Relaxation processes play a crucial role in glassy materials. However, current dielectric or mechanical spectroscopy typically reaches a lower limit of around 10−1 or 10−2 Hz, which restricts the exploration of long-time dynamics and stability. Here, we propose a mechanical protocol that enables the probing of relaxation processes down to 10−5 Hz, extending the lower limit by ∼3–4 orders of magnitude. The effectiveness of this method is demonstrated in investigating metallic glasses, where the primary and secondary relaxations are detected over an extended timescale. An additional relaxation process has been captured below 10−4 Hz, indicating the emergence of more complex relaxation phenomena over longer timescales. This progress in probing long-term dynamics opens up new possibilities for advancing glassy physics and material properties.

1.
M. J.
Shu
,
P.
Zalden
,
F.
Chen
,
B.
Weems
,
I.
Chatzakis
,
F.
Xiong
,
R.
Jeyasingh
,
M. C.
Hoffmann
,
E.
Pop
,
H.-S. P.
Wong
et al, “
Ultrafast terahertz-induced response of GeSbTe phase-change materials
,”
Appl. Phys. Lett.
104
,
251907
(
2014
).
2.
M. T.
Cicerone
,
Q.
Zhong
, and
M.
Tyagi
, “
Picosecond dynamic heterogeneity, hopping, and Johari-Goldstein relaxation in glass-forming liquids
,”
Phys. Rev. Lett.
113
,
117801
(
2014
).
3.
D.
Cangialosi
,
V. M.
Boucher
,
A.
Alegría
, and
J.
Colmenero
, “
Direct evidence of two equilibration mechanisms in glassy polymers
,”
Phys. Rev. Lett.
111
,
095701
(
2013
).
4.
B.
Ruta
,
E.
Pineda
, and
Z.
Evenson
, “
Relaxation processes and physical aging in metallic glasses
,”
J. Phys.: Condens. Matter
29
,
503002
(
2017
).
5.
M.
Micoulaut
, “
Relaxation and physical aging in network glasses: A review
,”
Rep. Prog. Phys.
79
,
066504
(
2016
).
6.
D.
Cangialosi
,
A.
Alegría
, and
J.
Colmenero
, “
Effect of nanostructure on the thermal glass transition and physical aging in polymer materials
,”
Prog. Poly. Sci.
54–55
,
128
147
(
2016
).
7.
Y. C.
Hu
and
H.
Tanaka
, “
Origin of the boson peak in amorphous solids
,”
Nat. Phys.
18
,
669
677
(
2022
).
8.
Y. S.
Chen
,
Z. F.
Ye
,
K. X.
Wang
,
J. P.
Huang
,
H.
Tong
,
Y. L.
Jin
,
K.
Chen
,
H.
Tanaka
, and
P.
Tan
, “
Visualizing slow internal relaxations in a two-dimensional glassy system
,”
Nat. Phys.
19
,
969
977
(
2023
).
9.
H. B.
Yu
,
W. H.
Wang
, and
K.
Samwer
, “
The β relaxation in metallic glasses: An overview
,”
Mater. Today
16
,
183
191
(
2013
).
10.
Y. H.
Li
,
A.
Annamareddy
,
D.
Morgan
,
Z.
Yu
,
B.
Wang
,
C. R.
Cao
,
J. H.
Perepezko
,
M. D.
Ediger
,
P. M.
Voyles
, and
L.
Yu
, “
Surface diffusion is controlled by bulk fragility across all glass types
,”
Phys. Rev. Lett.
128
,
075501
(
2022
).
11.
Y.
Shi
,
B. H.
Deng
,
O.
Gulbiten
,
M.
Bauchy
,
Q.
Zhou
,
J.
Neuefeind
,
S. R.
Elliott
,
N. J.
Smith
, and
D. C.
Allan
, “
Revealing the relationship between liquid fragility and medium-range order in silicate glasses
,”
Nat. Commun.
