The evolution of power and radiofrequency electronics enters a new era with (ultra)wide bandgap semiconductors such as GaN, SiC, and β-Ga2O3, driving significant advancements across various technologies. The elevated breakdown voltage and minimal on-resistance result in size-compact and energy-efficient devices. However, effective thermal management poses a critical challenge, particularly when pushing devices to operate at their electronic limits for maximum output power. To address these thermal hurdles, comprehensive studies into thermal conduction within semiconductor heterostructures are essential. This review offers a comprehensive overview of recent progress in (ultra)wide bandgap semiconductor heterostructures dedicated to electronics cooling and are structured into four sections. Part 1 summarizes the material growth and thermal properties of (ultra)wide bandgap semiconductor heterostructures. Part 2 discusses heterogeneous integration techniques and thermal boundary conductance (TBC) of the bonded interfaces. Part 3 focuses on the research of TBC, including the progress in thermal characterization, experimental and theoretical enhancement, and the fundamental understanding of TBC. Parts 4 shifts the focus to electronic devices, presenting research on the cooling effects of these heterostructures through simulations and experiments. Finally, this review also identifies objectives, challenges, and potential avenues for future research. It aims to drive progress in electronics cooling through novel materials development, innovative integration techniques, new device designs, and advanced thermal characterization. Addressing these challenges and fostering continued progress hold the promise of realizing high-performance, high output power, and highly reliable electronics operating at the electronic limits.

1.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
van de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa‐Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
, “
Ultrawide‐bandgap semiconductors: Research opportunities and challenges
,”
Adv. Electron. Mater.
4
(
1
),
1600501
(
2018
).
2.
M. J.
Tadjer
, “
Toward gallium oxide power electronics
,”
Science
378
(
6621
),
724
725
(
2022
).
3.
A. J.
Green
,
J.
Speck
,
G.
Xing
,
P.
Moens
,
F.
Allerstam
,
K.
Gumaelius
,
T.
Neyer
,
A.
Arias-Purdue
,
V.
Mehrotra
,
A.
Kuramata
,
K.
Sasaki
,
S.
Watanabe
,
K.
Koshi
,
J.
Blevins
,
O.
Bierwagen
,
S.
Krishnamoorthy
,
K.
Leedy
,
A. R.
Arehart
,
A. T.
Neal
,
S.
Mou
,
S. A.
Ringel
,
A.
Kumar
,
A.
Sharma
,
K.
Ghosh
,
U.
Singisetti
,
W.
Li
,
K.
Chabak
,
K.
Liddy
,
A.
Islam
,
S.
Rajan
,
S.
Graham
,
S.
Choi
,
Z.
Cheng
, and
M.
Higashiwaki
, “
β-Gallium oxide power electronics
,”
APL Mater.
10
(
2
),
029201
(
2022
).
4.
T.
Feng
,
H.
Zhou
,
Z.
Cheng
,
L. S.
Larkin
, and
M. R.
Neupane
, “
A critical review of thermal boundary conductance across wide and ultrawide bandgap semiconductor interfaces
,”
ACS Appl. Mater. Interfaces
15
(
25
),
29655
29673
(
2023
).
5.
A.
Jeżowski
,
P.
Stachowiak
,
T.
Plackowski
,
T.
Suski
,
S.
Krukowski
,
M.
Boćkowski
,
I.
Grzegory
,
B.
Danilchenko
, and
T.
Paszkiewicz
, “
Thermal conductivity of GaN crystals grown by high pressure method
,”
Phys. Status Solidi B
240
(
2
),
447
450
(
2003
).
6.
Q.
Zheng
,
C.
Li
,
A.
Rai
,
J. H.
Leach
,
D. A.
Broido
, and
D. G.
Cahill
, “
Thermal conductivity of GaN, 71GaN, and SiC from 150 K to 850 K
,”
Phys. Rev. Mater.
3
(
1
),
014601
(
2019
).
7.
Z.
Cheng
,
J.
Liang
,
K.
Kawamura
,
H.
Zhou
,
H.
Asamura
,
H.
Uratani
,
J.
Tiwari
,
S.
Graham
,
Y.
Ohno
,
Y.
Nagai
,
T.
Feng
,
N.
Shigekawa
, and
D. G.
Cahill
, “
High thermal conductivity in wafer-scale cubic silicon carbide crystals
,”
Nat. Commun.
13
(
1
),
7201
(
2022
).
8.
Z.
Guo
,
A.
Verma
,
X.
Wu
,
F.
Sun
,
A.
Hickman
,
T.
Masui
,
A.
Kuramata
,
M.
Higashiwaki
,
D.
Jena
, and
T.
Luo
, “
Anisotropic thermal conductivity in single crystal β-gallium oxide
,”
Appl. Phys. Lett.
106
(
11
),
111909
(
2015
).
9.
D. G.
Onn
,
A.
Witek
,
Y. Z.
Qiu
,
T. R.
Anthony
, and
W. F.
Banholzer
, “
Some aspects of the thermal conductivity of isotopically enriched diamond single crystals
,”
Phys. Rev. Lett.
68
(
18
),
2806
2809
(
1992
).
10.
Z.
Cheng
,
Y. R.
Koh
,
A.
Mamun
,
J.
Shi
,
T.
Bai
,
K.
Huynh
,
L.
Yates
,
Z.
Liu
,
R.
Li
,
E.
Lee
,
M. E.
Liao
,
Y.
Wang
,
H. M.
Yu
,
M.
Kushimoto
,
T.
Luo
,
M. S.
Goorsky
,
P. E.
Hopkins
,
H.
Amano
,
A.
Khan
, and
S.
Graham
, “
Experimental observation of high intrinsic thermal conductivity of AlN
,”
Phys. Rev. Mater.
4
(
4
),
044602
(
2020
).
11.
B. C.
Daly
,
H. J.
Maris
,
A. V.
Nurmikko
,
M.
Kuball
, and
J.
Han
, “
Optical pump-and-probe measurement of the thermal conductivity of nitride thin films
,”
J. Appl. Phys.
92
(
7
),
3820
3824
(
2002
).
12.
W.
Liu
and
A. A.
Balandin
, “
Thermal conduction in AlxGa1-xN alloys and thin films
,”
J. Appl. Phys.
97
(
7
),
073710
(
2005
).
13.
H. R.
Shanks
,
P. D.
Maycock
,
P. H.
Sidles
, and
G. C.
Danielson
, “
Thermal conductivity of silicon from 300 to 1400°K
,”
Phys. Rev.
130
(
5
),
1743
1748
(
1963
).
14.
C.
Codreanu
,
M.
Avram
,
E.
Carbunescu
, and
E.
Iliescu
, “
Comparison of 3C–SiC, 6H–SiC and 4H–SiC MESFETs performances
,”
Mater. Sci. Semicond. Process.
3
(
1–2
),
137
142
(
2000
).
15.
P.
Jiang
,
X.
Qian
,
X.
Li
, and
R.
Yang
, “
Three-dimensional anisotropic thermal conductivity tensor of single crystalline β-Ga2O3
,”
Appl. Phys. Lett.
113
(
23
),
232105
(
2018
).
16.
D.
Sedmidubský
,
J.
Leitner
,
P.
Svoboda
,
Z.
Sofer
, and
J.
Macháček
, “
Heat capacity and phonon spectra of A IIIN
,”
J. Therm. Anal. Calorim.
95
(
2
),
403
407
(
2009
).
17.
J.
Leitner
,
A.
Strejc
,
D.
Sedmidubský
, and
K.
Růžička
, “
High temperature enthalpy and heat capacity of GaN
,”
Thermochim. Acta
401
(
2
),
169
173
(
2003
).
18.
C.
Suckling
and
D.
Nguyen
, “
Thermal analysis of GaN devices
,” in
ARMMS Conference of RF and Microwave Society 2012
,
Abingdon, UK
(
2012
).
19.
M.
Bhatnagar
and
B. J.
Baliga
, “
Comparison of 6H-SiC, 3C-SiC, and Si for power devices
,”
IEEE Trans. Electron Devices
40
(
3
),
645
655
(
1993
).
20.
Z.
Cheng
,
J.
Shi
,
C.
Yuan
,
S.
Kim
, and
S.
Graham
, “
Thermal science and engineering of β-Ga2O3 materials and devices
,”
Semicond. Semimetals
107
,
77
99
(
2021
).
21.
J.
Zhang
,
P.
Dong
,
K.
Dang
,
Y.
Zhang
,
Q.
Yan
,
H.
Xiang
,
J.
Su
,
Z.
Liu
,
M.
Si
,
J.
Gao
,
M.
Kong
,
H.
Zhou
, and
Y.
Hao
, “
Ultra-wide bandgap semiconductor Ga2O3 power diodes
,”
Nat. Commun.
13
(
1
),
3900
(
2022
).
22.
Z.
Cheng
,
N.
Tanen
,
C.
Chang
,
J.
Shi
,
J.
McCandless
,
D.
Muller
,
D.
Jena
,
H. G.
Xing
, and
S.
Graham
, “
Significantly reduced thermal conductivity in β-(Al0.1Ga0.9)2O3/Ga2O3 superlattices
,”
Appl. Phys. Lett.
115
(
9
),
092105
(
2019
).
23.
Z.
Cheng
,
L.
Yates
,
J.
Shi
,
M. J.
Tadjer
,
K. D.
Hobart
, and
S.
Graham
, “
Thermal conductance across β-Ga2O3-diamond van der Waals heterogeneous interfaces
,”
APL Mater.
7
(
3
),
031118
(
2019
).
24.
Z.
Cheng
,
F.
Mu
,
T.
You
,
W.
Xu
,
J.
Shi
,
M. E.
Liao
,
Y.
Wang
,
K.
Huynh
,
T.
Suga
,
M. S.
Goorsky
,
X.
Ou
, and
S.
Graham
, “
Thermal transport across ion-cut monocrystalline β-Ga2O3 thin films and bonded β-Ga2O3–SiC interfaces
,”
ACS Appl. Mater. Interfaces
12
(
40
),
44943
44951
(
2020
).
25.
H.
Amano
,
R.
Collazo
,
C. D.
Santi
,
S.
Einfeldt
,
M.
Funato
,
J.
Glaab
,
S.
Hagedorn
,
A.
Hirano
,
H.
Hirayama
,
R.
Ishii
,
Y.
Kashima
,
Y.
Kawakami
,
R.
Kirste
,
M.
Kneissl
,
R.
Martin
,
F.
Mehnke
,
M.
Meneghini
,
A.
Ougazzaden
,
P. J.
Parbrook
,
S.
Rajan
,
P.
Reddy
,
F.
Römer
,
J.
Ruschel
,
B.
Sarkar
,
F.
Scholz
,
L. J.
Schowalter
,
P.
Shields
,
Z.
Sitar
,
L.
Sulmoni
,
T.
Wang
,
T.
Wernicke
,
M.
Weyers
,
B.
Witzigmann
,
Y. R.
Wu
,
T.
Wunderer
, and
Y.
Zhang
, “
The 2020 UV emitter roadmap
,”
J. Phys. D: Appl. Phys.
53
(
50
),
503001
(
2020
).
26.
M.
Kneissl
,
T. Y.
Seong
,
J.
Han
, and
H.
Amano
, “
The emergence and prospects of deep-ultraviolet light-emitting diode technologies
,”
Nat. Photonics
13
(
4
),
233
244
(
2019
).
27.
H.
Ahmad
,
J.
Lindemuth
,
Z.
Engel
,
C. M.
Matthews
,
T. M.
McCrone
, and
W. A.
Doolittle
, “
Substantial P-type conductivity of AlN achieved via beryllium doping
,”
Adv. Mater.
33
(
42
),
2104497
(
2021
).
28.
S.
Li
,
Q.
Zheng
,
Y.
Lv
,
X.
Liu
,
X.
Wang
,
P. Y.
Huang
,
D. G.
Cahill
, and
B.
Lv
, “
High thermal conductivity in cubic boron arsenide crystals
,”
Sciene
361
(
6402
),
579
581
(
2018
).
29.
J. S.
Kang
,
M.
Li
,
H.
Wu
,
H.
Nguyen
, and
Y.
Hu
, “
Experimental observation of high thermal conductivity in boron arsenide
,”
Science
361
(
6402
),
575
578
(
2018
).
30.
F.
Tian
,
B.
Song
,
X.
Chen
,
N. K.
Ravichandran
,
Y.
Lv
,
K.
Chen
,
S.
Sullivan
,
J.
Kim
,
Y.
Zhou
,
T.-H.
Liu
,
M.
Goni
,
Z.
Ding
,
J.
Sun
,
G. A. G.
Udalamatta Gamage
,
H.
Sun
,
H.
Ziyaee
,
S.
Huyan
,
L.
Deng
,
J.
Zhou
,
A. J.
Schmidt
,
S.
Chen
,
C.-W.
Chu
,
P. Y.
Huang
,
D.
Broido
,
L.
Shi
,
G.
Chen
, and
Z.
Ren
, “
Unusual high thermal conductivity in boron arsenide bulk crystals
,”
Science
361
(
6402
),
582
585
(
2018
).
31.
Q.
Zheng
,
S.
Li
,
C.
Li
,
Y.
Lv
,
X.
Liu
,
P. Y.
Huang
,
D. A.
Broido
,
B.
Lv
, and
D. G.
Cahill
, “
High thermal conductivity in isotopically enriched cubic boron phosphide
,”
Adv. Funct. Mater.
28
(
43
),
1805116
(
2018
).
32.
