We have examined the case of light atom (B, N) doped and co-doped graphitic films grown on copper for the anode-free Li Metal Battery (AFLMB) application. For nitrogen doping, the depositions were carried out by laser ablating pure graphite (Gr) in the presence of Nitrogen (N2) or Ammonia (NH3). In another interesting case, 5 wt. % Boron nitride (BN) was added into the graphite target itself to obtain BN-doped graphite films. It was found that the growth condition mediated film constitution and properties significantly influence the Coulombic efficiency and cycling stability of the cells when tested for AFLMB. The cycle life demonstrated by the cells of pure graphitic film (Gr) was only about 110 cycles, while the N-doped graphite films obtained using N2 gas (N2–Gr) exhibited stability up to about 300 cycles. Interestingly the N-doped films obtained using NH3 gas (NH3–Gr) exhibited a stability of 715 cycles and B, N co-doped graphite (BN–Gr) film resulted in an even longer cycle life of 795 cycles. Density functional theory calculations were also performed to deeply understand the interaction and binding energy of Lithium within the undoped and doped graphene sheets modeled through the addition of light elements. It was found that the binding of Li is stronger in the (B, N) co-doped graphene as compared to the N-doped graphene and undoped graphene but much weaker than the B-doped graphene. Therefore, an improved lateral Li diffusion in the (B, N) co-doped graphene is observed where the Li binding strength is optimum resulting in better cycling stability.

1.
J.
Yan
,
M.
Liu
,
Y. G.
Jeong
,
W.
Kang
,
L.
Li
,
Y.
Zhao
,
N.
Deng
,
B.
Cheng
, and
G.
Yang
, “
Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting
,”
Nano Energy
56
,
662
692
(
2019
).
2.
Z.
Guo
,
S.
Zhao
,
T.
Li
,
D.
Su
,
S.
Guo
, and
G.
Wang
, “
Recent advances in rechargeable magnesium‐based batteries for high‐efficiency energy storage
,”
Adv. Energy Mater.
10
(
21
),
1903591
(
2020
).
3.
J. J.
Yoo
,
S. S.
Shin
, and
J.
Seo
, “
Toward efficient perovskite solar cells: Progress, strategies, and perspectives
,”
ACS Energy Lett.
7
(
6
),
2084
2091
(
2022
).
4.
H.
Liu
,
Y.
Fu
,
B. Z.
Tang
, and
Z.
Zhao
, “
All-fluorescence white organic light-emitting diodes with record-beating power efficiencies over 130 lm W–1 and small roll-offs
,”
Nat. Commun.
13
(
1
),
5154
(
2022
).
5.
T.
Mu
,
Y.
Sun
,
C.
Wang
,
Y.
Zhao
,
K.
Doyle-Davis
,
J.
Liang
,
X.
Sui
,
R.
Li
,
C.
Du
,
P.
Zuo
,
G.
Yin
, and
X.
Sun
, “
Long-life silicon anodes by conformal molecular-deposited polyurea interface for lithium ion batteries
,”
Nano Energy
103
,
107829
(
2022
).
6.
Z.
Han
,
H.
Zhang
,
Q.
Wu
,
S.
Li
,
W.
Zhong
,
R.
He
,
S.
Cheng
, and
J.
Xie
, “
High-performance prelithiated Si-S full cell enabled by trifluorobenzene modified diluted high-concentration electrolyte
,”
Mater. Today Energy
28
,
101069
(
2022
).
7.
H.
Luo
,
X.
Zhang
,
C.
Xu
,
W.
He
,
Z.
Wang
,
W.
Cai
, and
Y.
Zhang
, “
Constructing a Yolk–Shell structure SiOx/C@C Composite for long-life lithium-ion batteries
,”
ACS Appl. Energy Mater.
5
(
7
),
8982
8989
(
2022
).
8.
X.
Zhu
,
T. U.
Schülli
,
X.
Yang
,
T.
Lin
,
Y.
Hu
,
N.
Cheng
,
H.
Fujii
,
K.
Ozawa
,
B.
Cowie
,
Q.
Gu
,
S.
Zhou
,
Z.
Cheng
,
Y.
Du
, and
L.
Wang
, “
Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling
,”
Nat. Commun.
13
(
1
),
1565
(
2022
).
9.
L.
Zhou
,
T.-T.
Zuo
,
C. Y.
Kwok
,
S. Y.
Kim
,
A.
Assoud
,
Q.
Zhang
,
J.
Janek
, and
L. F.
Nazar
, “
High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes
,”
Nat. Energy
7
(
1
),
83
93
(
2022
).
10.
M. W.
Orzech
,
F.
Mazzali
,
J. D.
McGettrick
,
C.
Pleydell-Pearce
,
T. M.
Watson
,
W.
