Single-photon terahertz (THz) detection is one of the most demanding technologies for a variety of fields and could lead to many breakthroughs. Although significant progress has been made in the past two decades, operating it at room temperature still remains a great challenge. Here, we demonstrate, for the first time, a room temperature THz detector at single-photon levels based on nonlinear wave mixing in thermal Rydberg atomic vapor. The low-energy THz photons are coherently upconverted to high-energy optical photons via a nondegenerate Rydberg state involved in a six-wave mixing process, and therefore, single-photon THz detection is achieved by a conventional optical single-photon counting module. The noise equivalent power of such a detector reaches 9.5  × 10−19 W/Hz1/2, which is more than four orders of magnitude lower than the state-of-the-art room temperature THz detectors. The optimum quantum efficiency of the whole-wave mixing process is about 4.3%, with 40.6 dB dynamic range, and the maximum conversion bandwidth is 172 MHz, which is all-optically controllable. The developed fast and continuous-wave single-photon THz detector at room temperature operation has a great potential for portability and chip-scale integration, and could be revolutionary for a wide range of applications in remote sensing, wireless communication, biomedical diagnostics, and quantum optics.

1.
M.
Tonouchi
, “
Cutting-edge terahertz technology
,”
Nat. Photonics
1
,
97
105
(
2007
).
2.
B.
Ferguson
and
X.-C.
Zhang
, “
Materials for terahertz science and technology
,”
Nat. Mater.
1
,
26
33
(
2002
).
3.
K.
Sengupta
,
T.
Nagatsuma
, and
D. M.
Mittleman
, “
Terahertz integrated electronic and hybrid electronic–photonic systems
,”
Nat. Electron.
1
,
622
635
(
2018
).
4.
R. A.
Lewis
, “
A review of terahertz detectors
,”
J. Phys. D: Appl. Phys.
52
,
433001
(
2019
).
5.
J.
Li
and
J.
Li
, “
Terahertz (THz) generator and detection
,”
Electr. Sci. Eng.
2
,
11
(
2020
).
6.
C.
Sirtori
, “
Bridge for the terahertz gap
,”
Nature
417
,
132
133
(
2002
).
7.
R.
Kleiner
, “
Filling the terahertz gap
,”
Science
318
,
1254
(
2007
).
8.
S.
Komiyama
,
O.
Astafiev
,
V.
Antonov
,
T.
Kutsuwa
, and
H.
Hirai
, “
A single-photon detector in the far-infrared range
,”
Nature
403
,
405
407
(
2000
).
9.
Y.
Kajihara
,
T.
Nakajima
,
Z.
Wang
, and
S.
Komiyama
, “
Terahertz single-photon detectors based on quantum wells
,”
J. Appl. Phys.
113
,
136506
(
2013
).
10.
P. M.
Echternach
,
B. J.
Pepper
,
T.
Reck
, and
C. M.
Bradford
, “
Single photon detection of 1.5 THz radiation with the quantum capacitance detector
,”
Nat. Astron.
2
,
90
97
(
2017
).
11.
N.
Wang
,
S.
Cakmakyapan
,
Y.-J.
Lin
,
H.
Javadi
, and
M.
Jarrahi
, “
Room-temperature heterodyne terahertz detection with quantum-level sensitivity
,”
Nat. Astron.
3
,
977
982
(
2019
).
12.
I.
Gayduchenko
,
S. G.
Xu
,
G.
Alymov
,
M.
Moskotin
,
I.
Tretyakov
,
T.
Taniguchi
,
K.
Watanabe
,
G.
Goltsman
,
A. K.
Geim
,
G.
Fedorov
,
D.
Svintsov
, and
D. A.
Bandurin
, “
Tunnel field-effect transistors for sensitive terahertz detection
,”
Nat. Commun.
12
,
543
(
2021
).
13.
W.
Tang
,
A.
Politano
,
C.
Guo
,
W.
Guo
,
C.
Liu
,
L.
Wang
,
X.
Chen
, and
W.
Lu
, “
Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator
,”
Adv. Funct. Mater.
28
,
1801786
(
2018
).
14.
X.
Cai
,
A. B.
Sushkov
,
R. J.
Suess
,
M. M.
Jadidi
,
G. S.
Jenkins
,
L. O.
Nyakiti
,
R. L.
Myers-Ward
,
S.
Li
,
J.