J. S.
Kang
,
H.
Wu
, and
Y.
Hu
, “
Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications
,”
Nano Lett.
17
(
12
),
7507
7514
(
2017
).
33.
J. R.
Olson
,
R. O.
Pohl
,
J. W.
Vandersande
,
A.
Zoltan
,
T. R.
Anthony
, and
W. F.
Banholzer
, “
Thermal conductivity of diamond between 170 and 1200 K and the isotope effect
,”
Phys. Rev. B
47
(
22
),
14850
14856
(
1993
).
34.
L.
Wei
,
P. K.
Kuo
,
R. L.
Thomas
,
T. R.
Anthony
, and
W. F.
Banholzer
, “
Thermal conductivity of isotopically modified single crystal diamond
,”
Phys. Rev. Lett.
70
(
24
),
3764
3767
(
1993
).
35.
A.
Ward
,
D. A.
Broido
,
D. A.
Stewart
, and
G.
Deinzer
, “
Ab initio theory of the lattice thermal conductivity in diamond
,”
Phys. Rev. B
80
(
12
),
125203
(
2009
).
36.
X.
Qian
,
P.
Jiang
, and
R.
Yang
, “
Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance
,”
Mater. Today Phys.
3
,
70
75
(
2017
).
37.
Z.
Cheng
,
W.
Lu
,
J.
Shi
,
D.
Tanaka
,
N. H.
Protik
,
S.
Wang
,
M.
Iwaya
,
T.
Takeuchi
,
S.
Kamiyama
,
I.
Akasaki
,
H.
Amano
, and
S.
Graham
, “
Quasi-ballistic thermal conduction in 6H–SiC
,”
Mater. Today Phys.
20
,
100462
(
2021
).
38.
J.
Wang
,
G.
Yu
,
H.
Zong
,
Y.
Liao
,
W.
Lu
,
W.
Cai
,
X.
Hu
,
Y. H.
Xie
, and
H.
Amano
, “
Non-polar true-lateral GaN power diodes on foreign substrates
,”
Appl. Phys. Lett.
118
(
21
),
212102
(
2021
).
39.
H.
Fujikura
,
T.
Konno
,
T.
Kimura
,
Y.
Narita
, and
F.
Horikiri
, “
Homo-epitaxial growth of n-GaN layers free from carbon-induced mobility collapse and off-angle-dependent doping variation by quartz-free hydride vapor phase epitaxy
,”
Appl. Phys. Lett.
117
(
1
),
012103
(
2020
).
40.
K.
Ohnishi
,
Y.
Amano
,
N.
Fujimoto
,
S.
Nitta
,
Y.
Honda
, and
H.
Amano
, “
Halide vapor phase epitaxy of p-type Mg-doped GaN utilizing MgO
,”
Appl. Phys. Express
13
(
6
),
061007
(
2020
).
41.
K.
Ohnishi
,
N.
Fujimoto
,
S.
Nitta
,
H.
Watanabe
,
S.
Lu
,
M.
Deki
,
Y.
Honda
, and
H.
Amano
, “
Tuning the p-type doping of GaN over three orders of magnitude via efficient Mg doping during halide vapor phase epitaxy
,”
J. Appl. Phys.
132
(
14
),
145703
(
2022
).
42.
K.
Ohnishi
,
S.
Kawasaki
,
N.
Fujimoto
,
S.
Nitta
,
H.
Watanabe
,
Y.
Honda
, and
H.
Amano
, “
Vertical GaN p+-n junction diode with ideal avalanche capability grown by halide vapor phase epitaxy
,”
Appl. Phys. Lett.
119
(
15
),
152102
(
2021
).
43.
Y.
Gao
,
S.
Xu
,
J.
Zhang
,
J.
Zhang
,
H.
Tao
,
Y.
Zhang
,
H.
Su
,
B.
Yun
, and
Y.
Hao
, “
Evolutionary growth strategy of GaN on (1 1 1) diamond modulated by nano-patterned buffer engineering
,”
Mater. Des.
235
,
112444
(
2023
).
44.
D.
Liu
,
L.
Hu
,
X.
Yang
,
Z.
Zhang
,
H.
Yu
,
F.
Zheng
,
Y.
Feng
,
J.
Wei
,
Z.
Cai
,
Z.
Chen
,
C.
Ma
,
F.
Xu
,
X.
Wang
,
W.
Ge
,
K.
Liu
,
B.
Huang
, and
B.
Shen
, “
Polarization-driven-orientation selective growth of single-crystalline III-nitride semiconductors on arbitrary substrates
,”
Adv. Funct. Mater.
32
(
14
),
2113211
(
2022
).
45.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts
,”
Appl. Phys. Express
6
(
8
),
086502
(
2013
).
46.
F.
Zhou
,
H.
Gong
,
M.
Xiao
,
Y.
Ma
,
Z.
Wang
,
X.
Yu
,
L.
Li
,
L.
Fu
,
H. H.
Tan
,
Y.
Yang
,
F. F.
Ren
,
S.
Gu
,
Y.
Zheng
,
H.
Lu
,
R.
Zhang
,
Y.
Zhang
, and
J.
Ye
, “
An avalanche-and-surge robust ultrawide-bandgap heterojunction for power electronics
,”
Nat. Commun.
14
(
1
),
4459
(
2023
).
47.
Y.
Oshima
and
E.
Ahmadi
, “
Progress and challenges in the development of ultra-wide bandgap semiconductor α-Ga2O3 toward realizing power device applications
,”
Appl. Phys. Lett.
121
(
26
),
260501
(
2022
).
48.
A.
Nandi
,
D.
Cherns
,
I.
Sanyal
, and
M.
Kuball
, “
Epitaxial growth of (−201) β-Ga2O3 on (001) diamond substrates
,”
Cryst. Growth Des.
23
(
11
),
8290
8295
(
2023
).
49.
F.
Akyol
and
H.
Ozden
, “
Chemical vapor deposition growth of β-Ga2O3 on Si- and C- face off-axis 4H–SiC at high temperature
,”
Mater. Sci. Semicond. Process.
170
,
107968
(
2024
).
50.
J.
Hu
,
B.
Xu
,
Z.
Zhang
,
X.
He
,
L.
Li
,
H.
Cheng
,
J.
Wang
,
J.
Meng
,
X.
Wang
,
C.
Zhang
,
R.
Jia
, and
H.
Pu
, “
Step flow growth of β-Ga2O3 films on off-axis 4H-SiC substrates by LPCVD
,”
Surf. Interfaces
37
,
102732
(
2023
).
51.
N.
Nepal
,
D. S.
Katzer
,
B. P.
Downey
,
V. D.
Wheeler
,
L. O.
Nyakiti
,
D. F.
Storm
,
M. T.
Hardy
,
J. A.
Freitas
,
E. N.
Jin
,
D.
Vaca
,
L.
Yates
,
S.
Graham
,
S.
Kumar
, and
D. J.
Meyer
, “
Heteroepitaxial growth of β-Ga2O3 films on SiC via molecular beam epitaxy
,”
J. Vac. Sci. Technol. A
38
(
6
),
063406
(
2020
).
52.
M. R.
Karim
,
Z.
Chen
,
Z.
Feng
,
H.-L.
Huang
,
J. M.
Johnson
,
M. J.
Tadjer
,
J.
Hwang
, and
H.
Zhao
, “
Two-step growth of β-Ga2O3 films on (100) diamond via low pressure chemical vapor deposition
,”
J. Vac. Sci. Technol. A
39
(
2
),
023411
(
2021
).
53.
T.
Kumabe
,
A.
Yoshikawa
,
S.
Kawasaki
,
M.
Kushimoto
,
Y.
Honda
,
M.
Arai
,
J.
Suda
, and
H.
Amano
, “Demonstration of AlGaN-on-AlN p-n diodes with dopant-free distributed polarization doping,”
IEEE Trans. Electron. Devices
71
(
5
),
3396
3402
(
2024
).
54.
M. S.
Bin Hoque
,
Y. R.
Koh
,
J. L.
Braun
,
A.
Mamun
,
Z.
Liu
,
K.
Huynh
,
M. E.
Liao
,
K.
Hussain
,
Z.
Cheng
,
E. R.
Hoglund
,
D. H.
Olson
,
J. A.
Tomko
,
K.
Aryana
,
R.
Galib
,
J. T.
Gaskins
,
M. M. M.
Elahi
,
Z. C.
Leseman
,
J. M.
Howe
,
T.
Luo
,
S.
Graham
,
M. S.
Goorsky
,
A.
Khan
, and
P. E.
Hopkins
, “
High in-plane thermal conductivity of aluminum nitride thin films
,”
ACS Nano
15
(
6
),
9588
9599
(
2021
).
55.
Y. R.
Koh
,
Z.
Cheng
,
A.
Mamun
,
M. S.
Bin Hoque
,
Z.
Liu
,
T.
Bai
,
K.
Hussain
,
M. E.
Liao
,
R.
Li
,
J. T.
Gaskins
,
A.
Giri
,
J.
Tomko
,
J. L.
Braun
,
M.
Gaevski
,
E.
Lee
,
L.
Yates
,
M. S.
Goorsky
,
T.
Luo
,
A.
Khan
,
S.
Graham
, and
P. E.
Hopkins
, “
Bulk-like intrinsic phonon thermal conductivity of micrometer-thick AlN films
,”
ACS Appl. Mater. Interfaces
12
(
26
),
29443
29450
(
2020
).
56.
J.
Wang
,
N.
Xie
,
F.
Xu
,
L.
Zhang
,
J.
Lang
,
X.
Kang
,
Z.
Qin
,
X.
Yang
,
N.
Tang
,
X.
Wang
,
W.
Ge
, and
B.
Shen
, “
Group-III nitride heteroepitaxial films approaching bulk-class quality
,”
Nat. Mater.
22
(
7
),
853
859
(
2023
).
57.
C.
Perez
,
A. J.
McLeod
,
M. E.
Chen
,
S. I.
Yi
,
S.
Vaziri
,
R.
Hood
,
S. T.
Ueda
,
X.
Bao
,
M.
Asheghi
,
W.
Park
,
A. A.
Talin
,
S.
Kumar
,
E.
Pop
,
A. C.
Kummel
, and
K. E.
Goodson
, “
High thermal conductivity of submicrometer aluminum nitride thin films sputter-deposited at low temperature
,”
ACS Nano
17
,
21240
21250
(
2023
).
58.
R.
Chaudhuri
,
S. J.
Bader
,
Z.
Chen
,
D. A.
Muller
,
H. G.
Xing
, and
D.
Jena
, “
A polarization-induced 2D hole gas in undoped gallium nitride quantum wells
,”
Science
365
(
6460
),
1454
1457
(
2019
).
59.
J.
Simon
,
V.
Protasenko
,
C.
Lian
,
H.
Xing
, and
D.
Jena
, “
Polarization-induced hole doping in wide-band-gap uniaxial semiconductor
,”
Science
327
(
5961
),
60
64
(
2010
).
60.
J.
Wang
,
W.
Cai
,
W.
Lu
,
S.
Lu
,
E.
Kano
,
V. C.
Agulto
,
B.
Sarkar
,
H.
Watanabe
,
N.
Ikarashi
,
T.
Iwamoto
,
M.
Nakajima
,
Y.
Honda
, and
H.
Amano
, “
Observation of 2D-magnesium-intercalated gallium nitride superlattices
,”
Nature
631
(
8019
),
67
72
(
2024
).
61.
N.
Gao
,
X.
Feng
,
S.
Lu
,
W.
Lin
,
Q.
Zhuang
,
H.
Chen
,
K.
Huang
,
S.
Li
, and
J.
Kang
, “
Integral monolayer-scale featured digital-alloyed AlN/GaN superlattices using hierarchical growth units
,”
Cryst. Growth Des.
19
(
3
),
1720
1727
(
2019
).
62.
Y.
Wu
,
P.
Zhou
,
Y.
Xiao
,
K.
Sun
,
D.
Wang
,
P.
Wang
, and
Z.
Mi
, “
Achieving atomically ordered GaN/AlN quantum heterostructures: The role of surface polarity
,”
Proc. Natl. Acad. Sci. U. S. A.
120
(
44
),
e2303473120
(
2023
).
63.
E. R.
Hoglund
,
H. A.
Walker
,
K.
Hussain
,
D.
Bao
,
H.
Ni
,
A.
Mamun
,
J.
Baxter
,
J. D.
Caldwell
,
A.
Khan
,
S. T.
Pantelides
,
P. E.
Hopkins
, and
J. A.
Hachtel
, “
Nonequivalent atomic vibrations at interfaces in a polar superlattice
,”
Adv. Mater.
36
(
33
),
2402925
(
2024
).
64.
S.
Fichtner
,
N.
Wolff
,
F.
Lofink
,
L.
Kienle
, and
B.
Wagner
, “
AlScN: A III-V semiconductor based ferroelectric
,”
J. Appl. Phys.
125
(
11
),
114103
(
2019
).
65.
M.
Pristovsek
,
D.
van Dinh
,
T.
Liu
, and
N.
Ikarashi
, “
Wurtzite AlPy N1−y: A new III-V compound semiconductor lattice-matched to GaN (0001)
,”
Appl. Phys. Express
13
(
11
),
111001
(
2020
).
66.
K.
Liu
,
H.
Sun
,
F.
Alqatari
,
W.
Guo
,
X.
Liu
,
J.
Li
,
C. G.
Torres Castanedo
, and
X.