Voice
,
D.
Jarvis
, and
S.
Margadonna
, “
Synergic effect of Bi, Sb and Te for the increased stability of bulk alloying anodes for sodium-ion batteries
,”
J. Mater. Chem. A
5
(
44
),
23198
23208
(
2017
).
11.
F.
Mazzali
,
M. W.
Orzech
,
A.
Adomkevicius
,
A.
Pisanu
,
L.
Malavasi
,
D.
Deganello
, and
S.
Margadonna
, “
Designing a high-power sodium-ion battery by in situ metal plating
,”
ACS Appl. Energy Mater.
2
(
1
),
344
353
(
2019
).
12.
A.
Manthiram
, “
A reflection on lithium-ion battery cathode chemistry
,”
Nat. Commun.
11
(
1
),
1550
(
2020
).
13.
A.
Willow
,
H. E. M.
Hussein
,
S.
Vajirakaphan
,
A.
Chasri
, and
S.
Margadonna
, “
Improving in situ sodium metal plating on copper foil through optimization of mechanical pressure: Towards high-performance anode-free sodium ion batteries
,”
Front. Energy Res.
10
,
888321
(
2022
).
14.
L.
Dong
,
S.
Zhong
,
S.
Zhang
,
B.
Yuan
,
J.
Liu
,
H.
Xie
,
C.
Zhang
,
Y.
Liu
,
C.
Yang
,
J.
Han
, and
W.
He
, “
Toward practical anode-free lithium pouch batteries
,”
Energy Environ. Sci.
16
,
5605
(
2023
).
15.
Y.
Zhao
,
K. R.
Adair
, and
X.
Sun
, “
Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries
,”
Energy Environ. Sci.
11
(
10
),
2673
2695
(
2018
).
16.
J.
Xiao
,
Q.
Li
,
Y.
Bi
,
M.
Cai
,
B.
Dunn
,
T.
Glossmann
,
J.
Liu
,
T.
Osaka
,
R.
Sugiura
,
B.
Wu
,
J.
Yang
,
J.-G.
Zhang
, and
M. S.
Whittingham
, “
Understanding and applying coulombic efficiency in lithium metal batteries
,”
Nat. Energy
5
(
8
),
561
568
(
2020
).
17.
R.
Wang
,
Z.
Yang
,
B.
Yang
,
T.
Wang
, and
Z.
Chu
, “
Superior cycle stability and high rate capability of Zn–Al–In-hydrotalcite as negative electrode materials for Ni–Zn secondary batteries
,”
J. Power Sources
251
,
344
350
(
2014
).
18.
M.
Wable
,
M.
Furquan
,
M.
Paygude
,
A.
Shetti
,
S.
Ogale
, and
A.
Banerjee
, “
CO2 laser direct-write process for micro-gradient-patterned carbon composed of graphene-like and disordered carbon forms for a robust anode-free Li–metal battery
,”
ACS Appl. Energy Mater.
5
(
9
),
10940
10951
(
2022
).
19.
R.
Mo
,
Z.
Lei
,
D.
Rooney
, and
K.
Sun
, “
Anchored monodispersed silicon and sulfur nanoparticles on graphene for high-performance lithiated silicon-sulfur battery
,”
Energy Storage Mater.
23
,
284
291
(
2019
).
20.
T.
Yang
,
D.
Luo
,
Y.
Liu
,
A.
Yu
, and
Z.
Chen
, “
Anode-free sodium metal batteries as rising stars for lithium-ion alternatives
,”
IScience
26
(
3
),
105982
(
2023
).
21.
A.
Shao
,
X.
Tang
,
M.
Zhang
,
M.
Bai
, and
Y.
Ma
, “
Challenges, strategies, and prospects of the anode‐free lithium metal batteries
,”
Adv. Energy Sustainability Res.
3
(
4
),
2100197
(
2022
).
22.
X.
Yu
and
A.
Manthiram
, “
A progress report on metal–sulfur batteries
,”
Adv. Funct. Mater.
30
(
39
),
2004084
(
2020
).
23.
A.
Willow
,
H. E. M.
Hussein
, and
S.
Margadonna
, “
Anode-free sodium ion batteries: Effect of pressure on sodium plating on copper
,”
ECS Meeting Abstracts
MA2022-01
(
1
),
103
103
(
2022
).
24.
T. G.
Ulusoy Ghobadi
,
M.
Kunduraci
, and
E.
Yilmaz
, “
Improved lithium-ion battery anode performance via multiple element approach
,”
J. Alloys Compd.
730
,
96
102
(
2018
).
25.
A.
Mishra
,
A.
Mehta
,
S.
