Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires
,”
Nat. Commun.
6
,
7637
(
2015
).
278.
A.
Kubetzka
,
C.
Hanneken
,
R.
Wiesendanger
, and
K. V.
Bergmann
, “
Impact of the skyrmion spin texture on magnetoresistance
,”
Phys. Rev. B
95
,
104433
(
2017
).
279.
P. M.
Buhl
,
F.
Freimuth
,
S.
Blügel
, and
Y.
Mokrousov
, “
Topological spin Hall effect antiferromagnetic skyrmions
,”
Phys. Status Solidi (RRL)
11
,
1700007
(
2017
).
280.
R. P.
Loreto
,
W.
Moura-Melo
,
A.
Pereira
,
X.
Zhang
,
Y.
Zhou
,
M.
Ezawa
, and
C.
de Araujo
, “
Creation, transport and detection of imprinted magnetic solitons stabilized by spin-polarized current
,”
J. Magn. Magn. Mater.
455
,
25
31
(
2018
).
281.
N.
Penthorn
,
X.
Hao
,
Z.
Wang
,
Y.
Huai
, and
H.
Jiang
, “
Experimental observation of single skyrmion signatures in a magnetic tunnel junction
,”
Phys. Rev. Lett.
122
,
257201
(
2019
).
282.
S.
Kasai
,
S.
Sugimoto
,
Y.
Nakatani
,
R.
Ishikawa
, and
Y. K.
Takahashi
, “
Voltage-controlled magnetic skyrmions in magnetic tunnel junctions
,”
Appl. Phys. Express
12
,
083001
(
2019
).
283.
K.
Zeissler
,
S.
Finizio
,
K.
Shahbazi
,
J.
Massey
,
F. A.
Ma'Mari
,
D. M.
Bracher
,
A.
Kleibert
,
M. C.
Rosamond
,
E. H.
Linfield
,
T. A.
Moore
et al, “
Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs
,”
Nat. Nanotechnol.
13
,
1161
1166
(
2018
).
284.
K.
Hamamoto
,
M.
Ezawa
, and
N.
Nagaosa
, “
Quantized topological Hall effect in skyrmion crystal
,”
Phys. Rev. B
92
,
115417
(
2015
).
285.
A. P.
Petrović
,
M.
Raju
,
X.
Tee
,
A.
Louat
,
I.
Maggio-Aprile
,
R.
Menezes
,
M.
Wyszyński
,
N.
Duong
,
M.
Reznikov
,
C.
Renner
et al, “
Skyrmion-(anti) vortex coupling in a chiral magnet-superconductor heterostructure
,”
Phys. Rev. Lett.
126
,
117205
(
2021
).
286.
S.
Montoya
,
S.
Couture
,
J.
Chess
,
J.
Lee
,
N.
Kent
,
D.
Henze
,
S.
Sinha
,
M.-Y.
Im
,
S.
Kevan
,
P.
Fischer
et al, “
Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices
,”
Phys. Rev. B
95
,
024415
(
2017
).
287.
K. M.
Song
,
J.-S.
Jeong
,
B.
Pan
,
X.
Zhang
,
J.
Xia
,
S.
Cha
,
T.-E.
Park
,
K.
Kim
,
S.
Finizio
,
J.
Raabe
et al, “
Skyrmion-based artificial synapses for neuromorphic computing
,”
Nat. Electron.
3
,
148
155
(
2020
).
288.
S.
Zhang
,
G.
Van Der Laan
, and
T.
Hesjedal
, “
Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3
,”
Nat. Commun.
8
,
14619
(
2017
).
289.
S.
Zhang
,
G.
van der Laan
, and
T.
Hesjedal
, “
Direct experimental determination of spiral spin structures via the dichroism extinction effect in resonant elastic soft x-ray scattering
,”
Phys. Rev. B
96
,
094401
(
2017
).
290.
S.
McVitie
,
S.
Hughes
,
K.
Fallon
,
S.
McFadzean
,
D.
McGrouther
,
M.
Krajnak
,
W.
Legrand
,
D.
Maccariello
,
S.
Collin
,
K.
Garcia
et al, “
A transmission electron microscope study of Néel skyrmion magnetic textures in multilayer thin film systems with large interfacial chiral interaction
,”
Sci. Rep.
8
,
5703
(
2018
).
291.
L.
Landau
,
Em lifshitz statistical physics-course of theoretical physics
, Vol.
19
(
Pergamon Press
,
1980
), p.
80
.
292.
A.
Aharoni
et al,
Introduction to the Theory of Ferromagnetism
, Vol.
109
(
Clarendon Press
,
2000
).
293.
G.
Binasch
,
P.
Grünberg
,
F.
Saurenbach
, and
W.
Zinn
, “
Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange
,”
Phys. Rev. B
39
,
4828
(
1989
).
294.
