The phase diagram serves as a blueprint for designing the structure of a material, offering a comprehensive representation of its different phases under specific conditions, such as temperature and pressure. In the realm of two-dimensional (2D) materials, stacking order can play a crucial role in controlling and inducing phase transitions. However, in studying phase diagrams for 2D materials, the exploration of stacking degree of freedom has largely been overlooked, limiting our understanding and hindering future applications. Here, we experimentally explore the interplay of stacking and pressure degrees of freedom in revealing unique phase transitions in bilayer MoS2 with two different stacking configurations. In AA stacking, interlayer sliding and asymmetric intralayer compressing precede intralayer rotation, while in AB stacking, asymmetric intralayer compressing and intralayer distortion occur simultaneously. Under further elevated pressure, the bilayer system transitions into 1T′ phase before amorphization. Our findings offer valuable insights for creating comprehensive phase diagrams and exploring exotic phases as well as phase transitions of 2D materials in a broader parameter space.

1.
Y. A.
Chang
,
S.
Chen
,
F.
Zhang
,
X.
Yan
,
F.
Xie
,
R.
Schmid-Fetzer
, and
W.
Oates
,
Prog. Mater. Sci.
49
(
3–4
),
313
345
(
2004
).
2.
R.
Hatti-Kaul
,
Aqueous Two-Phase Systems: Methods and Protocols
(
Humana Press
,
New Jersey
,
2000
).
3.
S.
Pei
,
Z.
Zhang
,
C.
Jiao
,
Z.
Wang
,
J.
Lv
,
Y.
Zhang
,
M.
Huang
,
Y.
Wang
,
Z.
Wang
, and
J.
Xia
,
Rep. Prog. Phys.
87
(
7
),
078001
(
2024
).
4.
H.
Mao
,
X.
Chen
,
Y.
Ding
,
B.
Li
, and
L.
Wang
,
Rev. Mod. Phys.
90
(
1
),
015007
(
2018
).
5.
A.
Mattila
,
J.
Rueff
,
J.
Badro
,
G.
Vankó
, and
A.
Shukla
,
Phys. Rev. Lett.
98
(
19
),
196404
(
2007
).
6.
J.
Cheng
,
K.
Kweon
,
S.
Larregola
,
Y.
Ding
,
Y.
Shirako
,
L.
Marshall
,
Z.
Li
,
X.
Li
,
A.
Dos Santos
,
M.
Suchomel
,
K.
Matsubayashi
,
Y.
Uwatoko
,
G.
Hwang
,
J.
Goodenough
, and
J.
Zhou
,
Proc. Natl. Acad. Sci. U. S. A.
112
(
6
),
1670
1674
(
2015
).
7.
Y.
Ding
,
J.
Fernandez-Rodriguez
,
J.
Kim
,
F.
Li
,
D.
Casa
,
M.
Upton
,
T.
Gog
,
H.
Mao
, and
M.
Van Veenendaal
,
Phys. Rev. B
86
(
9
),
094107
(
2012
).
8.
M.
Csontos
,
G.
Mihály
,
B.
Jankó
,
T.
Wojtowicz
,
X.
Liu
, and
J.
Furdyna
,
Nat. Mater.
4
(
6
),
447
449
(
2005
).
9.
J.
Chipman
,
Metall. Trans.
3
(
1
),
55
64
(
1972
).
10.
W.
Knafo
,
S.
Araki
,
G.
Lapertot
,
D.
Aoki
,
G.
Knebel
, and
D.
Braithwaite
,
Nat. Phys.
16
(
9
),
942
948
(
2020
).
11.
U.
Chatterjee
,
D.
Ai
,
J.
Zhao
,
S.
Rosenkranz
,
A.
Kaminski
,
H.
Raffy
,
Z.
Li
,
K.
Kadowaki
,
M.
Randeria
,
M.
Norman
, and
J.
Campuzano
,
Proc. Natl. Acad. Sci. U. S. A.
108
(
23
),
9346
9349
(
2011
).
12.
T.
Han
,
F.
Zhou
,
C.
Malliakas
,
P.
Duxbury
,
S.
Mahanti
,
M.
Kanatzidis
, and
C.
Ruan
,
Sci. Adv.