Li
, “
Wurtzite BAlN and BGaN alloys for heterointerface polarization engineering
,”
Appl. Phys. Lett.
111
(
22
),
222106
(
2017
).
67.
A. J. E.
Rowberg
,
S.
Mu
,
M. W.
Swift
, and
C. G.
Van De Walle
, “
Structural, electronic, and polarization properties of YN and LaN
,”
Phys Rev Mater
5
(
9
),
094602
(
2021
).
68.
Q.
Li
,
F.
Liu
,
Y.
Liu
,
T.
Wang
,
X.
Wang
, and
B.
Sun
, “
Effect of the alloyed interlayer on the thermal conductance of Al/GaN interface
,”
J. Appl. Phys.
134
(
23
),
230901
(
2023
).
69.
G.
Pang
,
F.
Meng
,
Y.
Chen
,
A.
Katre
,
J.
Carrete
,
B.
Dongre
,
G. K. H.
Madsen
,
N.
Mingo
, and
W.
Li
, “
Thermal conductivity reduction in highly-doped cubic SiC by phonon-defect and phonon-electron scattering
,”
Mater. Today Phys.
41
,
101346
(
2024
).
70.
A.
Katre
,
J.
Carrete
,
B.
Dongre
,
G. K. H.
Madsen
, and
N.
Mingo
, “
Exceptionally strong phonon scattering by B substitution in cubic SiC
,”
Phys. Rev. Lett.
119
(
7
),
075902
(
2017
).
71.
L.
Lindsay
,
D. A.
Broido
, and
T. L.
Reinecke
, “
Ab initio thermal transport in compound semiconductors
,”
Phys. Rev. B
87
(
16
),
165201
(
2013
).
72.
L. M.
Ivanova
,
P. A.
Aleksandrov
, and
K. D.
Demakov
, “
Thermoelectric properties of vapor-grown polycrystalline cubic SiC
,”
Inorg. Mater.
42
(
11
),
1205
1209
(
2006
).
73.
D.
Morelli
,
J.
Heremans
,
C.
Beetz
, and
W. S.
Woo
, “
Carrier concentration dependence of the thermal conductivity of silicon carbide
,”
Conf. Ser.-Inst. Phys.
137
,
313
313
(
1994
).
74.
N. H.
Protik
,
A.
Katre
,
L.
Lindsay
,
J.
Carrete
,
N.
Mingo
, and
D.
Broido
, “
Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles
,”
Mater. Today Phys.
1
,
31
38
(
2017
).
75.
F.
la Via
,
M.
Zimbone
,
C.
Bongiorno
,
A.
la Magna
,
G.
Fisicaro
,
I.
Deretzis
,
V.
Scuderi
,
C.
Calabretta
,
F.
Giannazzo
,
M.
Zielinski
,
R.
Anzalone
,
M.
Mauceri
,
D.
Crippa
,
E.
Scalise
,
A.
Marzegalli
,
A.
Sarikov
,
L.
Miglio
,
V.
Jokubavicius
,
M.
Syväjärvi
,
R.
Yakimova
,
P.
Schuh
,
M.
Schöler
,
M.
Kollmuss
, and
P.
Wellmann
, “
New approaches and understandings in the growth of cubic silicon carbide
,”
Materials
14
(
18
),
5348
(
2021
).
76.
H.
Li
,
R.
Hanus
,
C. A.
Polanco
,
A.
Zeidler
,
G.
Koblmüller
,
Y. K.
Koh
, and
L.
Lindsay
, “
GaN thermal transport limited by the interplay of dislocations and size effects
,”
Phys. Rev. B
102
(
1
),
014313
(
2020
).
77.
J.
Anaya
,
S.
Rossi
,
M.
Alomari
,
E.
Kohn
,
L.
Tóth
,
B.
Pécz
,
K. D.
Hobart
,
T. J.
Anderson
,
T. I.
Feygelson
,
B. B.
Pate
, and
M.
Kuball
, “
Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties
,”
Acta Mater.
103
,
141
152
(
2016
).
78.
L.
Yates
,
Z.
Cheng
,
T.
Bai
,
K.
Hobart
,
M.
Tadjer
,
T. I.
Feygelson
,
B. B.
Pate
,
M.
Goorsky
, and
S.
Graham
, “
Simultaneous evaluation of heat capacity and in-plane thermal conductivity of nanocrystalline diamond thin films
,”
Nanoscale Microscale Thermophys. Eng.
25
(
3–4
),
166
178
(
2021
).
79.
J.
Anaya
,
T.
Bai
,
Y.
Wang
,
C.
Li
,
M.
Goorsky
,
T. L.
Bougher
,
L.
Yates
,
Z.
Cheng
,
S.
Graham
,
K. D.
Hobart
,
T. I.
Feygelson
,
M. J.
Tadjer
,
T. J.
Anderson
,
B. B.
Pate
, and
M.
Kuball
, “
Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond
,”
Acta Mater.
139
,
215
225
(
2017
).
80.
N. J.
Hines
,
L.
Yates
,
B. M.
Foley
,
Z.
Cheng
,
T. L.
Bougher
,
M. S.
Goorsky
,
K. D.
Hobart
,
T. I.
Feygelson
,
M. J.
Tadjer
, and
S.
Graham
, “
Steady-state methods for measuring in-plane thermal conductivity of thin films for heat spreading applications
,”
Rev. Sci. Instrum.
92
(
4
),
044907
(
2021
).
81.
Z.
Cheng
,
T.
Bougher
,
T.
Bai
,
S. Y.
Wang
,
C.
Li
,
L.
Yates
,
B. M.
Foley
,
M.
Goorsky
,
B. A.
Cola
,
F.
Faili
, and
S.
Graham
, “
Probing growth-induced anisotropic thermal transport in high-quality CVD diamond membranes by multifrequency and multiple-spot-size time-domain thermoreflectance
,”
ACS Appl. Mater. Interfaces
10
(
5
),
4808
4815
(
2018
).
82.
A.
Sood
,
J.
Cho
,
K. D.
Hobart
,
T. I.
Feygelson
,
B. B.
Pate
,
M.
Asheghi
,
D. G.
Cahill
, and
K. E.
Goodson
, “
Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond
,”
J. Appl. Phys.
119
(
17
),
175103
(
2016
).
83.
Z.
Cheng
,
T.
Bai
,
J.
Shi
,
T.
Feng
,
Y.
Wang
,
M.
Mecklenburg
,
C.
Li
,
K. D.
Hobart
,
T. I.
Feygelson
,
M. J.
Tadjer
,
B. B.
Pate
,
B. M.
Foley
,
L.
Yates
,
S. T.
Pantelides
,
B. A.
Cola
,
M.
Goorsky
, and
S.
Graham
, “
Tunable thermal energy transport across diamond membranes and diamond–Si Interfaces by nanoscale graphoepitaxy
,”
ACS Appl. Mater. Interfaces
11
(
20
),
18517
18527
(
2019
).
84.
E.
Ziade
,
J.
Yang
,
G.
Brummer
,
D.
Nothern
,
T.
Moustakas
, and
A. J.
Schmidt
, “
Thermal transport through GaN–SiC interfaces from 300 to 600 K
,”
Appl. Phys. Lett.
107
(
9
),
091605
(
2015
).
85.
F.
Mu
,
Z.
Cheng
,
J.
Shi
,
S.
Shin
,
B.
Xu
,
J.
Shiomi
,
S.
Graham
, and
T.
Suga
, “
High thermal boundary conductance across bonded heterogeneous GaN–SiC interfaces
,”
ACS Appl. Mater. Interfaces
11
(
36
),
33428
33434
(
2019
).
86.
Z.
Cheng
,
F.
Mu
,
L.
Yates
,
T.
Suga
, and
S.
Graham
, “
Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices
,”
ACS Appl. Mater. Interfaces
12
(
7
),
8376
8384
(
2020
).
87.
G.
Wang
,
D.
Sheng
,
Y.
Yang
,
H.
Li
,
C.
Chai
,
Z.
Xie
,
W.
Wang
,
J.
Guo
, and
X.
Chen
, “
High‐quality and wafer‐scale cubic silicon carbide single crystals
,”
Energy Environ. Mater.
7
,
e12678
(
2023
).
88.
A.
Giri
and
P. E.
Hopkins
, “
A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces
,”
Adv. Funct. Mater.
30
(
8
),
1903857
(
2020
).
89.
J.
Liang
,
A.
Kobayashi
,
Y.
Shimizu
,
Y.
Ohno
,
S. W.
Kim
,
K.
Koyama
,
M.
Kasu
,
Y.
Nagai
, and
N.
Shigekawa
, “
Fabrication of GaN/diamond heterointerface and interfacial chemical bonding state for highly efficient device design
,”
Adv. Mater.
33
(
43
),
2104564
(
2021
).
90.
Z.
Cheng
,
S.
Graham
,
H.
Amano
, and
D. G.
Cahill
, “
Perspective on thermal conductance across heterogeneously integrated interfaces for wide and ultrawide bandgap electronics
,”
Appl. Phys. Lett.
120
(
3
),
030501
(
2022
).
91.
J.
Cho
,
Z.
Li
,
M.
Asheghi
, and
K. E.
Goodson
, “
Near-junction thermal management: Thermal conduction in gallium nitride composite substrates
,”
Annu. Rev. Heat Transfer
18
,
7
45
(
2015
).
92.
X. D.
Zhang
,
G.
Yang
, and
B. Y.
Cao
, “
Bonding-enhanced interfacial thermal transport: Mechanisms, materials, and applications
,”
Adv. Mater. Interfaces
9
,
2200078
(
2022
).
93.
Y.
Zhong
,
S.
Bao
,
R.
He
,
X.
Jiang
,
H.
Zhang
,
W.
Ruan
,
M.
Zhang
, and
D.
Yu
, “
Low-temperature bonding of Si and polycrystalline diamond with ultra-low thermal boundary resistance by reactive nanolayers
,”
J. Mater. Sci. Technol.
188
,
37
43
(
2024
).
94.
G.
Chang
,
F.
Sun
,
J.
Duan
,
Z.
Che
,
X.
Wang
,
J.
Wang
,
M. J.
Kim
, and
H.
Zhang
, “
Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond
,”
Acta Mater.
160
,
235
246
(
2018
).
95.
R.
Kagawa
,
Z.
Cheng
,
K.
Kawamura
,
Y.
Ohno
,
C.
Moriyama
,
Y.
Sakaida
,
S.
Ouchi
,
H.
Uratani
,
K.
Inoue
,
Y.
Nagai
,
N.
Shigekawa
, and
J.
Liang
, “
High thermal stability and low thermal resistance of large area GaN/3C-SiC/diamond junctions for practical device processes
,”
Small
20
,
2305574
(
2024
).
96.
H.
Takagi
,
K.
Kikuchi
,
R.
Maeda
,
T. R.
Chung
, and
T.
Suga
, “
Surface activated bonding of silicon wafers at room temperature
,”
Appl. Phys. Lett.
68
(
16
),
2222
2224
(
1996
).
97.
H.
Takagi
,
R.
Maeda
,
T. R.
Chung
,
N.
Hosoda
, and
T.
Suga
, “
Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation
,”
Jpn. J. Appl. Phys., Part 1
37
(
7R
),
4197
(
1998
).
98.
U. K.
Mishra
,
L.
Shen
,
T. E.
Kazior
, and
Y. F.
Wu
, “
GaN-based RF power devices and amplifiers
,”
Proc. IEEE
96
(
2
),
287
305
(
2008
).
99.
K.
Hoo Teo
,
Y.
Zhang
,
N.
Chowdhury
,
S.
Rakheja
,
R.
Ma
,
Q.
Xie
,
E.
Yagyu
,
K.
Yamanaka
,
K.
Li
, and
T.
Palacios
, “
Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects
,”
J. Appl. Phys.
130
(
16
),
160902
(
2021
).
100.
A.
Bar-Cohen
,
J. D.
Albrecht
, and
J. J.
Maurer
, “
Near-junction thermal management for wide bandgap devices
,” in
2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)
(
IEEE
,
2011
), pp.
1
5
.
101.
H.
Guo
,
Y.
Kong
, and
T.
Chen
, “
Thermal simulation of high power GaN-on-diamond substrates for HEMT applications
,”
Diamond Relat. Mater.
73
,
260
266
(
2017
).
102.
F.
Mu
,
B.
Xu
,
X.
Wang
,
R.
Gao
,
S.
Huang
,
K.
Wei
,
K.
Takeuchi
,
X.
Chen
,
H.
Yin
,
D.
Wang
,
J.
Yu
,
T.
Suga
,
J.
Shiomi
, and
X.
Liu
, “
A novel strategy for GaN-on-diamond device with a high thermal boundary conductance
,”
J. Alloys Compd.
905
,
164076
(
2022
).
103.
B.
Xu
,
F.
Mu
,
Y.
Liu
,
R.
Guo
,
S.
Hu
, and
J.
Shiomi
, “
Low thermal boundary resistance at bonded GaN/diamond interface by controlling ultrathin heterogeneous amorphous layer
,” arXiv:2404.15738 (
2024
).
104.
A.
Kobayashi
,
H.
Tomiyama
,
Y.
Ohno
,
Y.
Shimizu
,
Y.
Nagai
,
N.
Shigekawa
, and
J.
Liang
, “
Room-temperature bonding of GaN and diamond via a SiC layer
,”
Funct. Diamond
2
(
1
),
142
150
(
2022
).
105.
T.
Matsumae
,
Y.
Kurashima
,
H.
Takagi
,
Y.
Shirayanagi
,
S.