M. N.
Baibich
,
J. M.
Broto
,
A.
Fert
,
F. N.
Van Dau
,
F.
Petroff
,
P.
Etienne
,
G.
Creuzet
,
A.
Friederich
, and
J.
Chazelas
, “
Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices
,”
Phys. Rev. Lett.
61
,
2472
(
1988
).
295.
L.
Berger
, “
Emission of spin waves by a magnetic multilayer traversed by a current
,”
Phys. Rev. B
54
,
9353
(
1996
).
296.
J. C.
Slonczewski
, “
Current-driven excitation of magnetic multilayers
,”
J. Magn. Magn. Mater.
159
,
L1
L7
(
1996
).
297.
A.
Brataas
,
A. D.
Kent
, and
H.
Ohno
, “
Current-induced torques in magnetic materials
,”
Nat. Mater.
11
,
372
381
(
2012
).
298.
C.
Abert
, “
Micromagnetics and spintronics: Models and numerical methods
,”
Eur. Phys. J. B
92
,
1
45
(
2019
).
299.
M.
Tsoi
,
A.
Jansen
,
J.
Bass
,
W.-C.
Chiang
,
M.
Seck
,
V.
Tsoi
, and
P.
Wyder
, “
Excitation of a magnetic multilayer by an electric current
,”
Phys. Rev. Lett.
80
,
4281
(
1998
).
300.
D. V.
Berkov
and
J.
Miltat
, “
Spin-torque driven magnetization dynamics: Micromagnetic modeling
,”
J. Magn. Magn. Mater.
320
,
1238
1259
(
2008
).
301.
S.
Zhang
and
Z.
Li
, “
Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets
,”
Phys. Rev. Lett.
93
,
127204
(
2004
).
302.
C.
Barraud
,
P.
Seneor
,
R.
Mattana
,
S.
Fusil
,
K.
Bouzehouane
,
C.
Deranlot
,
P.
Graziosi
,
L.
Hueso
,
I.
Bergenti
,
V.
Dediu
et al, “
Unravelling the role of the interface for spin injection into organic semiconductors
,”
Nat. Phys.
6
,
615
620
(
2010
).
303.
S.
Wolf
,
D.
Awschalom
,
R.
Buhrman
,
J.
Daughton
,
S.
von Molnár
,
M.
Roukes
,
A. Y.
Chtchelkanova
, and
D.
Treger
, “
Spintronics: A spin-based electronics vision for the future
,”
Science
294
,
1488
1495
(
2001
).
304.
L.
Liu
,
C.-F.
Pai
,
Y.
Li
,
H.
Tseng
,
D.
Ralph
, and
R.
Buhrman
, “
Spin-torque switching with the giant spin Hall effect of tantalum
,”
Science
336
,
555
558
(
2012
).
305.
S.
Fukami
,
T.
Anekawa
,
C.
Zhang
, and
H.
Ohno
, “
A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration
,”
Nat. Nanotechnol.
11
,
621
625
(
2016
).
306.
I.
Mihai Miron
,
G.
Gaudin
,
S.
Auffret
,
B.
Rodmacq
,
A.
Schuhl
,
S.
Pizzini
,
J.
Vogel
, and
P.
Gambardella
, “
Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer
,”
Nat. Mater.
9
,
230
234
(
2010
).
307.
A.
Manchon
,
H. C.
Koo
,
J.
Nitta
,
S. M.
Frolov
, and
R. A.
Duine
, “
New perspectives for rashba spin–orbit coupling
,”
Nat. Mater.
14
,
871
882
(
2015
).
308.
V. M.
Kuchkin
,
K.
Chichay
,
B.
Barton-Singer
,
F. N.
Rybakov
,
S.
Blügel
,
B. J.
Schroers
, and
N. S.
Kiselev
, “
Geometry and symmetry in skyrmion dynamics
,”
Phys. Rev. B
104
,
165116
(
2021
).
309.
P.
Gambardella
and
I. M.
Miron
, “
Current-induced spin–orbit torques
,”
Phil. Trans. R Soc. A
369
,
3175
3197
(
2011
).
310.
A.
Brataas
and
K. M.
Hals
, “
Spin–orbit torques in action
,”
Nat. Nanotechnol.
9
,
86
88
(
2014
).
311.
W.
Kang
,
Y.
Huang
,
C.
Zheng
,
W.
Lv
,
N.
Lei
,
Y.
Zhang
,
X.
Zhang
,
Y.
Zhou
, and
W.
Zhao
, “
Voltage controlled magnetic skyrmion motion for racetrack memory
,”
Sci. Rep.
6
,
23164
(
2016
).
312.
A.
Thiele
, “
Steady-state motion of magnetic domains
,”
Phys. Rev. Lett.
30
,
230
(
1973
).
313.