1
(
5
),
e1400173
(
2015
).
13.
B.
Predel
,
M.
Hoch
, and
M.
Pool
,
Phase Diagrams and Heterogeneous Equilibria: A Practical Introduction
(
Springer
,
Berlin, New York
,
2004
).
14.
D.
Chen
,
Z.
Lian
,
X.
Huang
,
Y.
Su
,
M.
Rashetnia
,
L.
Ma
,
L.
Yan
,
M.
Blei
,
L.
Xiang
,
T.
Taniguchi
,
K.
Watanabe
,
S.
Tongay
,
D.
Smirnov
,
Z.
Wang
,
C.
Zhang
,
Y.
Cui
, and
S.
Shi
,
Nat. Phys.
18
(
10
),
1171
1176
(
2022
).
15.
D.
Kennes
,
M.
Claassen
,
L.
Xian
,
A.
Georges
,
A.
Millis
,
J.
Hone
,
C.
Dean
,
D.
Basov
,
A.
Pasupathy
, and
A.
Rubio
,
Nat. Phys.
17
(
2
),
155
163
(
2021
).
16.
Z.
Wang
,
B.
Xu
,
S.
Pei
,
J.
Zhu
,
T.
Wen
,
C.
Jiao
,
J.
Li
,
M.
Zhang
, and
J.
Xia
,
Sci. China Inf. Sci.
65
(
11
),
211401
(
2022
).
17.
C.
Jiao
,
S.
Pei
,
S.
Wu
,
Z.
Wang
, and
J.
Xia
,
Rep. Prog. Phys.
86
(
11
),
114503
(
2023
).
18.
S.
Pei
,
Z.
Wang
, and
J.
Xia
,
ACS Nano
16
(
8
),
11498
11503
(
2022
).
19.
Z.
Zhang
,
C.
Jiao
,
S.
Pei
,
X.
Zhou
,
J.
Qin
,
W.
Zhang
,
Y.
Zhou
,
Z.
Wang
, and
J.
Xia
,
Sci. China-Phys. Mech. Astron.
67
,
288211
(
2024
).
20.
J.
Yan
,
J.
Xia
,
X.
Wang
,
L.
Liu
,
J.
Kuo
,
B.
Tay
,
S.
Chen
,
W.
Zhou
,
Z.
Liu
, and
Z.
Shen
,
Nano Lett.
15
(
12
),
8155
8161
(
2015
).
21.
R.
Ribeiro-Palau
,
C.
Zhang
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
, and
C.
Dean
,
Science
361
(
6403
),
690
693
(
2018
).
22.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
,
Nature
556
(
7699
),
43
50
(
2018
).
23.
Y.
Cao
,
J.
Luo
,
V.
Fatemi
,
S.
Fang
,
J.
Sanchez-Yamagishi
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
,
Phys. Rev. Lett.
117
(
11
),
116804
(
2016
).
24.
Y.
Cao
,
V.
Fatemi
,
A.
Demir
,
S.
Fang
,
S.
Tomarken
,
J.
Luo
,
J.
Sanchez-Yamagishi
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
,
R.
Ashoori
, and
P.
Jarillo-Herrero
,
Nature
556
(
7699
),
80
84
(
2018
).
25.
M.
Yankowitz
,
K.
Watanabe
,
T.
Taniguchi
,
P.
San-Jose
, and
B.
LeRoy
,
Nat. Commun.
7
(
1
),
13168
(
2016
).
26.
M.
Yankowitz
,
J.
Jung
,
E.
Laksono
,
N.
Leconte
,
B.
Chittari
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Adam
,
D.
Graf
, and
C.
Dean
,
Nature
557
(
7705
),
404
408
(
2018
).
27.
A.
Inbar
,
J.
Birkbeck
,
J.
Xiao
,
T.
Taniguchi
,
K.
Watanabe
,
B.
Yan
,
Y.
Oreg
,
A.
Stern
,
E.
Berg
, and
S.
Ilani
,
Nature
614
(
7949
),
682
687
(
2023
).
28.
W.
Chen
,
Z.
Sun
,
Z.
Wang
,
L.
Gu
,
X.
Xu
,
S.
Wu
, and
C.