Hiza
,
K.
Nishimura
, and
E.
Higurashi
, “
Room temperature bonding of GaN and diamond substrates via atomic layer
,”
Scr. Mater.
215
,
114725
(
2022
).
106.
G.
Ma
,
X.
Xiao
,
B.
Meng
,
Y.
Ma
,
X.
Xing
,
X.
Wang
,
F.
Mu
, and
C.
Yuan
, “
Robust thermal transport across the surface-active bonding SiC-on-SiC
,”
ACS Appl. Mater. Interfaces
16
(
6
),
20826
20834
(
2024
).
107.
Y.
Minoura
,
T.
Ohki
,
N.
Okamoto
,
A.
Yamada
,
K.
Makiyama
,
J.
Kotani
,
S.
Ozaki
,
M.
Sato
, and
N.
Nakamura
, “
Surface activated bonding of SiC/diamond for thermal management of high-output power GaN HEMTs
,”
Jpn. J. Appl. Phys., Part 1
59
,
SGGD03
(
2020
).
108.
J.
Liang
,
H.
Nagai
,
Z.
Cheng
,
K.
Kawamura
,
Y.
Shimizu
,
Y.
Ohno
,
Y.
Sakaida
,
H.
Uratani
,
H.
Yoshida
,
Y.
Nagai
, and
N.
Shigekawa
, “
Selective direct bonding of high thermal conductivity 3C-SiC film to β-Ga2O3 for top-side heat extraction
,” arXiv:2209.05669 (
2022
).
109.
H.
Sazawa
,
A.
Nakajima
,
S.
Kuboya
,
H.
Umezawa
,
T.
Kato
, and
Y.
Tanaka
, “
SiC-based high electron mobility transistor
,”
Appl. Phys. Lett.
124
(
12
),
120601
(
2024
).
110.
X.
Ji
,
Z.
Huang
,
Y.
Ohno
,
K.
Inoue
,
Y.
Nagai
,
Y.
Sakaida
,
H.
Uratani
,
J.
Sun
,
N.
Shigekawa
,
J.
Liang
, and
Z.
Cheng
, “
Interfacial reaction boosts thermal conductance of room‐temperature integrated semiconductor interfaces stable up to 1100 °C
,”
Adv. Electron. Mater.
2400387
(published online) (2024).
111.
T.
Suga
,
F.
Mu
,
M.
Fujino
,
Y.
Takahashi
,
H.
Nakazawa
, and
K.
Iguchi
, “
Silicon carbide wafer bonding by modified surface activated bonding method
,”
Jpn. J. Appl. Phys., Part 1
54
(
3
),
030214
(
2015
).
112.
J.
Liang
,
Y.
Zhou
,
S.
Masuya
,
F.
Gucmann
,
M.
Singh
,
J.
Pomeroy
,
S.
Kim
,
M.
Kuball
,
M.
Kasu
, and
N.
Shigekawa
, “
Annealing effect of surface-activated bonded diamond/Si interface
,”
Diamond Relat. Mater.
93
,
187
192
(
2019
).
113.
F.
Mu
,
Y.
Morino
,
K.
Jerchel
,
M.
Fujino
, and
T.
Suga
, “
GaN-Si direct wafer bonding at room temperature for thin GaN device transfer after epitaxial lift off
,”
Appl. Surf. Sci.
416
,
1007
1012
(
2017
).
114.
R.
Takigawa
and
J.
Utsumi
, “
Direct bonding of LiNbO3 and SiC wafers at room temperature
,”
Scr. Mater.
174
,
58
61
(
2020
).
115.
T.
Matsumae
,
Y.
Kurashima
,
E.
Higurashi
,
K.
Nishizono
,
T.
Amano
, and
H.
Takagi
, “
Room temperature bonding of aluminum nitride ceramic and semiconductor substrate
,”
Ceram. Int.
46
(
16
),
25956
25963
(
2020
).
116.
J.
Liang
,
S.
Masuya
,
S.
Kim
,
T.
Oishi
,
M.
Kasu
, and
N.
Shigekawa
, “
Stability of diamond/Si bonding interface during device fabrication process
,”
Appl. Phys. Express
12
(
1
),
016501
(
2019
).
117.
D. J.
Meyer
,
B. P.
Downey
,
D. S.
Katzer
,
N.
Nepal
,
V. D.
Wheeler
,
M. T.
Hardy
,
T. J.
Anderson
, and
D. F.
Storm
, “
Epitaxial lift-off and transfer of III-N materials and devices from SiC substrates
,”
IEEE Trans. Semicond. Manuf.
29
(
4
),
384
389
(
2016
).
118.
P.
Demeester
,
I.
Pollentier
,
P.
De Dobbelaere
,
C.
Brys
, and
P.
Van Daele
, “
Epitaxial lift-off and its applications
,”
Semicond. Sci. Technol.
8
(
6
),
1124
1135
(
1993
).
119.
Y.
Xu
,
F.
Mu
,
Y.
Wang
,
D.
Chen
,
X.
Ou
, and
T.
Suga
, “
Direct wafer bonding of Ga2O3–SiC at room temperature
,”
Ceram. Int.
45
(
5
),
6552
6555
(
2019
).
120.
W.
Xu
,
Y.
Zhang
,
Y.
Hao
,
X.
Wang
,
Y.
Wang
,
T.
You
,
X.
Ou
,
G.
Han
,
H.
Hu
,
S.
Zhang
,
F.
Mu
, and
T.
Suga
, “
First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process
,” in
2019 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2019
), pp.
12.5.1
12.5.4
.
121.
B.
Li
,
Y.
Wang
,
Z.
Luo
,
W.
Xu
,
H.
Gong
,
T.
You
,
X.
Ou
,
J.
Ye
,
Y.
Hao
, and
G.
Han
, “
Gallium oxide (Ga2O3) heterogeneous and heterojunction power devices
,”
Fundam. Res.
(published online) (
2023
).
122.
C.
Qian
and
B.
Terreault
, “
Blistering of silicon crystals by low keV hydrogen and helium ions
,”
J. Appl. Phys.
90
(
10
),
5152
5158
(
2001
).
123.
M.
Bruel
and
B. A.
Auberton-Hervé
, “
Smart-cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding
,”
Jpn. J. Appl. Phys., Part 1
36
(
3S
),
1636
(
1997
).
124.
M.
Nastasi
,
T.
Höchbauer
,
J. K.
Lee
,
A.
Misra
,
J. P.
Hirth
,
M.
Ridgway
, and
T.
Lafford
, “
Nucleation and growth of platelets in hydrogen-ion-implanted silicon
,”
Appl. Phys. Lett.
86
(
15
),
154102
(
2005
).
125.
J. A.
Bennett
,
O. W.
Holland
,
M.
Budde
,
D. K.
Thomas
, and
L. C.
Feldman
, “
Complete surface exfoliation of 4H-SiC by H+- and Si+-coimplantation
,”
Appl. Phys. Lett.
76
(
22
),
3265
3267
(
2000
).
126.
W.
Xu
,
T.
You
,
Y.
Wang
,
Z.
Shen
,
K.
Liu
,
L.
Zhang
,
H.
Sun
,
R.
Qian
,
Z.
An
,
F.
Mu
,
T.
Suga
,
G.
Han
,
X.
Ou
,
Y.
Hao
, and
X.
Wang
, “
Efficient thermal dissipation in wafer-scale heterogeneous integration of single-crystalline β-Ga2O3 thin film on SiC
,”
Fundam. Res.
1
(
6
),
691
696
(
2021
).
127.
W.
Xu
,
T.
Zhao
,
L.
Zhang
,
K.
Liu
,
H.
Sun
,
Z.
Qu
,
T.
You
,
A.
Yi
,
K.
Huang
,
G.
Han
,
F.
Mu
,
T.
Suga
,
X.
Ou
, and
Y.
Hao
, “
Thermal transport properties of β-Ga2O3 thin films on Si and SiC substrates fabricated by an ion-cutting process
,”
ACS Appl. Electron. Mater.
6
(
3
),
1710
1717
(
2024
).
128.
Z.
Shen
,
W.
Xu
,
Y.
Chen
,
J.
Lin
,
Y.
Xie
,
K.
Huang
,
T.
You
,
G.
Han
, and
X.
Ou
, “
Wafer-scale single-crystalline β-Ga2O3 thin film on SiC substrate by ion-cutting technique with hydrophilic wafer bonding at elevated temperatures
,”
Sci. China Mater.
66
(
2
),
756
763
(
2023
).
129.
W.
Xu
,
Z.
Shen
,
Z.
Qu
,
T.
Zhao
,
A.
Yi
,
T.
You
,
G.
Han
, and
X.
Ou
, “
Current transport mechanism of lateral Schottky barrier diodes on β-Ga2O3/SiC structure with atomic level interface
,”
Appl. Phys. Lett.
124
(
11
),
112102
(
2024
).
130.
R. B. K.
Chung
,
D.
Kim
,
S. K.
Lim
,
J. S.
Choi
,
K. J.
Kim
,
B. H.
Lee
,
K. S.
Jung
,
H. J.
Kim-Lee
,
W. J.
Lee
,
B.
Park
, and
K.
Woo
, “
Layer-transferred GaN template by ion cut for nitride-based light-emitting diodes
,”
Appl. Phys. Express
6
(
11
),
111005
(
2013
).
131.
H.
Shi
,
K.
Huang
,
F.
Mu
,
T.
You
,
Q.
Ren
,
J.
Lin
,
W.
Xu
,
T.
Jin
,
H.
Huang
,
A.
Yi
,
S.
Zhang
,
Z.
Li
,
M.
Zhou
,
J.
Wang
,
K.
Xu
, and
X.
Ou
, “
Realization of wafer-scale single-crystalline GaN film on CMOS-compatible Si(100) substrate by ion-cutting technique
,”
Semicond. Sci. Technol.
35
(
12
),
125004
(
2020
).
132.
X.
Liu
,
J.
Zhou
,
J.
Luo
,
H.
Shi
,
T.
You
,
X.
Ou
,
V.
Botcha
,
F.
Mu
,
T.
Suga
,
X.
Wang
, and
S.
Huang
, “
ReS2 on GaN photodetector using H + ion-cut technology
,”
ACS Omega
8
(
1
),
457
463
(
2023
).
133.
A.
Tauzin
,
T.
Akatsu
,
M.
Rabarot
,
J.
Dechamp
,
M.
Zussy
,
H.
Moriceau
,
J. F.
Michaud
,
A. M.
Charvet
,
L.
Di Cioccio
,
F.
Fournel
,
J.
Garrione
,
B.
Faure
,
F.
Letertre
, and
N.
Kernevez
, “
Transfers of 2-inch GaN films onto sapphire substrates using Smart CutTM technology
,”
Electron. Lett.
41
(
11
),
668
(
2005
).
134.
O.
Moutanabbir
,
Y. J.
Chabal
,
M.
Chicoine
,
S.
Christiansen
,
R.
Krause-Rehberg
,
F.
Schiettekatte
,
R.
Scholz
,
O.
Seitz
,
S.
Senz
,
F.
Süßkraut
, and
U.
Gösele
, “
Mechanisms of ion-induced GaN thin layer splitting
,”
Nucl. Instrum. Methods Phys. Res. B
267
(
8–9
),
1264
1268
(
2009
).
135.
K.
Huang
,
Q.
Jia
,
T.
You
,
R.
Zhang
,
J.
Lin
,
S.
Zhang
,
M.
Zhou
,
B.
Zhang
,
W.
Yu
,
X.
Ou
, and
X.
Wang
, “
Investigation on thermodynamics of ion-slicing of GaN and heterogeneously integrating high-quality GaN films on CMOS compatible Si(100) substrates
,”
Sci. Rep.
7
(
1
),
15017
(
2017
).
136.
S. O.
Kucheyev
,
J. S.
Williams
, and
S. J.
Pearton
, “
Ion implantation into GaN
,”
Mater. Sci. Eng. R
33
(
2–3
),
51
108
(
2001
).
137.
Q.
Qin
,
H.
Shi
,
Y.
Yuan
,
J.
Ding
,
A.
Yi
,
W.
Xu
,
M.
Zhou
,
J.
Zhang
,
T.
Lu
,
Y.
Yang
,
T.
You
,
X.
Wang
, and
X.
Ou
, “
Investigating the physical mechanism of ion-slicing in AlN and hetero-integrating AlN thin film on Si(100) substrate
,”
Mater. Sci. Semicond. Process.
176
,
108346
(
2024
).
138.
A.
Yi
,
Y.
Zheng
,
H.
Huang
,
J.
Lin
,
Y.
Yan
,
T.
You
,
K.
Huang
,
S.
Zhang
,
C.
Shen
,
M.
Zhou
,
W.
Huang
,
J.
Zhang
,
S.
Zhou
,
H.
Ou
, and
X.
Ou
, “
Wafer-scale 4H-silicon carbide-on-insulator (4H–SiCOI) platform for nonlinear integrated optical devices
,”
Opt. Mater.
107
,
109990
(
2020
).
139.
G.
Malouf
,
B.
Poust
,
S.
Hayashi
,
G.
Yoshizawa
, and
M. S.
Goorsky
, “
Hydrogen-induced blistering of SiC: The role of post-implant multi-step annealing sequences
,”
Mater. Sci. Forum
527–529
,
855
858
(
2006
).
140.
T.
Matsumae
,
Y.
Kurashima
,
H.
Takagi
,
H.
Umezawa
, and
E.