Yan
,
D. K.
Gaskill
,
T. E.
Murphy
,
H. D.
Drew
, and
M. S.
Fuhrer
, “
Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene
,”
Nat. Nanotech.
9
,
814
819
(
2014
).
15.
J.
Li
,
W.
Ma
,
L.
Jiang
,
N.
Yao
,
J.
Deng
,
Q.
Qiu
,
Y.
Shi
,
W.
Zhou
, and
Z.
Huang
, “
High performance of room-temperature NbSe2 terahertz photoelectric detector
,”
ACS Appl. Mater. Interfaces
14
,
14331
14341
(
2022
).
16.
G.
Temporão
,
S.
Tanzilli
,
H.
Zbinden
,
N.
Gisin
,
T.
Aellen
,
M.
Giovannini
, and
J.
Faist
, “
Mid-infrared single-photon counting
,”
Opt. Lett.
31
,
1094
(
2006
).
17.
J. S.
Dam
,
P.
Tidemand-Lichtenberg
, and
C.
Pedersen
, “
Room-temperature mid-infrared single-photon spectral imaging
,”
Nat. Photonics
6
,
788
793
(
2012
).
18.
K.
Huang
,
J.
Fang
,
M.
Yan
,
E.
Wu
, and
H.
Zeng
, “
Wide-field mid-infrared single-photon upconversion imaging
,”
Nat. Commun.
13
,
1077
(
2022
).
19.
W.
Chen
,
P.
Roelli
,
H.
Hu
,
S.
Verlekar
,
S. P.
Amirtharaj
,
A. I.
Barreda
,
T. J.
Kippenberg
,
M.
Kovylina
,
E.
Verhagen
,
A.
Martínez
, and
C.
Galland
, “
Continuous-wave frequency upconversion with amolecular optomechanical nanocavity
,”
Science
374
,
1264
(
2021
).
20.
A.
Xomalis
,
X.
Zheng
,
R.
Chikkaraddy
,
Z.
Koczor-Benda
,
E.
Miele
,
E.
Rosta
,
G. A. E.
Vandenbosch
,
A.
Martínez
, and
J. J.
Baumberg
, “
Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas
,”
Science
374
,
1268
(
2021
).
21.
R.
Guo
,
S.
Ohno
,
H.
Minamide
,
T.
Ikari
, and
H.
Ito
, “
Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process
,”
Appl. Phys. Lett.
93
,
021106
(
2008
).
22.
F.
Qi
,
K.
Nawata
,
S.
Hayashi
,
T.
Notake
,
T.
Matsukawa
, and
H.
Minamide
, “
Bridging a few terahertz to tens of terahertz: Inspection on a cost-effective, room-temperature operated measurement system based on frequency conversion via 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate crystal
,”
Appl. Phys. Lett.
104
,
031110
(
2014
).
23.
Y.
Wang
,
C.
Hu
,
C.
Yan
,
K.
Chen
,
Y.
Takida
,
H.
Minamide
,
D.
Xu
, and
J.
Yao
, “
Highly sensitive multi-stage terahertz parametric upconversion detection based on a KTiOPO4 crystal
,”
Opt. Lett.
47
,
5853
(
2022
).
24.
M.
Kozina
,
M.
Fechner
,
P.
Marsik
,
T.
van Driel
,
J. M.
Glownia
,
C.
Bernhard
,
M.
Radovic
,
D.
Zhu
,
S.
Bonetti
,
U.
Staub
, and
M. C.
Hoffmann
, “
Terahertz-driven phonon upconversion in SrTiO3
,”
Nat. Phys.
15
,
387
392
(
2019
).
25.
J.
Shi
,
D.
Yoo
,
F.
Vidal-Codina
,
C.-W.
Baik
,
K.-S.
Cho
,
N.-C.
Nguyen
,
H.
Utzat
,
J.
Han
,
A. M.
Lindenberg
,
V.
Bulović
,
M. G.
Bawendi
,
J.
Peraire
,
S.-H.
Oh
, and
K. A.
Nelson
, “
A room-temperature polarization-sensitive CMOS terahertz camera based on quantum-dot-enhanced terahertz-to-visible photon upconversion
,”
Nat. Nanotechnol.
17
,
1288
1293
(
2022
).
26.
M.
Saffman
,
T. G.
Walker
, and
K.
Mølmer
, “
Quantum information with Rydberg atoms
,”
Rev. Mod. Phys.
82
,
2313
(
2010
).
27.
J. A.
Sedlacek
,
A.
Schwettmann
,
H.