14
,
13
(
2023
).
12.
A.
Bartsch
,
K.
Rätzke
,
A.
Meyer
, and
F.
Faupel
, “
Dynamic arrest in multicomponent glass-forming alloys
,”
Phys. Rev. Lett.
104
,
195901
(
2010
).
13.
A.
Vila-Costa
,
M.
Gonzalez-Silveira
,
C.
Rodríguez-Tinoco
,
M.
Rodríguez-López
, and
J.
Rodriguez-Viejo
, “
Emergence of equilibrated liquid regions within the glass
,”
Nat. Phys.
19
,
114
119
(
2023
).
14.
P.
Luo
,
Y. Z.
Li
,
H. Y.
Bai
,
P.
Wen
, and
W. H.
Wang
, “
Memory effect manifested by a boson peak in metallic glass
,”
Phys. Rev. Lett.
116
,
175901
(
2016
).
15.
Z.-Y.
Zhou
,
Q.
Yang
, and
H.-B.
Yu
, “
Toward atomic-scale understanding of structure-dynamics-properties relations for metallic glasses
,”
Prog. Mater. Sci.
145
,
101311
(
2024
).
16.
W. H.
Wang
, “
Dynamic relaxations and relaxation-property relationships in metallic glasses
,”
Prog. Mater. Sci.
106
,
100561
(
2019
).
17.
L. J.
Wang
,
A.
Ninarello
,
P. F.
Guan
,
L.
Berthier
,
G.
Szamel
, and
E.
Flenner
, “
Low-frequency vibrational modes of stable glasses
,”
Nat. Commun.
10
,
26
(
2019
).
18.
L. L.
Shao
,
L.
Xue
,
J. C.
Qiao
,
Q.
Wang
,
Q. Q.
Wang
, and
B. L.
Shen
, “
Gamma relaxation in Dy-based metallic glasses and its correlation with plasticity
,”
Scr. Mater.
222
,
115017
(
2023
).
19.
Q.
Wang
,
J. J.
Liu
,
Y. F.
Ye
,
T. T.
Liu
,
S.
Wang
,
C. T.
Liu
,
J.
Lu
, and
Y.
Yang
, “
Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses
,”
Mater. Today
20
,
293
300
(
2017
).
20.
H. B.
Yu
,
X.
Shen
,
Z.
Wang
,
L.
Gu
,
W. H.
Wang
, and
H. Y.
Bai
, “
Tensile plasticity in metallic glasses with pronounced β relaxations
,”
Phys. Rev. Lett.
108
,
015504
(
2012
).
21.
Q.
Yang
,
C. Q.
Pei
,
H. B.
Yu
, and
T.
Feng
, “
Metallic nanoglasses with promoted β-relaxation and tensile plasticity
,”
Nano Lett.
21
,
6051
6056
(
2021
).
22.
Y. D.
Cheng
,
Q.
Yang
,
J. J.
Wang
,
T.
Dimitriadis
,
M.
Schumacher
,
H. R.
Zhang
,
M. J.
Müller
,
N.
Amini
,
F.
Yang
,
A.
Schoekel
et al, “
Highly tunable β-relaxation enables the tailoring of crystallization in phase-change materials
,”
Nat. Commun.
13
,
7352
(
2022
).
23.
R. C.
Welch
,
J. R.
Smith
,
M.
Potuzak
,
X.
Guo
,
B. F.
Bowden
,
T. J.
Kiczenski
,
D. C.
Allan
,
E. A.
King
,
A. J.
Ellison
, and
J. C.
Mauro
, “
Dynamics of glass relaxation at room temperature
,”
Phys. Rev. Lett.
110
,
265901
(
2013
).
24.
Q.
Yang
,
J.
Huang
,
X. H.
Qin
,
F.
Ge
, and
H. B.
Yu
, “
Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility
,”
Sci. China Mater.
63
,
157
164
(
2020
).
25.
R.