Higurashi
, “
Low-temperature direct bonding of diamond (100) substrate on Si wafer under atmospheric conditions
,”
Scr. Mater.
191
,
52
55
(
2021
).
141.
S.
Fukumoto
,
T.
Matsumae
,
Y.
Kurashima
,
H.
Takagi
,
H.
Umezawa
,
M.
Hayase
, and
E.
Higurashi
, “
Heterogeneous direct bonding of diamond and semiconductor substrates using NH3/H2O2 cleaning
,”
Appl. Phys. Lett.
117
(
20
),
201601
(
2020
).
142.
T.
Matsumae
,
Y.
Kurashima
,
H.
Umezawa
, and
H.
Takagi
, “
Hydrophilic low-temperature direct bonding of diamond and Si substrates under atmospheric conditions
,”
Scr. Mater.
175
,
24
28
(
2020
).
143.
T.
Matsumae
,
Y.
Kurashima
,
H.
Umezawa
, and
H.
Takagi
, “
Direct bonding of diamond substrate at low temperatures under atmospheric condition
,” in
Materials Science Forum
(
Trans Tech Publications Ltd
.,
2020
), pp.
206
210
.
144.
S.
Fukumoto
,
T.
Matsumae
,
Y.
Kurashima
,
H.
Takagi
,
H.
Umezawa
,
M.
Hayase
, and
E.
Higurashi
, “
Direct bonding of diamond and Si substrates using NH3/H2O2 cleaning
,” in
2021 International Conference on Electronics Packaging (ICEP)
(
IEEE
,
2021
), pp.
41
42
.
145.
T.
Matsumae
,
Y.
Kurashima
,
H.
Umezawa
, and
H.
Takagi
, “
Direct bonding of diamond and Si substrates at low temperatures under atmospheric conditions
,” in
Proceedings - Electronic Components and Technology Conference
(
Institute of Electrical and Electronics Engineers Inc
.,
2020
), pp.
1436
1441
.
146.
S.
Fukumoto
,
T.
Matsumae
,
Y.
Kurashima
,
H.
Takagi
,
M.
Hayase
, and
E.
Higurashi
, “
Hydrophilic direct bonding of GaN and Si substrates by wet treatments using H2SO4/H2O2 mixture and NH3/H2O2 mixture
,”
Jpn. J. Appl. Phys.
61
,
SF1005
(
2022
).
147.
T.
Matsumae
,
Y.
Kurashima
,
H.
Umezawa
,
K.
Tanaka
,
T.
Ito
,
H.
Watanabe
, and
H.
Takagi
, “
Low-temperature direct bonding of β-Ga2O3 and diamond substrates under atmospheric conditions
,”
Appl. Phys. Lett.
116
(
14
),
141602
(
2020
).
148.
T.
Matsumae
,
S.
Okita
,
S.
Fukumoto
,
M.
Hayase
,
Y.
Kurashima
, and
H.
Takagi
, “
Simple low-temperature GaN/diamond bonding process with an atomically thin intermediate layer
,”
ACS Appl. Nano Mater.
6
(
15
),
14076
14082
(
2023
).
149.
T.
Matsumae
,
Y.
Kurashima
,
H.
Takagi
,
H.
Umezawa
, and
E.
Higurashi
, “
Low-temperature direct bonding of SiC and Ga2O3 substrates under atmospheric conditions
,”
J. Appl. Phys.
130
(
8
),
085303
(
2021
).
150.
T.
Matsumae
,
Y.
Kurashima
,
H.
Umezawa
, and
H.
Takagi
, “
Hydrophilic direct bonding of diamond (111) substrate using treatment with H2SO4/H2O2
,”
Jpn. J. Appl. Phys., Part 1
59
,
SBBA01
(
2020
).
151.
Z. (A.)
Jian
,
C. J.
Clymore
,
K.
Sun
,
U.
Mishra
, and
E.
Ahmadi
, “
Demonstration of atmospheric plasma activated direct bonding of N-polar GaN and β-Ga2O3 (001) substrates
,”
Appl. Phys. Lett.
120
(
14
),
142101
(
2022
).
152.
T.
Matsumae
,
M.
Fengwen
,
S.
Fukumoto
,
M.
Hayase
,
Y.
Kurashima
,
E.
Higurashi
,
H.
Takagi
, and
T.
Suga
, “
Heterogeneous GaN-Si integration via plasma activation direct bonding
,”
J. Alloys Compd.
852
,
156933
(
2021
).
153.
Q.
Kang
,
C.
Wang
,
F.
Niu
,
S.
Zhou
,
J.
Xu
, and
Y.
Tian
, “
Single-crystalline SiC integrated onto Si-based substrates via plasma-activated direct bonding
,”
Ceram. Int.
46
(
14
),
22718
22726
(
2020
).
154.
E. M.
Liston
, “
Plasma treatment for improved bonding: A review
,”
J. Adhes.
30
(
1–4
),
199
218
(
1989
).
155.
T.
Suni
,
K.
Henttinen
,
I.
Suni
, and
J.
Mäkinen
, “
Effects of plasma activation on hydrophilic bonding of Si and SiO2
,”
J. Electrochem. Soc.
149
(
6
),
G348
(
2002
).
156.
J. S.
Kang
,
M.
Li
,
H.
Wu
,
H.
Nguyen
,
T.
Aoki
, and
Y.
Hu
, “
Integration of boron arsenide cooling substrates into gallium nitride devices
,”
Nat. Electron.
4
(
6
),
416
423
(
2021
).
157.
T.
Nieminen
,
T.
Koskinen
,
V.
Kornienko
,
G.
Ross
, and
M.
Paulasto-Kröckel
, “
Thermal boundary conductance of direct bonded aluminum nitride to silicon interfaces
,”
ACS Appl. Electron. Mater.
6
(
4
),
2413
2419
(
2024
).
158.
Z.
Jian
,
K.
Sun
,
S.
Kosanovic
,
C. J.
Clymore
,
U.
Mishra
, and
E.
Ahmadi
, “
Electrical and structural analysis of β-Ga2O3/GaN wafer-bonded heterojunctions with a ZnO interlayer
,”
Adv. Electron. Mater.
9
(
8
),
2300174
(
2023
).
159.
W.
Delmas
,
A.
Jarzembski
,
M.
Bahr
,
A.
McDonald
,
W.
Hodges
,
P.
Lu
,
J.
Deitz
,
E.
Ziade
,
Z. T.
Piontkowski
, and
L.
Yates
, “
Thermal transport and mechanical stress mapping of a compression bonded GaN/diamond interface for vertical power devices
,”
ACS Appl. Mater. Interfaces
16
(
8
),
11003
11012
(
2024
).
160.
Y.
Song
,
D.
Shoemaker
,
J. H.
Leach
,
C.
McGray
,
H. L.
Huang
,
A.
Bhattacharyya
,
Y.
Zhang
,
C. U.
Gonzalez-Valle
,
T.
Hess
,
S.
Zhukovsky
,
K.
Ferri
,
R. M.
Lavelle
,
C.
Perez
,
D. W.
Snyder
,
J. P.
Maria
,
B.
Ramos-Alvarado
,
X.
Wang
,
S.
Krishnamoorthy
,
J.
Hwang
,
B. M.
Foley
, and
S.
Choi
, “
Ga2O3-on-SiC composite wafer for thermal management of ultrawide bandgap electronics
,”
ACS Appl. Mater. Interfaces
13
(
34
),
40817
40829
(
2021
).
161.
M.
Mohr
,
L.
Daccache
,
S.
Horvat
,
K.
Brühne
,
T.
Jacob
, and
H. J.
Fecht
, “
Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films
,”
Acta Mater.
122
,
92
98
(
2017
).
162.
V.
Goyal
,
S.
Subrina
,
D. L.
Nika
, and
A. A.
Balandin
, “
Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures
,”
Appl. Phys. Lett.
97
(
3
),
031904
(
2010
).
163.
K. E.
Goodson
,
O. W.
Käding
,
M.
Rösner
, and
R.
Zachai
, “
Thermal conduction normal to diamond-silicon boundaries
,”
Appl. Phys. Lett.
66
(
23
),
3134
3136
(
1995
).
164.
K. E.
Goodson
,
O. W.
Käding
,
M.
Rösler
, and
R.
Zachai
, “
Experimental investigation of thermal conduction normal to diamond-silicon boundaries
,”
J. Appl. Phys.
77
(
4
),
1385
1392
(
1995
).
165.
A. Y.
Klokov
,
D. F.
Aminev
,
A. I.
Sharkov
,
T. I.
Galkina
, and
V. G.
Ralchenko
, “
Evaluation of thermal parameters of layers and interfaces in silicon-on-diamond structures by a photothermal method
,”
J. Phys: Conf. Ser.
214
,
012108
(
2010
).
166.
D. E.
Field
,
J. W.
Pomeroy
,
F.
Gity
,
M.
Schmidt
,
P.
Torchia
,
F.
Li
,
P. M.
Gammon
,
V. A.
Shah
, and
M.
Kuball
, “
Thermal characterization of direct wafer bonded Si-on-SiC
,”
Appl. Phys. Lett.
120
(
11
),
113503
(
2022
).
167.
E. J. W.
Smith
,
A. H.
Piracha
,
D.
Field
,
J. W.
Pomeroy
,
G. R.
Mackenzie
,
Z.
Abdallah
,
F. C. P.
Massabuau
,
A. M.
Hinz
,
D. J.
Wallis
,
R. A.
Oliver
,
M.
Kuball
, and
P. W.
May
, “
Mixed-size diamond seeding for low-thermal-barrier growth of CVD diamond onto GaN and AlN
,”
Carbon
167
,
620
626
(
2020
).
168.
M.
Malakoutian
,
D. E.
Field
,
N. J.
Hines
,
S.
Pasayat
,
S.
Graham
,
M.
Kuball
, and
S.
Chowdhury
, “
Record-low thermal boundary resistance between diamond and GaN-on-SiC for enabling radiofrequency device cooling
,”
ACS Appl. Mater. Interfaces
13
(
50
),
60553
60560
(
2021
).
169.
H.
Sun
,
R. B.
Simon
,
J. W.
Pomeroy
,
D.
Francis
,
F.
Faili
,
D. J.
Twitchen
, and
M.
Kuball
, “
Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications
,”
Appl. Phys. Lett.
106
(
11
),
111906
(
2015
).
170.
L.
Yates
,
J.
Anderson
,
X.
Gu
,
C.
Lee
,
T.
Bai
,
M.
Mecklenburg
,
T.
Aoki
,
M. S.
Goorsky
,
M.
Kuball
,
E. L.
Piner
, and
S.
Graham
, “
Low thermal boundary resistance interfaces for GaN-on-diamond devices
,”
ACS Appl. Mater. Interfaces
10
(
28
),
24302
24309
(
2018
).
171.
D. E.
Field
,
J. A.
Cuenca
,
M.
Smith
,
S. M.
Fairclough
,
FC. P.
Massabuau
,
J. W.
Pomeroy
,
O.
Williams
,
R. A.
Oliver
,
I.
Thayne
, and
M.
Kuball
, “
Crystalline interlayers for reducing the effective thermal boundary resistance in GaN-on-diamond
,”
ACS Appl. Mater. Interfaces
12
(
48
),
54138
54145
(
2020
).
172.
Y.
Wang
,
B.
Zhou
,
G.
Ma
,
J.
Zhi
,
C.
Yuan
,
H.
Sun
,
Y.
Ma
,
J.
Gao
,
Y.
Wang
, and
S.
Yu
, “
Effect of bias-enhanced nucleation on the microstructure and thermal boundary resistance of GaN/SiNx/diamond multilayer composites
,”
Mater. Charact.
201
,
112985
(
2023
).
173.
S.
Mandal
,
C.
Yuan
,
F.
Massabuau
,
J. W.
Pomeroy
,
J.
Cuenca
,
H.
Bland
,
E.
Thomas
,
D.
Wallis
,
T.
Batten
,
D.
Morgan
,
R.
Oliver
,
M.
Kuball
, and
O. A.
Williams
, “
Thick, adherent diamond films on AlN with low thermal barrier resistance
,”
ACS Appl. Mater. Interfaces
11
(
43
),
40826
40834
(
2019
).
174.
Y.
Zhou
,
J.
Anaya
,
J.
Pomeroy
,
H.
Sun
,
X.
Gu
,
A.
Xie
,
E.
Beam
,
M.
Becker
,
T. A.
Grotjohn
,
C.
Lee
, and
M.
Kuball
, “
Barrier-layer optimization for enhanced GaN-on-diamond device cooling
,”
ACS Appl. Mater. Interfaces
9
(
39
),
34416
34422
(
2017
).
175.
J. W.
Pomeroy
,
R. B.
Simon
,
H.
Sun
,
D.
Francis
,
F.
Faili
,
D. J.
Twitchen
, and
M.
Kuball
, “
Contactless thermal boundary resistance measurement of GaN-on-diamond wafers
,”
IEEE Electron Device Lett.
35
(
10
),
1007
1009
(
2014
).
176.
D. C.
Dumka
,
T. M.
Chou
,
J. L.
Jimenez
,
D. M.
Fanning
,
D.
Francis
,
F.
Faili
,
F.
Ejeckam
,
M.
Bernardoni
,
J. W.
Pomeroy
, and
M.
Kuball
, “
Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications
,” in
2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)
(
IEEE
,
2013
), pp.
1
4
.
177.
J. W.
Pomeroy
,
M.
Bernardoni
,
D. C.
Dumka
,
D. M.
Fanning
, and
M.