Kübler
,
R.
Löw
,
T.
Pfau
, and
J. P.
Shaffer
, “
Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances
,”
Nat. Phys.
8
,
819
(
2012
).
28.
S.
Kumar
,
H.
Fan
,
H.
Kübler
,
J.
Sheng
, and
J. P.
Shaffer
, “
Atom-based sensing of weak radio frequency electric fields using homodyne readout
,”
Sci. Rep.
7
,
42981
(
2017
).
29.
M.
Jing
,
Y.
Hu
,
J.
Ma
,
H.
Zhang
,
L.
Zhang
,
L.
Xiao
, and
S.
Jia
, “
Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy
,”
Nat. Phys.
16
,
911
(
2020
).
30.
D.-S.
Ding
,
Z.-K.
Liu
,
B.-S.
Shi
,
G.-C.
Guo
,
K.
Mølmer
, and
C. S.
Adams
, “
Enhanced metrology at the critical point of a many-body Rydberg atomic system
,”
Nat. Phys.
18
,
1447
(
2022
).
31.
S.
Chen
,
D. J.
Reed
,
A. R.
MacKellar
,
L. A.
Downes
,
N. F. A.
Almuhawish
,
M. J.
Jamieson
,
C. S.
Adams
, and
K. J.
Weatherill
, “
Terahertz electrometry via infrared spectroscopy of atomic vapor
,”
Optica
9
,
485
(
2022
).
32.
A.
Browaeys
and
T.
Lahaye
, “
Many-body physics with individually controlled Rydberg atoms
,”
Nat. Phys.
16
,
132
142
(
2020
).
33.
D.
Bluvstein
,
A.
Omran
,
H.
Levine
,
A.
Keesling
,
G.
Semeghini
,
S.
Ebadi
,
T. T.
Wang
,
A. A.
Michailidis
,
N.
Maskara
,
W. W.
Ho
,
S.
Choi
,
M.
Serbyn
,
M.
Greiner
,
V.
Vuletić
, and
M. D.
Lukin
, “
Controlling quantum many-body dynamics in driven Rydberg atom arrays
,”
Science
371
,
1355
(
2021
).
34.
F.
Ripka
,
H.
Kübler
,
R.
Löw
, and
T.
Pfau
, “
A room-temperature single-photon source based on strongly interacting Rydberg atoms
,”
Science
362
,
446
(
2018
).
35.
S.
Shi
,
B.
Xu
,
K.
Zhang
,
G.-S.
Ye
,
D.-S.
Xiang
,
Y.
Liu
,
J.
Wang
,
D.
Su
, and
L.
Li
, “
High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source
,”
Nat. Commun.
13
,
4454
(
2022
).
36.
J.
Han
,
T.
Vogt
,
C.
Gross
,
D.
Jaksch
,
M.
Kiffner
, and
W.
Li
, “
Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms
,”
Phys. Rev. Lett.
120
,
093201
(
2018
).
37.
H.-T.
Tu
,
K.-Y.
Liao
,
Z.-X.
Zhang
,
X.-H.
Liu
,
S.-Y.
Zheng
,
S.-Z.
Yang
,
X.-D.
Zhang
,
H.
Yan
, and
S.-L.
Zhu
, “
High-efficiency coherent microwave-to-optics conversion via off-resonant scattering
,”
Nat. Photonics
16
,
291
(
2022
).
38.
A.
Kumar
,
A.
Suleymanzade
,
M.
Stone
,
L.
Taneja
,
A.
Anferov
,
D. I.
Schuster
, and
J.
Simon
, “
Quantum-enabled millimetre wave to optical transduction using neutral atoms
,”
Nature
615
,
614
619
(
2023
).
39.
S.
Borowka
,
U.
Pylypenko
,
M.
Mazelanik
, and
M.
Parniak
, “
Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms
,”
Nat. Photonics
18
,
32
(
2024
).
40.
L. A.
Downes
,
A. R.
MacKellar
,
D. J.
Whiting
,
C.
Bourgenot
,
C. S.
Adams
, and
K. J.
Weatherill
, “
Full-field terahertz imaging at kilohertz frame rates using atomic vapor
,”
Phys. Rev. X
10
,
011027
(
2020
).
41.
Q.
Qiu
,
J.
Li
,
T.
Wu
,
L.
Jiang
,
Y.
Li
,
W.
Ma
,
N.
Yao
, and
Z.