Xue
,
L.
Zhao
,
Y.
Cai
,
J.
Yi
,
J.
Cheng
,
P.
Wen
,
W.
Wang
,
M.
Pan
, and
H.
Bai
, “
Correlation between boson peak and thermal expansion manifested by physical aging and high pressure
,”
Sci. China: Phys., Mech. Astron.
65
,
246111
(
2022
).
26.
H. B.
Yu
,
W. H.
Wang
,
H. Y.
Bai
, and
K.
Samwer
, “
The β-relaxation in metallic glasses
,”
Natl. Sci. Rev.
1
,
429
461
(
2014
).
27.
Y.
Fan
,
T.
Iwashita
, and
T.
Egami
, “
Energy landscape-driven non-equilibrium evolution of inherent structure in disordered material
,”
Nat. Commun.
8
,
15417
(
2017
).
28.
K.
Geirhos
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Johari-Goldstein relaxation far below Tg: Experimental evidence for the gardner transition in structural glasses?
,”
Phys. Rev. Lett.
120
,
085705
(
2018
).
29.
C. Q.
Pei
,
J. Y.
Xie
,
Y.
Zhao
,
H. B.
Ke
,
B.
Zhang
,
B. S.
Shang
,
T.
Feng
,
B. A.
Sun
, and
W. H.
Wang
, “
Hidden and universal relaxation mode in metallic glasses of simple atomic structure
,”
Phys. Rev. B
106
,
214203
(
2022
).
30.
Q.
Wang
,
S. T.
Zhang
,
Y.
Yang
,
Y. D.
Dong
,
C. T.
Liu
, and
J.
Lu
, “
Unusual fast secondary relaxation in metallic glass
,”
Nat. Commun.
6
,
7876
(
2015
).
31.
S.
Küchemann
and
R.
Maaß
, “
Gamma relaxation in bulk metallic glasses
,”
Scr. Mater.
137
,
5
8
(
2017
).
32.
P.
Luo
,
P.
Wen
,
H. Y.
Bai
,
B.
Ruta
, and
W. H.
Wang
, “
Relaxation decoupling in metallic glasses at low temperatures
,”
Phys. Rev. Lett.
118
,
225901
(
2017
).
33.
Y.
Sun
,
S. X.
Peng
,
Q.
Yang
,
F.
Zhang
,
M. H.
Yang
,
C. Z.
Wang
,
K. M.
Ho
, and
H. B.
Yu
, “
Predicting complex relaxation processes in metallic glass
,”
Phys. Rev. Lett.
123
,
105701
(
2019
).
34.
Z. Y.
Zhou
,
Y.
Sun
,
L.
Gao
,
Y. J.
Wang
, and
H. B.
Yu
, “
Fundamental links between shear transformation, β relaxation, and string-like motion in metallic glasses
,”
Acta Mater.
246
,
118701
(
2023
).
35.
L.
Gao
,
Y.
Sun
, and
H. B.
Yu
, “
Mobility percolation as a source of Johari-Goldstein relaxation in glasses
,”
Phys. Rev. B
108
,
014201
(
2023
).
36.
H. B.
Yu
,
L.
Gao
,
J. Q.
Gao
, and
K.
Samwer
, “
Universal origin of glassy relaxation as recognized by configuration pattern matching
,”
Natl. Sci. Rev.
11
,
nwae091
(
2024
).
37.
H. B.
Yu
and
Q.
Wang
, “
Liquid-like clusters in glassy solids as a unique state of matter: Dissipative but non-diffusive
,”
Next Mater.
3
,
100168
(
2024
).
38.
Q.
Yang
,
X. M.
Yang
,
T.
Zhang
,
X. W.
Liu
, and
H. B.
Yu
, “
Structure and entropy control of polyamorphous transition in high-entropy metallic glasses
,”
Acta Mater.
266
,
119701
(
2024
).
39.
S. C.
Grindy
,
R.