Kuball
, “
Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping
,”
Appl. Phys. Lett.
104
(
8
),
083513
(
2014
).
178.
S.
Yang
,
H.
Song
,
Y.
Peng
,
L.
Zhao
,
Y.
Tong
,
F.
Kang
,
M.
Xu
,
B.
Sun
, and
X.
Wang
, “
Reduced thermal boundary conductance in GaN-based electronic devices introduced by metal bonding layer
,”
Nano Res.
14
(
10
),
3616
3620
(
2021
).
179.
J.
Kuzmik
,
S.
Bychikhin
,
D.
Pogany
,
E.
Pichonat
,
O.
Lancry
,
C.
Gaquière
,
G.
Tsiakatouras
,
G.
Deligeorgis
, and
A.
Georgakilas
, “
Thermal characterization of MBE-grown GaN/AlGaN/GaN device on single crystalline diamond
,”
J. Appl. Phys.
109
(
8
),
086106
(
2011
).
180.
Y.
Zhou
,
R.
Ramaneti
,
J.
Anaya
,
S.
Korneychuk
,
J.
Derluyn
,
H.
Sun
,
J.
Pomeroy
,
J.
Verbeeck
,
K.
Haenen
, and
M.
Kuball
, “
Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs
,”
Appl. Phys. Lett.
111
(
4
),
041901
(
2017
).
181.
A.
Siddique
,
R.
Ahmed
,
J.
Anderson
,
M.
Nazari
,
L.
Yates
,
S.
Graham
,
M.
Holtz
, and
E. L.
Piner
, “
Structure and interface analysis of diamond on an AlGaN/GaN HEMT utilizing an in situ SiNx interlayer grown by MOCVD
,”
ACS Appl. Electron. Mater.
1
(
8
),
1387
1399
(
2019
).
182.
M.
Wu
,
P.
Wang
,
S.
Li
,
K.
Cheng
,
L.
Yang
,
M.
Zhang
,
B.
Hou
,
X. H.
Ma
, and
Y.
Hao
, “
Integration of polycrystalline diamond heat spreader with AlGaN/GaN HEMTs using a dry/wet combined etching process
,”
Diamond Relat. Mater.
132
,
109676
(
2023
).
183.
J.
Cho
,
Z.
Li
,
E.
Bozorg-Grayeli
,
T.
Kodama
,
D.
Francis
,
F.
Ejeckam
,
F.
Faili
,
M.
Asheghi
, and
K. E.
Goodson
, “
Thermal characterization of GaN-on-diamond substrates for HEMT applications
,” in
13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
IEEE
,
2012
), pp.
435
439
.
184.
J.
Cho
,
D.
Francis
,
D. H.
Altman
,
M.
Asheghi
, and
K. E.
Goodson
, “
Phonon conduction in GaN-diamond composite substrates
,”
J. Appl. Phys.
121
(
5
),
055105
(
2017
).
185.
W. M.
Waller
,
J. W.
Pomeroy
,
D.
Field
,
E. J. W.
Smith
,
P. W.
May
, and
M.
Kuball
, “
Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond
,”
Semicond. Sci. Technol.
35
(
9
),
095021
(
2020
).
186.
D.
Altman
,
M.
Tyhach
,
J.
McClymonds
,
S.
Kim
,
S.
Graham
,
J.
Cho
,
K.
Goodson
,
D.
Francis
,
F.
Faili
,
F.
Ejeckam
, and
S.
Bernstein
, “
Analysis and characterization of thermal transport in GaN HEMTs on diamond substrates
,” in
Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
(
IEEE
,
2014
), pp.
1199
1205
.
187.
J.
Cho
,
Y.
Li
,
D. H.
Altman
,
W. E.
Hoke
,
M.
Asheghi
, and
K. E.
Goodson
, “
Temperature dependent thermal resistances at GaN-substrate interfaces in GaN composite substrates
,” in
2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)
(
IEEE
,
2012
), pp.
1
4
.
188.
J.
Cho
,
E.
Bozorg-Grayeli
,
D. H.
Altman
,
M.
Asheghi
, and
K. E.
Goodson
, “
Low thermal resistances at GaN-SiC interfaces for HEMT technology
,”
IEEE Electron Device Lett.
33
(
3
),
378
380
(
2012
).
189.
K.
Liu
,
J.
Zhao
,
H.
Sun
,
H.
Guo
,
B.
Dai
, and
J.
Zhu
, “
Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance
,”
Chin. Phys. B
28
(
6
),
060701
(
2019
).
190.
J.
Kuzmík
,
S.
Bychikhin
,
D.
Pogany
,
C.
Gaquière
,
E.
Pichonat
, and
E.
Morvan
, “
Investigation of the thermal boundary resistance at the III-Nitride/substrate interface using optical methods
,”
J. Appl. Phys.
101
(
5
),
054508
(
2007
).
191.
R.
Li
,
K.
Hussain
,
M. E.
Liao
,
K.
Huynh
,
M. S.
Bin Hoque
,
S.
Wyant
,
Y. R.
Koh
,
Z.
Xu
,
Y.
Wang
,
D. P.
Luccioni
,
Z.
Cheng
,
J.
Shi
,
E.
Lee
,
S.
Graham
,
A.
Henry
,
P. E.
Hopkins
,
M. S.
Goorsky
,
M. A.
Khan
, and
T.
Luo
, “
Enhanced thermal boundary conductance across GaN/SiC interfaces with AlN transition layers
,”
ACS Appl. Mater. Interfaces
16
(
6
),
8109
8118
(
2024
).
192.
J.
Cho
,
Y.
Li
,
W. E.
Hoke
,
D. H.
Altman
,
M.
Asheghi
, and
K. E.
Goodson
, “
Phonon scattering in strained transition layers for GaN heteroepitaxy
,”
Phys. Rev. B
89
(
11
),
115301
(
2014
).
193.
L.
Yates
,
T. L.
Bougher
,
T.
Beechem
,
B. A.
Cola
, and
S.
Graham
, “
The impact of interfacial layers on the thermal boundary resistance and residual stress in Gan on Si epitaxial layers
,” in
ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2015, Collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
(
American Society of Mechanical Engineers
,
2015
).
194.
Y. K.
Koh
,
Y.
Cao
,
D. G.
Cahill
, and
D.
Jena
, “
Heat-transport mechanisms in superlattices
,”
Adv. Funct. Mater.
19
(
4
),
610
615
(
2009
).
195.
Z.
Wang
,
X.
Tian
,
J.
Liang
,
J.
Zhu
,
D.
Tang
, and
K.
Xu
, “
Prediction and measurement of thermal transport across interfaces between semiconductor and adjacent layers
,”
Int. J. Therm. Sci.
79
,
266
275
(
2014
).
196.
Z.
Wang
,
M.
Sun
,
G.
Yao
,
D.
Tang
, and
K.
Xu
, “
Reconstruction of thermal boundary resistance and intrinsic thermal conductivity of SiO2-GaN-sapphire structure and temperature dependence
,”
Int. J. Therm. Sci.
87
,
178
186
(
2015
).
197.
J. T.
Gaskins
,
G.
Kotsonis
,
A.
Giri
,
S.
Ju
,
A.
Rohskopf
,
Y.
Wang
,
T.
Bai
,
E.
Sachet
,
C. T.
Shelton
,
Z.
Liu
,
Z.
Cheng
,
B. M.
Foley
,
S.
Graham
,
T.
Luo
,
A.
Henry
,
M. S.
Goorsky
,
J.
Shiomi
,
J. P.
Maria
, and
P. E.
Hopkins
, “
Thermal boundary conductance across heteroepitaxial ZnO/GaN interfaces: Assessment of the phonon gas model
,”
Nano Lett.
18
(
12
),
7469
7477
(
2018
).
198.
R. J.
Stevens
,
A. N.
Smith
, and
P. M.
Norris
, “
Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique
,”
J. Heat Transfer
127
(
3
),
315
322
(
2005
).
199.
B. F.
Donovan
,
C. J.
Szwejkowski
,
J. C.
Duda
,
R.
Cheaito
,
J. T.
Gaskins
,
C. Y.
Peter Yang
,
C.
Constantin
,
R. E.
Jones
, and
P. E.
Hopkins
, “
Thermal boundary conductance across metal-gallium nitride interfaces from 80 to 450K
,”
Appl. Phys. Lett.
105
(
20
),
203502
(
2014
).
200.
Y. R.
Koh
,
M. S.
Bin Hoque
,
H.
Ahmad
,
D. H.
Olson
,
Z.
Liu
,
J.
Shi
,
Y.
Wang
,
K.
Huynh
,
E. R.
Hoglund
,
K.
Aryana
,
J. M.
Howe
,
M. S.
Goorsky
,
S.
Graham
,
T.
Luo
,
J. K.
Hite
,
W. A.
Doolittle
, and
P. E.
Hopkins
, “
High thermal conductivity and thermal boundary conductance of homoepitaxially grown gallium nitride (GaN) thin films
,”
Phys. Rev. Mater.
5
(
10
),
104604
(
2021
).
201.
J. P.
Freedman
,
J. H.
Leach
,
E. A.
Preble
,
Z.
Sitar
,
R. F.
Davis
, and
J. A.
Malen
, “
Universal phonon mean free path spectra in crystalline semiconductors at high temperature
,”
Sci. Rep.
3
,
2963
(
2013
).
202.
Z.
Cheng
,
V. D.
Wheeler
,
T.
Bai
,
J.
Shi
,
M. J.
Tadjer
,
T.
Feygelson
,
K. D.
Hobart
,
M. S.
Goorsky
, and
S.
Graham
, “
Integration of polycrystalline Ga2O3 on diamond for thermal management
,”
Appl. Phys. Lett.
116
(
6
),
062105
(
2020
).
203.
Z.
Cheng
,
F.
Mu
,
X.
Ji
,
T.
You
,
W.
Xu
,
T.
Suga
,
X.
Ou
,
D. G.
Cahill
, and
S.
Graham
, “
Thermal visualization of buried interfaces enabled by ratio signal and steady-state heating of time-domain thermoreflectance
,”
ACS Appl. Mater. Interfaces
13
(
27
),
31843
31851
(
2021
).
204.
H. T.
Aller
,
X.
Yu
,
A.
Wise
,
R. S.
Howell
,
A. J.
Gellman
,
A. J. H.
McGaughey
, and
J. A.
Malen
, “
Chemical reactions impede thermal transport across metal/β-Ga2O3 interfaces
,”
Nano Lett.
19
(
12
),
8533
8538
(
2019
).
205.
J.
Shi
,
C.
Yuan
,
H. L.
Huang
,
J.
Johnson
,
C.
Chae
,
S.
Wang
,
R.
Hanus
,
S.
Kim
,
Z.
Cheng
,
J.
Hwang
, and
S.
Graham
, “
Thermal transport across metal/β-Ga2O3 interfaces
,”
ACS Appl. Mater. Interfaces
13
(
24
),
29083
29091
(
2021
).
206.
E. K.
Pek
,
J.
Brethauer
, and
D. G.
Cahill
, “
High spatial resolution thermal conductivity mapping of SiC/SiC composites
,”
J. Nucl. Mater.
542
,
152519
(
2020
).
207.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,”
Rev. Sci. Instrum.
75
(
12
),
5119
5122
(
2004
).
208.
J.
Yang
,
C.
Maragliano
, and
A. J.
Schmidt
, “
Thermal property microscopy with frequency domain thermoreflectance
,”
Rev. Sci. Instrum.
84
(
10
),
104904
(
2013
).
209.
A. J.
Schmidt
,
R.
Cheaito
, and
M.
Chiesa
, “
A frequency-domain thermoreflectance method for the characterization of thermal properties
,”
Rev. Sci. Instrum.
80
(
9
),
094901
(
2009
).
210.
P. M.
Norris
,
A. P.
Caffrey
,
R. J.
Stevens
,
J. M.
Klopf
,
J. T.
McLeskey
, and
A. N.
Smith
, “
Femtosecond pump-probe nondestructive examination of materials
,”
Rev. Sci. Instrum.
74
(
1
),
400
406
(
2003
).).
211.
J.
Jeong
,
X.
Meng
,
A. K.
Rockwell
,
S. R.
Bank
,
W. P.
Hsieh
,
J. F.
Lin
, and
Y.
Wang
, “
Picosecond transient thermoreflectance for thermal conductivity characterization
,”
Nanoscale Microscale Thermophys. Eng.
23
(
3
),
211
221
(
2019
).
212.
D. H.
Olson
,
J. L.
Braun
, and
P. E.
Hopkins
, “
Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale
,”
J. Appl. Phys.
126
(
15
),
150901
(
2019
).
213.
C.
Yuan
,
R.
Hanus
, and
S.
Graham
, “
A review of thermoreflectance techniques for characterizing wide bandgap semiconductors' thermal properties and devices' temperatures
,”
J. Appl. Phys.
132
(
22
),
220701
(
2022
).
214.
C.
Perez
,
R.
Knepper
,
M. P.
Marquez
,
E. C.
Forrest
,
A. S.
Tappan
,
M.
Asheghi
,
K. E.
Goodson
, and
E. O.
Ziade
, “
Non‐contact mass density and thermal conductivity measurements of organic thin films using frequency–domain thermoreflectance
,”
Adv. Mater. Interfaces
9
(
2
),
2101404
(
2022
).
215.
N.
Poopakdee
,
Z.
Abdallah
,
J. W.
Pomeroy
, and
M.