V. P.
Amin
and
M. D.
Stiles
, “
Spin transport at interfaces with spin-orbit coupling: Formalism
,”
Phys. Rev. B
94
,
104419
(
2016
).
314.
V.
Amin
and
M.
Stiles
, “
Spin transport at interfaces with spin-orbit coupling: Phenomenology
,”
Phys. Rev. B
94
,
104420
(
2016
).
315.
V. P.
Amin
,
J.
Zemen
, and
M. D.
Stiles
, “
Interface-generated spin currents
,”
Phys. Rev. Lett.
121
,
136805
(
2018
).
316.
C.-F.
Pai
,
Y.
Ou
,
L. H.
Vilela-Leão
,
D.
Ralph
, and
R.
Buhrman
, “
Dependence of the efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces
,”
Phys. Rev. B
92
,
064426
(
2015
).
317.
L.
Liu
,
O.
Lee
,
T.
Gudmundsen
,
D.
Ralph
, and
R.
Buhrman
, “
Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect
,”
Phys. Rev. Lett.
109
,
096602
(
2012
).
318.
K.
Garello
,
I. M.
Miron
,
C. O.
Avci
,
F.
Freimuth
,
Y.
Mokrousov
,
S.
Blügel
,
S.
Auffret
,
O.
Boulle
,
G.
Gaudin
, and
P.
Gambardella
, “
Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures
,”
Nat. Nanotechnol.
8
,
587
593
(
2013
).
319.
C.-F.
Pai
,
L.
Liu
,
Y.
Li
,
H.
Tseng
,
D.
Ralph
, and
R.
Buhrman
, “
Spin transfer torque devices utilizing the giant spin Hall effect of tungsten
,”
Appl. Phys. Lett.
101
,
122404
(
2012
).
320.
R.
Ramaswamy
,
X.
Qiu
,
T.
Dutta
,
S. D.
Pollard
, and
H.
Yang
, “
Hf thickness dependence of spin-orbit torques in Hf/CoFeB/MgO heterostructures
,”
Appl. Phys. Lett.
108
,
202406
(
2016
).
321.
W.
Legrand
, “
Crafting magnetic skyrmions at room temperature: Size, stability and dynamics in multilayers
,” Ph.D. thesis,
Université Paris Saclay (COmUE)
,
2019
.
322.
J.
Iwasaki
,
W.
Koshibae
, and
N.
Nagaosa
, “
Colossal spin transfer torque effect on skyrmion along the edge
,”
Nano Lett.
14
,
4432
4437
(
2014
).
323.
M.-W.
Yoo
,
V.
Cros
, and
J.-V.
Kim
, “
Current-driven skyrmion expulsion from magnetic nanostrips
,”
Phys. Rev. B
95
,
184423
(
2017
).
324.
T.
Schulz
,
R.
Ritz
,
A.
Bauer
,
M.
Halder
,
M.
Wagner
,
C.
Franz
,
C.
Pfleiderer
,
K.
Everschor
,
M.
Garst
, and
A.
Rosch
, “
Emergent electrodynamics of skyrmions in a chiral magnet
,”
Nat. Phys.
8
,
301
304
(
2012
).
325.
M.
Bode
,
M.
Heide
,
K. V.
Bergmann
,
P.
Ferriani
,
S.
Heinze
,
G.
Bihlmayer
,
A.
Kubetzka
,
O.
Pietzsch
,
S.
Blügel
, and
R.
Wiesendanger
, “
Chiral magnetic order at surfaces driven by inversion asymmetry
,”
Nature
447
,
190
193
(
2007
).
326.
E.
Simon
,
L.
Rózsa
,
K.
Palotás
, and
L.
Szunyogh
, “
Magnetism of a Co monolayer on Pt(111) capped by overlayers of 5d elements: A spin-model study
,”
Phys. Rev. B
97
,
134405
(
2018
).
327.
X.
Tao
,
Q.
Liu
,
B.
Miao
,
R.
Yu
,
Z.
Feng
,
L.
Sun
,
B.
You
,
J.
Du
,
K.
Chen
,
S.
Zhang
et al, “
Self-consistent determination of spin Hall angle and spin diffusion length in Pt and Pd: The role of the interface spin loss
,”
Sci. Adv.
4
,
eaat1670
(
2018
).
328.
F.
Bloch
, “
Über die quantenmechanik der elektronen kristallgittern
,”
Z. Phys.
52
,
555
600
(
1929
).
329.
R.
Peierls
, “
Zur theorie der galvanomagnetischen effekte
,”
Z Phys.
53
,
255
266
(
1929
).
330.
H.
Jones
and
C.
Zener
, “
The general proof of certain fundamental equations in the theory of metallic conduction
,”
Proc. R. Soc. London, Ser. A
144
,
101
117
(
1934
).
331.
G.
Sundaram
and
Q.
Niu
, “
Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects
,”
Phys. Rev. B
59
,
14915
(
1999
).