Learsch
,
D.
Mozhdehi
,
J.
Cheng
,
D. G.
Barrett
,
Z. b.
Guan
,
P. B.
Messersmith
, and
N.
Holten-Andersen
, “
Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics
,”
Nat. Mater.
14
,
1210
1216
(
2015
).
40.
S. X.
Peng
,
Y. D.
Cheng
,
J.
Pries
,
S.
Wei
,
H. B.
Yu
, and
M.
Wuttig
, “
Uncovering β-relaxations in amorphous phase-change materials
,”
Sci. Adv.
6
,
eaay6726
(
2020
).
41.
Z.
Wang
,
B. A.
Sun
,
H. Y.
Bai
, and
W. H.
Wang
, “
Evolution of hidden localized flow during glass-to-liquid transition in metallic glass
,”
Nat. Commun.
5
,
5823
(
2014
).
42.
Y. J.
Duan
,
L. T.
Zhang
,
J. C.
Qiao
,
Y. J.
Wang
,
Y.
Yang
,
T.
Wada
,
H.
Kato
,
J. M.
Pelletier
,
E.
Pineda
, and
D.
Crespo
, “
Intrinsic correlation between the fraction of liquidlike zones and the β relaxation in high-entropy metallic glasses
,”
Phys. Rev. Lett.
129
,
175501
(
2022
).
43.
A.
Das
,
P. M.
Derlet
,
C. Y.
Liu
,
E. M.
Dufresne
, and
R.
Maass
, “
Stress breaks universal aging behavior in a metallic glass
,”
Nat. Commun.
10
,
5006
(
2019
).
44.
A.
Das
,
E. M.
Dufresne
, and
R.
Maaß
, “
Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass
,”
Acta Mater.
196
,
723
732
(
2020
).
45.
S.
Küchemann
,
C.
Liu
,
E. M.
Dufresne
,
J.
Shin
, and
R.
Maaß
, “
Shear banding leads to accelerated aging dynamics in a metallic glass
,”
Phys. Rev. B
97
,
014204
(
2018
).
46.
M.
Granata
,
E.
Saracco
,
N.
Morgado
,
A.
Cajgfinger
,
G.
Cagnoli
,
J.
Degallaix
,
V.
Dolique
,
D.
Forest
,
J.
Franc
,
C.
Michel
et al, “
Mechanical loss in state-of-the-art amorphous optical coatings
,”
Phys. Rev. D
93
,
012007
(
2016
).
47.
G.
Vajente
,
R.
Birney
,
A.
Ananyeva
,
S.
Angelova
,
R.
Asselin
,
B.
Baloukas
,
R.
Bassiri
,
G.
Billingsley
,
M. M.
Fejer
,
D.
Gibson
et al, “
Effect of elevated substrate temperature deposition on the mechanical losses in tantala thin film coatings
,”
Classical Quantum Gravity
35
,
075001
(
2018
).
48.
K.
Prasai
,
J.
Jiang
,
A.
Mishkin
,
B.
Shyam
,
S.
Angelova
,
R.
Birney
,
D. A.
Drabold
,
M.
Fazio
,
E. K.
Gustafson
,
G.
Harry
et al, “
High precision detection of change in intermediate range order of amorphous zirconia-doped tantala thin films due to annealing
,”
Phys. Rev. Lett.
123
,
045501
(
2019
).
49.
N. N.
He
,
L. J.
Song
,
W.
Xu
,
J. T.
Huo
,
J. Q.
Wang
, and
R. W.
Li
, “
The evolution of relaxation modes during isothermal annealing and its influence on properties of Fe-based metallic glass
,”
J. Non-Cryst. Solids
509
,
95
98
(
2019
).
50.
L.
Hawelek
,
T.
Warski
,
P.
Zackiewicz
,
J.
Hudecki
, and
A.