Kuball
, “
In situ thermoreflectance characterization of thermal resistance in multilayer electronics packaging
,”
ACS Appl. Electron. Mater.
4
(
4
),
1558
1566
(
2022
).
216.
K. T.
Regner
,
D. P.
Sellan
,
Z.
Su
,
C. H.
Amon
,
A. J. H.
McGaughey
, and
J. A.
Malen
, “
Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance
,”
Nat. Commun.
4
,
1640
(
2013
).
217.
A. J.
Schmidt
, “
Optical characterization of thermal transport from the nanoscale to the macroscale
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
2008
).
218.
R.
Garrelts
,
A.
Marconnet
, and
X.
Xu
, “
Assessment of thermal properties via nanosecond thermoreflectance method
,”
Nanoscale Microscale Thermophys. Eng.
19
(
4
),
245
257
(
2015
).
219.
J. L.
Braun
,
D. H.
Olson
,
J. T.
Gaskins
, and
P. E.
Hopkins
, “
A steady-state thermoreflectance method to measure thermal conductivity
,”
Rev. Sci. Instrum.
90
(
2
),
024905
(
2019
).
220.
J.
Sun
,
Z.
Cheng
,
J.
Liang
,
N.
Shigekawa
,
K.
Kawamura
,
H.
Uratani
,
Y.
Sakaida
, and
D. G.
Cahill
, “
Probe beam deflection technique with liquid immersion for fast mapping of thermal conductance
,”
Appl. Phys. Lett.
124
(
4
),
042201
(
2024
).
221.
P.
Jiang
,
X.
Qian
, and
R.
Yang
, “
Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials
,”
J. Appl. Phys.
124
(
16
),
161103
(
2018
).
222.
D. G.
Cahill
,
P. V.
Braun
,
G.
Chen
,
D. R.
Clarke
,
S.
Fan
,
K. E.
Goodson
,
P.
Keblinski
,
W. P.
King
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
S. R.
Phillpot
,
E.
Pop
, and
L.
Shi
, “
Nanoscale thermal transport. II. 2003–2012
,”
Appl. Phys. Rev.
1
(
1
),
011305
(
2014
).
223.
D. G.
Cahill
, “
Thermal conductivity measurement from 30 to 750 K: The 3ω method
,”
Rev. Sci. Instrum.
61
(
2
),
802
808
(
1990
).
224.
A.
Schmidt
,
M.
Chiesa
,
X.
Chen
, and
G.
Chen
, “
An optical pump-probe technique for measuring the thermal conductivity of liquids
,”
Rev. Sci. Instrum.
79
(
6
),
064902
(
2008
).
225.
B.
Sun
and
Y. K.
Koh
, “
Understanding and eliminating artifact signals from diffusely scattered pump beam in measurements of rough samples by time-domain thermoreflectance (TDTR)
,”
Rev. Sci. Instrum.
87
(
6
),
064901
(
2016
).
226.
R.
Cheaito
,
A.
Sood
,
L.
Yates
,
T. L.
Bougher
,
Z.
Cheng
,
M.
Asheghi
,
S.
Graham
, and
K.
Goodson
, “
Thermal conductivity measurements on suspended diamond membranes using picosecond and femtosecond time-domain thermoreflectance
,” in
2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
(
IEEE
,
2017
), pp.
706
710
.
227.
E. T.
Swartz
and
R. O.
Pohl
, “
Thermal boundary resistance
,”
Rev. Mod. Phys.
61
(
3
),
605
668
(
1989
).
228.
T. S.
Fisher
,
Thermal Energy at the Nanoscale
(
World Scientific
,
2013
).
229.
Q.
Li
,
F.
Liu
,
S.
Hu
,
H.
Song
,
S.
Yang
,
H.
Jiang
,
T.
Wang
,
Y. K.
Koh
,
C.
Zhao
,
F.
Kang
,
J.
Wu
,
X.
Gu
,
B.
Sun
, and
X.
Wang
, “
Inelastic phonon transport across atomically sharp metal/semiconductor interfaces
,”
Nat. Commun.
13
(
1
),
4901
(
2022
).
230.
J.
Chen
,
X.
Xu
,
J.
Zhou
, and
B.
Li
, “
Interfacial thermal resistance: Past, present, and future
,”
Rev. Mod. Phys.
94
(
2
),
025002
(
2022
).
231.
Z.
Cheng
,
Y. R.
Koh
,
H.
Ahmad
,
R.
Hu
,
J.
Shi
,
M. E.
Liao
,
Y.
Wang
,
T.
Bai
,
R.
Li
,
E.
Lee
,
E. A.
Clinton
,
C. M.
Matthews
,
Z.
Engel
,
L.
Yates
,
T.
Luo
,
M. S.
Goorsky
,
W. A.
Doolittle
,
Z.
Tian
,
P. E.
Hopkins
, and
S.
Graham
, “
Thermal conductance across harmonic-matched epitaxial Al-sapphire heterointerfaces
,”
Commun. Phys.
3
(
1
),
115
(
2020
).
232.
G. T.
Hohensee
,
R. B.
Wilson
, and
D. G.
Cahill
, “
Thermal conductance of metal-diamond interfaces at high pressure
,”
Nat. Commun.
6
(
1
),
6578
(
2015
).
233.
P. E.
Hopkins
,
P. M.
Norris
,
R. J.
Stevens
,
T. E.
Beechem
, and
S.
Graham
, “
Influence of interfacial mixing on thermal boundary conductance across a chromium/silicon interface
,”
J. Heat Transfer
130
(
6
),
062402
(
2008
).
234.
P. E.
Hopkins
,
J. C.
Duda
,
C. W.
Petz
, and
J. A.
Floro
, “
Controlling thermal conductance through quantum dot roughening at interfaces
,”
Phys. Rev. B
84
(
3
),
035438
(
2011
).
235.
Y.
Xu
,
G.
Wang
, and
Y.
Zhou
, “
Broadly manipulating the interfacial thermal energy transport across the Si/4H-SiC interfaces via nanopatterns
,”
Int. J. Heat Mass Transfer
187
,
122499
(
2022
).
236.
R.
Xie
,
J.
Tiwari
, and
T.
Feng
, “
Impacts of various interfacial nanostructures on spectral phonon thermal boundary conductance
,”
J. Appl. Phys.
132
(
11
),
115108
(
2022
).
237.
E.
Lee
,
T.
Zhang
,
T.
Yoo
,
Z.
Guo
, and
T.
Luo
, “
Nanostructures significantly enhance thermal transport across solid interfaces
,”
ACS Appl. Mater. Interfaces
8
(
51
),
35505
35512
(
2016
).
238.
E.
Lee
,
T.
Zhang
,
M.
Hu
, and
T.
Luo
, “
Thermal boundary conductance enhancement using experimentally achievable nanostructured interfaces-analytical study combined with molecular dynamics simulation
,”
Phys. Chem. Chem. Phys.
18
(
25
),
16794
16801
(
2016
).
239.
P.
Yasaei
,
C. J.
Foss
,
K.
Karis
,
A.
Behranginia
,
A. I.
El-Ghandour
,
A.
Fathizadeh
,
J.
Olivares
,
A. K.
Majee
,
C. D.
Foster
,
F.
Khalili-Araghi
,
Z.
Aksamija
, and
A.
Salehi-Khojin
, “
Interfacial thermal transport in monolayer MoS2- and graphene-based devices
,”
Adv. Mater. Interfaces
4
(
17
),
1700334
(
2017
).
240.
R.
Li
,
K.
Gordiz
,
A.
Henry
,
P. E.
Hopkins
,
E.
Lee
, and
T.
Luo
, “
Effect of light atoms on thermal transport across solid-solid interfaces
,”
Phys. Chem. Chem. Phys.
21
(
31
),
17029
17035
(
2019
).
241.
E.
Lee
and
T.
Luo
, “
Thermal transport across solid-solid interfaces enhanced by pre-interface isotope-phonon scattering
,”
Appl. Phys. Lett.
112
(
1
),
011603
(
2018
).
242.
E.
Lee
and
T.
Luo
, “
The role of optical phonons in intermediate layer-mediated thermal transport across solid interfaces
,”
Phys. Chem. Chem. Phys.
19
(
28
),
18407
18415
(
2017
).
243.
C. A.
Polanco
,
R.
Rastgarkafshgarkolaei
,
J.
Zhang
,
N. Q.
Le
,
P. M.
Norris
, and
A. W.
Ghosh
, “
Design rules for interfacial thermal conductance: Building better bridges
,”
Phys. Rev. B
95
(
19
),
195303
(
2017
).
244.
T. S.
English
,
J. C.
Duda
,
J. L.
Smoyer
,
D. A.
Jordan
,
P. M.
Norris
, and
L. V.
Zhigilei
, “
Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces
,”
Phys. Rev. B
85
(
3
),
035438
(
2012
).
245.
N. Q.
Le
,
J. C.
Duda
,
T. S.
English
,
P. E.
Hopkins
,
T. E.
Beechem
, and
P. M.
Norris
, “
Strategies for tuning phonon transport in multilayered structures using a mismatch-based particle model
,”
J. Appl. Phys.
111
(
8
),
084310
(
2012
).
246.
M.
Hu
,
X.
Zhang
,
D.
Poulikakos
, and
C. P.
Grigoropoulos
, “
Large ‘near junction’ thermal resistance reduction in electronics by interface nanoengineering
,”
Int. J. Heat Mass Transfer
54
(
25–26
),
5183
5191
(
2011
).
247.
S.
Tian
,
T.
Wu
,
S.
Hu
,
D.
Ma
, and
L.
Zhang
, “
Boosting phonon transport across AlN/SiC interface by fast annealing amorphous layers
,”
Appl. Phys. Lett.
124
(
4
),
042202
(
2024
).
248.
K. Z.
Adnan
and
T.
Feng
, “
Thermal boundary conductance and thermal conductivity strongly depend on nearby environment
,”
Phys. Rev. B
109
(
24
),
245302
(
2024
).
249.
C.
Dwyer
,
T.
Aoki
,
P.
Rez
,
S. L. Y.
Chang
,
T. C.
Lovejoy
, and
O. L.
Krivanek
, “
Electron-beam mapping of vibrational modes with nanometer spatial resolution
,”
Phys. Rev. Lett.
117
(
25
),
256101
(
2016
).
250.
M. J.
Lagos
,
A.
Trügler
,
U.
Hohenester
, and
P. E.
Batson
, “
Mapping vibrational surface and bulk modes in a single nanocube
,”
Nature
543
(
7646
),
529
532
(
2017
).
251.
R.
Qi
,
N.
Li
,
J.
Du
,
R.
Shi
,
Y.
Huang
,
X.
Yang
,
L.
Liu
,
Z.
Xu
,
Q.
Dai
,
D.
Yu
, and
P.
Gao
, “
Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes
,”
Nat. Commun.
12
(
1
),
1179
(
2021
).
252.
R.
Senga
,
K.
Suenaga
,
P.
Barone
,
S.
Morishita
,
F.
Mauri
, and
T.
Pichler
, “
Position and momentum mapping of vibrations in graphene nanostructures
,”
Nature
573
(
7773
),
247
250
(
2019
).
253.
O. L.
Krivanek
,
T. C.
Lovejoy
,
N.
Dellby
,
T.
Aoki
,
R. W.
Carpenter
,
P.
Rez
,
E.
Soignard
,
J.
Zhu
,
P. E.
Batson
,
M. J.
Lagos
,
R. F.
Egerton
, and
P. A.
Crozier
, “
Vibrational spectroscopy in the electron microscope
,”
Nature
514
(
7521
),
209
212
(
2014
).
254.
R.
Qi
,
R.
Shi
,
Y.
Li
,
Y.
Sun
,
M.
Wu
,
N.
Li
,
J.
Du
,
K.
Liu
,
C.
Chen
,
J.
Chen
,
F.
Wang
,
D.
Yu
,
E. G.
Wang
, and
P.
Gao
, “
Measuring phonon dispersion at an interface
,”
Nature
599
(
7885
),
399
403
(
2021
).
255.
K.
Gordiz
and
A.
Henry
, “
Phonon transport at crystalline Si/Ge interfaces: The role of interfacial modes of vibration
,”
Sci. Rep.
6
,
23139
(
2016
).
256.
Y.-H.
Li
,
R.-S.
Qi
,
R.-C.
Shi
,
J.-N.
Hu
,
Z.-T.
Liu
,
Y.-W.
Sun
,
M.-Q.
Li
,
N.
Li
,
C.-L.
Song
,
L.
Wang
,
Z.-B.
Hao
,
Y.
Luo
,
Q.-K.
Xue
,
X.-C.
Ma
, and
P.
Gao
, “
Atomic-scale probing of heterointerface phonon bridges in nitride semiconductor
,”
Proc. Natl. Acad. Sci. U. S. A.
119
(
8
),
e2117027119
(
2022
).
257.
Z.
Cheng
,
R.
Li
,
X.
Yan
,
G.
Jernigan
,
J.
Shi
,
M. E.
Liao
,
N. J.
Hines
,
C. A.
Gadre
,
J. C.
Idrobo
,
E.
Lee
,
K. D.
Hobart
,
M. S.
Goorsky
,
X.
Pan
,
T.
Luo
, and
S.
Graham
, “
Experimental observation of localized interfacial phonon modes
,”
Nat. Commun.
12
(
1
),
6901
(
2021
).
258.
C.
Yuan
,
Y.
Zhang
,
R.
Montgomery
,
S.
Kim
,
J.
Shi
,
A.
Mauze
,
T.