Gao
,
Science
366
(
6468
),
983
987
(
2019
).
29.
J.
Xiao
,
Y.
Wang
,
H.
Wang
,
C.
Pemmaraju
,
S.
Wang
,
P.
Muscher
,
E.
Sie
,
C.
Nyby
,
T.
Devereaux
,
X.
Qian
,
X.
Zhang
, and
A.
Lindenberg
,
Nat. Phys.
16
(
10
),
1028
1034
(
2020
).
30.
S.
Pei
,
Z.
Wang
, and
J.
Xia
,
Mater. Des.
213
,
110363
(
2022
).
31.
M.
Yankowitz
,
S.
Chen
,
H.
Polshyn
,
Y.
Zhang
,
K.
Watanabe
,
T.
Taniguchi
,
D.
Graf
,
A.
Young
, and
C.
Dean
,
Science
363
(
6431
),
1059
1064
(
2019
).
32.
T.
Song
,
Z.
Fei
,
M.
Yankowitz
,
Z.
Lin
,
Q.
Jiang
,
K.
Hwangbo
,
Q.
Zhang
,
B.
Sun
,
T.
Taniguchi
,
K.
Watanabe
,
M.
McGuire
,
D.
Graf
,
T.
Cao
,
J.
Chu
,
D.
Cobden
,
C.
Dean
,
D.
Xiao
, and
X.
Xu
,
Nat. Mater.
18
(
12
),
1298
1302
(
2019
).
33.
J.
Xia
,
J.
Yan
,
Z.
Wang
,
Y.
He
,
Y.
Gong
,
W.
Chen
,
T.
Sum
,
Z.
Liu
,
P.
Ajayan
, and
Z.
Shen
,
Nat. Phys.
17
(
1
),
92
98
(
2021
).
34.
Q.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J.
Coleman
, and
M.
Strano
,
Nat. Nanotechnol.
7
(
11
),
699
712
(
2012
).
35.
Y.
Tan
,
F.
Chen
, and
A.
Ghosh
,
Appl. Phys. Lett.
109
(
10
),
101601
(
2016
).
36.
K.
Liu
,
L.
Zhang
,
T.
Cao
,
C.
Jin
,
D.
Qiu
,
Q.
Zhou
,
A.
Zettl
,
P.
Yang
,
S.
Louie
, and
F.
Wang
,
Nat. Commun.
5
(
1
),
4966
(
2014
).
37.
S.
Zhu
,
P.
Pochet
, and
H.
Johnson
,
ACS Nano
13
(
6
),
6925
6931
(
2019
).
38.
J.
Baek
,
H.
Kim
,
S.
Lim
,
S.
Hong
,
Y.
Chang
,
H.
Ryu
,
Y.
Jung
,
H.
Jang
,
J.
Kim
,
Y.
Zhang
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Huang
,
H.
Cheong
,
M.
Kim
, and
G.
Lee
,
Nat. Mater.
22
(
12
),
1463
1469
(
2023
).
39.
X.
Zhang
,
X.
Qiao
,
W.
Shi
,
J.
Wu
,
D.
Jiang
, and
P.
Tan
,
Chem. Soc. Rev.
44
(
9
),
2757
2785
(
2015
).
40.
J.
van Baren
,
G.
Ye
,
J.
Yan
,
Z.
Ye
,
P.
Rezaie
,
P.
Yu
,
Z.
Liu
,
R.
He
, and
C.
Lui
,
2D Mater.
6
(
2
),
025022
(
2019
).
41.
J.
Zhu
,
B.
Xu
,
F.
Xiao
,
Y.
Liang
,
C.
Jiao
,
J.
Li
,
Q.
Deng
,
S.
Wu
,
T.
Wen
,
S.
Pei
,
J.
Xia
, and
Z.
Wang
,
Nano Lett.
22
(
13
),
5107
5113
(
2022
).
42.
X.
Luo
,
X.
Lu
,
C.
Cong
,
T.
Yu
,
Q.
Xiong
, and
S. Y.
Quek
,
Sci. Rep.
5
(
1
),
14565
(
2015
).
43.
L.
Liang
,
A.
Puretzky
,
B.
Sumpter
, and
V.