332.
J.
Suh
,
S.
Park
, and
H.
Min
, “
Semiclassical Boltzmann magnetotransport theory in anisotropic systems with a nonvanishing berry curvature
,”
New J. Phys.
25
,
033021
(
2023
).
333.
Y.
Hatsugai
, “
Chern number and edge states in the integer quantum Hall effect
,”
Phys. Rev. Lett.
71
,
3697
(
1993
).
334.
Y.
Hatsugai
, “
Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function
,”
Phys. Rev. B
48
,
11851
(
1993
).
335.
P.
Bruno
,
V.
Dugaev
, and
M.
Taillefumier
, “
Topological Hall effect and berry phase in magnetic nanostructures
,”
Phys. Rev. Lett.
93
,
096806
(
2004
).
336.
B.
Göbel
,
A.
Mook
,
J.
Henk
, and
I.
Mertig
, “
Unconventional topological Hall effect in skyrmion crystals caused by the topology of the lattice
,”
Phys. Rev. B
95
,
094413
(
2017
).
337.
E. H.
Hall
et al, “
On a new action of the magnet on electric currents
,”
Am. J. Math.
2
,
287
292
(
1879
).
338.
Y.
Nagaoka
, “
Ferromagnetism in a narrow, almost half-filled s band
,”
Phys. Rev.
147
,
392
(
1966
).
339.
S. A.
Meynell
,
M. N.
Wilson
,
J. C.
Loudon
,
A.
Spitzig
,
F. N.
Rybakov
,
M. B.
Johnson
, and
T. L.
Monchesky
, “
Hall effect and transmission electron microscopy of epitaxial MnSi thin films
,”
Phys. Rev. B
90
,
224419
(
2014
).
340.
F. R.
Lux
,
F.
Freimuth
,
S.
Blügel
, and
Y.
Mokrousov
, “
Chiral Hall effect in noncollinear magnets from a cyclic cohomology approach
,”
Phys. Rev. Lett.
124
,
096602
(
2020
).
341.
K. M.
Fijalkowski
,
M.
Hartl
,
M.
Winnerlein
,
P.
Mandal
,
S.
Schreyeck
,
K.
Brunner
,
C.
Gould
, and
L. W.
Molenkamp
, “
Coexistence of surface and bulk ferromagnetism mimics skyrmion Hall effect in a topological insulator
,”
Phys. Rev. X
10
,
011012
(
2020
).
342.
J.
Bouaziz
,
H.
Ishida
,
S.
Lounis
, and
S.
Blügel
, “
Transverse transport in two-dimensional relativistic systems with nontrivial spin textures
,”
Phys. Rev. Lett.
126
,
147203
(
2021
).
343.
R.
Ritz
,
M.
Halder
,
M.
Wagner
,
C.
Franz
,
A.
Bauer
, and
C.
Pfleiderer
, “
Formation of a topological non-fermi liquid in MnSi
,”
Nature
497
,
231
234
(
2013
).
344.
Y.
Taguchi
,
Y.
Oohara
,
H.
Yoshizawa
,
N.
Nagaosa
, and
Y.
Tokura
, “
Spin chirality, berry phase, and anomalous Hall effect in a frustrated ferromagnet
,”
Science
291
,
2573
2576
(
2001
).
345.
M.
Onoda
,
G.
Tatara
, and
N.
Nagaosa
, “
Anomalous Hall effect and skyrmion number in real and momentum spaces
,”
J. Phys. Soc. Jpn.
73
,
2624
2627
(
2004
).
346.
H.
Chen
,
Q.
Niu
, and
A. H.
MacDonald
, “
Anomalous Hall effect arising from noncollinear antiferromagnetism
,”
Phys. Rev. Lett.
112
,
017205
(
2014
).
347.
J.
Kübler
and
C.
Felser
, “
Non-collinear antiferromagnets and the anomalous Hall effect
,”
Europhys. Lett.
108
,
67001
(
2014
).
348.
O.
Busch
,
B.
Göbel
, and
I.
Mertig
, “
Microscopic origin of the anomalous Hall effect in noncollinear Kagome magnets
,”
Phys. Rev. Res.
2
,
033112
(
2020
).
349.
S.
Nakatsuji
,
N.
Kiyohara
, and
T.
Higo
, “
Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature
,”
Nature
527
,
212
215
(
2015
).
350.
A. K.
Nayak
,
J. E.
Fischer
,
Y.
Sun
,
B.
Yan
,
J.
Karel
,
A. C.
Komarek
,
C.
Shekhar
,
N.
Kumar
,
W.
Schnelle
,
J.
Kübler
et al, “
Large anomalous Hall effect driven by a nonvanishing berry curvature in the noncolinear antiferromagnet Mn3Ge
,”
Sci. Adv.
2
,
e1501870
(
2016
).