Itoh
,
J. S.
Speck
, and
S.
Graham
, “
Modeling and analysis for thermal management in gallium oxide field-effect transistors
,”
J. Appl. Phys.
127
(
15
),
154502
(
2020
).
259.
W.
Liu
and
B.
Bayraktaroglu
, “
Theoretical calculations of temperature and current profiles in multi-finger heterojunction bipolar transistors
,”
Solid State Electron.
36
(
2
),
125
132
(
1993
).
260.
Y. A.
Chen
,
Y. Z.
Zheng
,
T. C.
Chang
,
K. J.
Zhou
,
P. J.
Sun
,
Y. H.
Hung
,
Y. H.
Lee
,
T. M.
Tsai
,
J. W.
Chen
,
C. W.
Kuo
,
C. H.
Tsai
, and
S.
Ogier
, “
Investigation of the self-heating effect in high performance organic TFTs with multi-finger structure
,”
IEEE Electron. Device Lett.
43
(
8
),
1243
1246
(
2022
).
261.
J.
Anaya
,
H.
Sun
,
J.
Pomeroy
, and
M.
Kuball
, “
Thermal management of GaN-on-diamond high electron mobility transistors: Effect of the nanostructure in the diamond near nucleation region
,” in
2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
(
IEEE
,
2016
), pp.
1558
1565
.
262.
Y.
Song
,
A.
Bhattacharyya
,
A.
Karim
,
D.
Shoemaker
,
H. L.
Huang
,
S.
Roy
,
C.
McGray
,
J. H.
Leach
,
J.
Hwang
,
S.
Krishnamoorthy
, and
S.
Choi
, “
Ultra-wide band gap Ga2O3-on-SiC MOSFETs
,”
ACS Appl. Mater. Interfaces
15
(
5
),
7137
7147
(
2023
).
263.
D. C.
Shoemaker
,
Y.
Song
,
K.
Kang
,
M. L.
Schuette
,
J. S.
Tweedie
,
S. T.
Sheppard
,
N. S.
McIlwaine
,
J. P.
Maria
, and
S.
Choi
, “
Implications of interfacial thermal transport on the self-heating of GaN-on-SiC high electron mobility transistors
,”
IEEE Trans. Electron Devices
70
(
10
),
5036
5043
(
2023
).
264.
R. H.
Montgomery
,
Y.
Zhang
,
C.
Yuan
,
S.
Kim
,
J.
Shi
,
T.
Itoh
,
A.
Mauze
,
S.
Kumar
,
J.
Speck
, and
S.
Graham
, “
Thermal management strategies for gallium oxide vertical trench-fin MOSFETs
,”
J. Appl. Phys.
129
(
8
),
085301
(
2021
).
265.
S.
Kim
,
Y.
Zhang
,
C.
Yuan
,
R.
Montgomery
,
A.
Mauze
,
J.
Shi
,
E.
Farzana
,
J. S.
Speck
, and
S.
Graham
, “
Thermal management of β-Ga2O3 current aperture vertical electron transistors
,”
IEEE Trans. Compon, Packag. Manufact. Technol.
11
(
8
),
1171
1176
(
2021
).
266.
B.
Chatterjee
,
K.
Zeng
,
C. D.
Nordquist
,
U.
Singisetti
, and
S.
Choi
, “
Device-level thermal management of gallium oxide field-effect transistors
,”
IEEE Trans. Compon, Packag. Manufact. Technol.
9
(
12
),
2352
2365
(
2019
).
267.
S. H.
Kim
,
D.
Shoemaker
,
A. J.
Green
,
K. D.
Chabak
,
K. J.
Liddy
,
S.
Graham
, and
S.
Choi
, “
Transient thermal management of a β-Ga2O3 MOSFET using a double-side diamond cooling approach
,”
IEEE Trans. Electron Devices
70
(
4
),
1628
1635
(
2023
).
268.
J.
Sun
,
H.
Fatima
,
A.
Koudymov
,
A.
Chitnis
,
X.
Hu
,
H. M.
Wang
,
J.
Zhang
,
G.
Simin
,
J.
Yang
, and
M. A.
Khan
, “
Thermal management of AlGaN-GaN HFETs on sapphire using flip-chip bonding with epoxy underfill
,”
IEEE Electron Device Lett.
24
(
6
),
375
377
(
2003
).
269.
S.
Krishnamoorthi
,
D. Y. R.
Chong
, and
A. Y. S.
Sun
, “
Thermal management and characterization of flip chip BGA packages
,” in
Proceedings of 6th Electronics Packaging Technology Conference (EPTC)
(
IEEE
,
2004
), pp.
53
59
.
270.
B.
Kwon
,
T.
Foulkes
,
T.
Yang
,
N.
Miljkovic
, and
W. P.
King
, “
Air jet impingement cooling of electronic devices using additively manufactured nozzles
,”
IEEE Trans. Compon, Packag. Manufact. Technol.
10
(
2
),
220
229
(
2020
).
271.
D.
Shoemaker
,
M.
Malakoutian
,
B.
Chatterjee
,
Y.
Song
,
S.
Kim
,
B. M.
Foley
,
S.
Graham
,
C. D.
Nordquist
,
S.
Chowdhury
, and
S.
Choi
, “
Diamond-incorporated flip-chip integration for thermal management of GaN and ultra-wide bandgap RF power amplifiers
,”
IEEE Trans. Compon, Packag. Manufact. Technol.
11
(
8
),
1177
1186
(
2021
).
272.
J.
Wu
,
E.
Zhou
,
A.
Huang
,
H.
Zhang
,
M.
Hu
, and
G.
Qin
, “
Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates
,”
Nat. Commun.
15
(
1
),
2540
(
2024
).
273.
P. E.
Raad
,
P. L.
Komarov
, and
T. L.
Sandy
, “
The transient thermoreflectance approach for high-resolution temperature mapping of GaN devices
,” in
Thermal Management of Gallium Nitride Electronics
(
Elsevier
,
2022
), pp.
231
250
.
274.
M. G.
Burzo
,
P. L.
Komarov
, and
P. E.
Raad
, “
Noncontact transient temperature mapping of active electronic devices using the thermoreflectance method
,”
IEEE Trans. Comp. Packag. Technol.
28
(
4
),
637
643
(
2005
).
275.
M.
Farzaneh
,
K.
Maize
,
D.
Lüeren
,
J. A.
Summers
,
P. M.
Mayer
,
P. E.
Raad
,
K. P.
Pipe
,
A.
Shakouri
,
R. J.
Ram
, and
J. A.
Hudgings
, “
CCD-based thermoreflectance microscopy: Principles and applications
,”
J. Phys. D: Appl. Phys.
42
(
14
),
143001
(
2009
).
276.
Z. K.
Liu
,
G.
Yang
, and
B. Y.
Cao
, “
Pulsed thermoreflectance imaging for thermophysical properties measurement of GaN epitaxial heterostructures
,”
Rev. Sci. Instrum.
94
(
9
),
094902
(
2023
).
277.
Z.-K.
Liu
,
Y.
Shen
,
H.-L.
Li
,
B.-Y.
Cao
,
Z.-K.
Liu
,
Y.
Shen
,
H.-L.
Li
, and
B.-Y.
Cao
, “
Observation of ballistic-diffusive thermal transport in GaN transistors using thermoreflectance thermal imaging
,”
Rare Met.
43
(
1
),
389
394
(
2024
).
278.
J.
Christofferson
and
A.
Shakouri
, “
Thermoreflectance based thermal microscope
,”
Rev. Sci. Instrum.
76
(
2
),
024903
(
2005
).
279.
P. K. L.
Chan
,
K. P.
Pipe
,
G.
Qin
, and
Z.
Ma
, “
Thermoreflectance imaging of current dynamics in high power SiGe heterojunction bipolar transistors
,”
Appl. Phys. Lett.
89
(
23
),
233521
(
2006
).
280.
R.
Soman
,
M.
Malakoutian
,
B.
Shankar
,
D.
Field
,
E.
Akso
,
N.
Hatui
,
N. J.
Hines
,
S.
Graham
,
U. K.
Mishra
,
M.
Kuball
, and
S.
Chowdhury
, “
Novel all-around diamond integration with GaN HEMTs demonstrating highly efficient device cooling
,” in
Technical Digest - International Electron Devices Meeting, IEDM
(
IEEE
,
2022
), pp.
3081
3084
.
281.
J. H.
Ryou
and
S.
Choi
, “
All-around diamond for cooling power devices
,”
Nat. Electron.
5
(
12
),
834
835
(
2022
).
282.
M.
Malakoutian
,
A.
Kasperovich
,
D.
Rich
,
K.
Woo
,
C.
Perez
,
R.
Soman
,
D.
Saraswat
,
J.
Kim
,
M.
Noshin
,
M.
Chen
,
S.
Vaziri
,
X.
Bao
,
C. C.
Shih
,
W.-Y.
Woon
,
M.
Asheghi
,
K. E.
Goodson
,
S. S.
Liao
,
S.
Mitra
, and
S.
Chowdhury
, “
Cooling future system-on-chips with diamond inter-tiers
,”
Cell Rep. Phys. Sci.
4
(
12
),
101686
(
2023
).
283.
H. N.
Masten
,
J. S.
Lundh
,
T. I.
Feygelson
,
K.
Sasaki
,
Z.
Cheng
,
J. A.
Spencer
,
P. Y.
Liao
,
J. K.
Hite
,
D. J.
Pennachio
,
A. G.
Jacobs
,
M. A.
Mastro
,
B. N.
Feigelson
,
A.
Kuramata
,
P.
Ye
,
S.
Graham
,
B. B.
Pate
,
K. D.
Hobart
,
T. J.
Anderson
, and
M. J.
Tadjer
, “
Reduced temperature in lateral (AlxGa1−x)2O3/Ga2O3 heterojunction field effect transistor capped with nanocrystalline diamond
,”
Appl. Phys. Lett.
124
(
15
),
153502
(
2024
).
284.
A. E.
Helou
,
P.
Komarov
,
M. J.
Tadjer
,
T. J.
Anderson
,
D. A.
Francis
,
T.
Feygelson
,
B. B.
Pate
,
K. D.
Hobart
, and
P. E.
Raad
, “
High-resolution thermoreflectance imaging investigation of self-heating in AlGaN/GaN HEMTs on Si, SiC, and diamond substrates
,”
IEEE Trans. Electron Devices
67
(
12
),
5415
5420
(
2020
).
285.
M. J.
Tadjer
,
T. J.
Anderson
,
M. G.
Ancona
,
P. E.
Raad
,
P.
Komarov
,
T.
Bai
,
J. C.
Gallagher
,
A. D.
Koehler
,
M. S.
Goorsky
,
D. A.
Francis
,
K. D.
Hobart
, and
F. J.
Kub
, “
GaN-On-diamond HEMT technology with TAVG = 176 C at PDC,max = 56 W/mm measured by transient thermoreflectance imaging
,”
IEEE Electron Device Lett.
40
(
6
),
881
884
(
2019
).
286.
L.
Lindsay
,
D. A.
Broido
, and
T. L.
Reinecke
, “
Thermal conductivity and large isotope effect in GaN from first principles
,”
Phys. Rev. Lett.
109
(
9
),
095901
(
2012
).
287.
S.-D.
Guo
and
B.-G.
Liu
, “
Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap
,”
J. Phys.: Condens. Matter
30
(
10
),
105701
(
2018
).
288.
A.
Kundu
,
X.
Yang
,
J.
Ma
,
T.
Feng
,
J.
Carrete
,
X.
Ruan
,
G. K. H.
Madsen
, and
W.
Li
, “
Ultrahigh thermal conductivity of θ-phase tantalum nitride
,”
Phys. Rev. Lett.
126
(
11
),
115901
(
2021
).
289.
H.
Lee
,
Y.
Zhou
,
S.
Jung
,
H.
Li
,
Z.
Cheng
,
J.
He
,
J.
Chen
,
P.
Sokalski
,
A.
Dolocan
,
R.
Gearba‐Dolocan
,
K. C.
Matthews
,
F.
Giustino
,
J.
Zhou
, and
L.
Shi
, “
High‐pressure synthesis and thermal conductivity of semimetallic θ‐tantalum nitride
,”
Adv. Funct. Mater.
33
,
2212957
(
2023
).
290.
T.
Matsumae
,
Y.
Kurashima
,
H.
Takagi
,
H.
Umezawa
,
K.
Tanaka
,
T.
Ito
,
H.
Watanabe
, and
E.
Higurashi
, “
Hetero-integration of β-Ga2O3 and diamond substrates by hydrophilic bonding technique
,”
ECS Trans.
98
(
4
),
17
20
(
2020
).
291.
U.
Gösele
and
Q.-Y.
Tong
, “
Semiconductor wafer bonding
,”
Annu. Rev. Mater. Sci.
28
(
1
),
215
241
(
1998
).
292.
S.
Khan
,
F.
Angeles
,
J.
Wright
,
S.
Vishwakarma
,
V. H.
Ortiz
,
E.
Guzman
,
F.
Kargar
,
A. A.
Balandin
,
D. J.
Smith
,
D.
Jena
,
H. G.
Xing
, and
R.
Wilson
, “
Properties for thermally conductive interfaces with wide band gap materials
,”
ACS Appl. Mater. Interfaces
14
(
31
),
36178
36188
(
2022
).
293.
M. S.
Lundstrom
and
M. A.
Alam
, “
Moore's law: The journey ahead
,”
Science
378
(
6621
),
722
723
(
2022
).
You do not currently have access to this content.