Meunier
,
Nanoscale
9
(
40
),
15340
15355
(
2017
).
44.
M.
Hanfland
,
H.
Beister
, and
K.
Syassen
,
Phys. Rev. B
39
(
17
),
12598
12603
(
1989
).
45.
R.
Cuscó
,
J.
Pellicer-Porres
,
J.
Edgar
,
J.
Li
,
A.
Segura
, and
L.
Artús
,
Phys. Rev. B
102
(
7
),
075206
(
2020
).
46.
Z.
Chi
,
X.
Zhao
,
H.
Zhang
,
A. F.
Goncharov
,
S.
Lobanov
,
T.
Kagayama
,
M.
Sakata
, and
X.
Chen
,
Phys. Rev. Lett.
113
(
3
),
036802
(
2014
).
47.
D.
Bediako
,
M.
Rezaee
,
H.
Yoo
,
D.
Larson
,
S.
Zhao
,
T.
Taniguchi
,
K.
Watanabe
,
T.
Brower-Thomas
,
E.
Kaxiras
, and
P.
Kim
,
Nature
558
(
7710
),
425
429
(
2018
).
48.
J.
Xia
,
J.
Wang
,
D.
Chao
,
Z.
Chen
,
Z.
Liu
,
J.
Kuo
,
J.
Yan
, and
Z.
Shen
,
Nanoscale
9
(
22
),
7533
7540
(
2017
).
49.
S.
Tan
,
S.
Sarkar
,
X.
Zhao
,
X.
Luo
,
Y.
Luo
,
S.
Poh
,
I.
Abdelwahab
,
W.
Zhou
,
T.
Venkatesan
,
W.
Chen
,
S.
Quek
, and
K.
Loh
,
ACS Nano
12
(
5
),
5051
5058
(
2018
).
50.
A.
Nayak
,
T.
Pandey
,
D.
Voiry
,
J.
Liu
,
S.
Moran
,
A.
Sharma
,
C.
Tan
,
C.
Chen
,
L.
Li
,
M.
Chhowalla
,
J.
Lin
,
A.
Singh
, and
D.
Akinwande
,
Nano Lett.
15
(
1
),
346
353
(
2015
).
51.
F.
Li
,
Y.
Yan
,
B.
Han
,
L.
Li
,
X.
Huang
,
M.
Yao
,
Y.
Gong
,
X.
Jin
,
B.
Liu
,
C.
Zhu
,
Q.
Zhou
, and
T.
Cui
,
Nanoscale
7
(
19
),
9075
9082
(
2015
).
52.
J.
Lee
,
S.
Woo
,
J.
Park
,
H. C.
Park
,
Y.
Son
, and
H.
Cheong
,
Nat. Commun.
8
(
1
),
1370
(
2017
).
53.
Y.
Manzanares-Negro
,
J.
Quan
,
M.
Rassekh
,
M.
Moaied
,
X.
Li
,
P.
Ares
,
J. J.
Palacios
,
J.
Gomez-Herrero
, and
C.
Gomez-Navarro
,
2D Mater.
10
(
2
),
021003
(
2023
).
54.
Z.
Wang
et al, “
Phase transitions of adsorbed atoms on the surface of a carbon nanotube
,”
Science
327
,
552
555
(
2010
).
55.
J.
Wei
,
Z.
Wang
,
W.
Chen
, et al, “
New aspects of the metal–insulator transition in single-domain vanadium dioxide nanobeams
,”
Nature Nanotech
4
,
420
424
(
2009
).
56.
J. H.
Park
,
J. M.
Coy
,
T. S.
Kasirga
, et al, “
Measurement of a solid-state triple point at the metal–insulator transition in VO2
,”
Nature
500
,
431
434
(
2013
).
57.
H.
Jia
,
R.
Yang
,
A.
Nguyen
,
S. N.
Alvillar
,
T.
Empante
,
L.
Bartels
, and
P. X.-L.
Feng
,
Nanoscale
8
(
20
),
10677
10685
(
2016
).
58.
J.
Cai
,
H.
Chen
,
Y.
Ke
, and
S.
Deng
,
ACS Nano
16
(
9
),
15016
15025
(
2022
).
You do not currently have access to this content.