Kolano-Burian
, “
Magnetic properties evolution and crystallization behaviour of vacuum- and air-long-term-annealed rapidly quenched Fe80.3Co5Cu0.7B14 alloy
,”
Sci. Rep.
12
,
21387
(
2022
).
51.
D.
Kong
,
Y.
Meng
, and
G. B.
McKenna
, “
Searching for the ideal glass transition: Going to yotta seconds and beyond
,”
J. Non-Cryst. Solids
606
,
122186
(
2023
).
52.
X.
Monnier
,
J.
Colmenero
,
M.
Wolf
, and
D.
Cangialosi
, “
Reaching the ideal glass in polymer spheres: Thermodynamics and vibrational density of states
,”
Phys. Rev. Lett.
126
,
118004
(
2021
).
53.
C. P.
Royall
,
F.
Turci
,
S.
Tatsumi
,
J.
Russo
, and
J.
Robinson
, “
The race to the bottom: Approaching the ideal glass?
,”
J. Phys.: Condens. Matter
30
,
363001
(
2018
).
54.
G. B.
McKenna
,
D.
Chen
,
S. C. H.
Mangalara
,
D.
Kong
, and
S.
Banik
, “
Some open challenges in polymer physics
,”
Polym. Eng. Sci.
62
,
1325
1355
(
2022
).
55.
H.
Yoon
and
G. B.
McKenna
, “
Testing the paradigm of an ideal glass transition: Dynamics of an ultrastable polymeric glass
,”
Sci. Adv.
4
,
eaau5423
(
2018
).
56.
H. B.
Yu
,
R.
Richert
, and
K.
Samwer
, “
Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses
,”
Sci. Adv.
3
,
e1701577
(
2017
).
57.
T.
Hecksher
,
D. H.
Torchinsky
,
C.
Klieber
,
J. A.
Johnson
,
J. C.
Dyre
, and
K. A.
Nelson
, “
Toward broadband mechanical spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
8710
8715
(
2017
).
58.
J. C.
Qiao
,
X. D.
Liu
,
Q.
Wang
,
C. T.
Liu
,
J.
Lu
, and
Y.
Yang
, “
Fast secondary relaxation and plasticity initiation in metallic glasses
,”
Natl. Sci. Rev.
5
,
616
618
(
2017
).
59.
P.
Ross
,
S.
Küchemann
,
P. M.
Derlet
,
H. B.
Yu
,
W.
Arnold
,
P.
Liaw
,
K.
Samwer
, and
R.
Maass
, “
Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass
,”
Acta Mater.
138
,
111
118
(
2017
).
60.
B.
Wang
,
Z. Y.
Zhou
,
P. F.
Guan
,
H. B.
Yu
,
W. H.
Wang
, and
K. L.
Ngai
, “
Invariance of the relation between α relaxation and β relaxation in metallic glasses to variations of pressure and temperature
,”
Phys. Rev. B
102
,
094205
(
2020
).
61.
M.
Kamkar
,
R.
Salehiyan
,
T. B.
Goudoulas
,
M.
Abbasi
,
C.
Saengow
,
E.
Erfanian
,
S.
Sadeghi
,
G.
Natale
,
S. A.
Rogers
,
A. J.
Giacomin
et al, “
Large amplitude oscillatory shear flow: Microstructural assessment of polymeric systems
,”
Prog. Poly. Sci.
132
,
101580
(
2022
).
62.
G. J.
Donley
,
P. K.
Singh
,
A.
Shetty
, and
S. A.
Rogers
, “
Elucidating the G″ overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
21945
21952
(
2020
).
63.
Z.
Lei
,
Y.
Wu
,
J.
He
,
X.
Liu
,
H.
Wang
,
S.
Jiang
,
L.
Gu
,
Q.
Zhang
,
B.
Gault
,
D.
Raabe
et al, “
Snoek-type damping performance in strong and ductile high-entropy alloys
,”
Sci. Adv.
6
,
eaba7802
(
2020
).
You do not currently have access to this content.