Huang
, “
High performance of a broadband room-temperature Si detector beyond the cut-off wavelength
,”
J. Mater. Chem. C
10
,
6374
6379
(
2022
).
42.
J.
Tong
,
F.
Suo
,
T.
Zhang
,
Z.
Huang
,
J.
Chu
, and
D. H.
Zhang
, “
Plasmonic semiconductor nanogroove array enhanced broad spectral band millimetre and terahertz wave detection
,”
Light. Sci. Appl.
10
,
58
(
2021
).
43.
S.
Baierl
,
J.  H.
Mentink
,
M.
Hohenleutner
,
L.
Braun
,
T.-M.
Do
,
C.
Lange
,
A.
Sell
,
M.
Fiebig
,
G.
Woltersdorf
,
T.
Kampfrath
, and
R.
Huber
, “
Terahertz-driven nonlinear spin response of antiferromagnetic nickel oxide
,”
Phys. Rev. Lett.
117
,
197201
(
2016
).
44.
C. G.
Wade
,
M.
Marcuzzi
,
E.
Levi
,
J. M.
Kondo
,
I.
Lesanovsky
,
C. S.
Adams
, and
K. J.
Weatherill
, “
A terahertz-driven non-equilibrium phase transition in a room temperature atomic vapour
,”
Nat. Commun.
9
,
3567
(
2018
).
45.
F.
Sizov
and
A.
Rogalski
, “
THz detectors
,”
Prog. Quantum Electron.
34
,
278
347
(
2010
).
46.
M.
Fleischhauer
and
M. D.
Lukin
,
Phys. Rev. Lett.
84
,
5094
(
2000
).
47.
H.
Wu
,
J.
Gea-Banacloche
, and
M.
Xiao
,
Phys. Rev. Lett.
100
,
173602
(
2008
).
48.
Z.
Bai
,
C. S.
Adams
,
G.
Huang
, and
W.
Li
, “
Self-induced transparency in warm and strongly interacting Rydberg gases
,”
Phys. Rev. Lett.
125
,
263605
(
2020
).
49.
H.
Schempp
,
G.
Günter
,
C. S.
Hofmann
,
C.
Giese
,
S. D.
Saliba
,
B. D.
DePaola
,
T.
Amthor
,
M.
Weidemüller
,
S.
Sevinçli
, and
T.
Pohl
, “
Coherent population trapping with controlled interparticle interactions
,”
Phys. Rev. Lett.
104
,
173602
(
2010
).
50.
S.
Sevinçli
,
C.
Ates
,
T.
Pohl
,
H.
Schempp
,
C. S.
Hofmann
,
G.
Günter
,
T.
Amthor
,
M.
Weidemüller
,
J. D.
Pritchard
, and
D.
Maxwell
, “
Quantum interference in interacting three-level Rydberg gases: Coherent population trapping and electromagnetically induced transparency
,”
J. Phys. B: At. Mol. Opt. Phys.
44
,
184018
(
2011
).
51.
N.
Prajapati
,
A. P.
Rotunno
,
S.
Berweger
,
M. T.
Simons
,
A. B.
Artusio-Glimpse
,
S. D.
Voran
, and
C. L.
Holloway
, “
TV and video game streaming with a quantum receiver: A study on a Rydberg atom-based receiver's bandwidth and reception clarity
,”
AVS Quantum Sci.
4
,
035001
(
2022
).
52.
C.
Groiseau
,
A. I.
Fernández-Domínguez
,
D.
Martín-Cano
, and
C. S.
Muñoz
, “
Single-photon source over the terahertz regime
,”
PRX Quantum
5
,
010312
(
2024
).
53.
Y. O.
Dudin
and
A.
Kuzmich
, “
Strongly interacting rydberg excitations of a cold atomic gas
,”
Science
336
,
887
889
(
2012
).
54.
T.
Peyronel
,
O.
Firstenberg
,
Q. Y.
Liang
,
S.
Hofferberth
,
A. V.
Gorshkov
,
T.
Pohl
,
M. D.
Lukin
, and
V.
Vuletić
, “
Quantum nonlinear optics with single photons enabled by strongly interacting atoms
,”
Nature
488
,
57
60
(
2012
).
55.
M. A.
Wayne
,
J. C.
Bienfang
, and
S. V.
Polyakov
, “
Simple autocorrelation method for thoroughly characterizing single-photon detectors
,”
Opt. Express
25
,
20352
20362
(
2017
).
You do not currently have access to this content.