Basu
,
S. J.
Malode
,
N. P.
Shetti
,
S. S.
Shukla
,
M. N.
Nadagouda
, and
T. M.
Aminabhavi
, “
Electrode materials for lithium-ion batteries
,”
Mater. Sci. Energy Technol.
1
(
2
),
182
187
(
2018
).
26.
C.
Mao
,
S. J.
An
,
H. M.
Meyer
,
J.
Li
,
M.
Wood
,
R. E.
Ruther
, and
D. L.
Wood
, “
Balancing formation time and electrochemical performance of high energy lithium-ion batteries
,”
J. Power Sources
402
,
107
115
(
2018
).
27.
C.
Semeraro
,
A.-G.
Olabi
, and
M.
Dassisti
, “
Sustainability issues in manufacturing and operation of second-generation flow batteries
,” in
Encyclopedia of Smart Materials
(
Elsevier
,
2022
), pp.
192
197
.
28.
W.
Xu
,
C.
Welty
,
M. R.
Peterson
,
J. A.
Read
, and
N. P.
Stadie
, “
Exploring the limits of the rapid-charging performance of graphite as the anode in lithium-ion batteries
,”
J. Electrochem. Soc.
169
(
1
),
010531
(
2022
).
29.
K.
Persson
,
V. A.
Sethuraman
,
L. J.
Hardwick
,
Y.
Hinuma
,
Y. S.
Meng
,
A.
van der Ven
,
V.
Srinivasan
,
R.
Kostecki
, and
G.
Ceder
, “
Lithium diffusion in graphitic carbon
,”
J. Phys. Chem. Lett.
1
(
8
),
1176
1180
(
2010
).
30.
E. G.
Leggesse
,
C.-L.
Chen
, and
J.-C.
Jiang
, “
Lithium diffusion in graphene and graphite: Effect of edge morphology
,”
Carbon
103
,
209
216
(
2016
).
31.
J. H.
Park
,
H.
Yoon
,
Y.
Cho
, and
C.-Y.
Yoo
, “
Investigation of lithium ion diffusion of graphite anode by the galvanostatic intermittent titration technique
,”
Materials
14
(
16
),
4683
(
2021
).
32.
P.
Albertus
,
S.
Babinec
,
S.
Litzelman
, and
A.
Newman
, “
Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
,”
Nat. Energy
3
(
1
),
16
21
(
2017
).
33.
Y.
Zhang
,
B.
Liu
,
E.
Hitz
,
W.
Luo
,
Y.
Yao
,
Y.
Li
,
J.
Dai
,
C.
Chen
,
Y.
Wang
,
C.
Yang
,
H.
Li
, and
L.
Hu
, “
A carbon-based 3D current collector with surface protection for Li metal anode
,”
Nano Res.
10
(
4
),
1356
1365
(
2017
).
34.
A. J.
Louli
,
A.
Eldesoky
,
R.
Weber
,
M.
Genovese
,
M.
Coon
,
J.
deGooyer
,
Z.
Deng
,
R. T.
White
,
J.
Lee
,
T.
Rodgers
,
R.
Petibon
,
S.
Hy
,
S. J. H.
Cheng
, and
J. R.
Dahn
, “
Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis
,”
Nat. Energy
5
(
9
),
693
702
(
2020
).
35.
S.
Nanda
,
A.
Gupta
, and
A.
Manthiram
, “
Anode‐free full cells: A pathway to high‐energy density lithium‐metal batteries
,”
Adv. Energy Mater.
11
(
2
),
2000804
(
2021
).
36.
A.
Zhang
,
X.
Fang
,
C.
Shen
,
Y.
Liu
, and
C.
Zhou
, “
A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life
,”
Nano Res.
9
(
11
),
3428
3436
(
2016
).
37.
Y.
Zhang
,
W.
Luo
,
C.
Wang
,
Y.
Li
,
C.
Chen
,
J.
Song
,
J.
Dai
,
E. M.
Hitz
,
S.
Xu
,
C.
Yang
,
Y.
Wang
, and
L.
Hu
, “
High-capacity, low-tortuosity, and channel-guided lithium metal anode
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
14
),
3584
3589
(
2017
).
38.
Y.
Gao
,
Z.
Yan
,
J. L.
Gray
,
X.
He
,
D.
Wang
,
T.
Chen
,
Q.
Huang
,
Y. C.
Li
,
H.
Wang
,
S. H.
Kim
,
T. E.
Mallouk
, and
D.
Wang
, “
Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
,”
Nat. Mater.
18
(
4
),
384
389
(
2019
).
39.
Z.
Liang
,
G.
Zheng
,
C.
Liu
,
N.
Liu
,
W.
Li
,
K.
Yan
,
H.
Yao
,
P.-C.
Hsu
,
S.
Chu
, and
Y.
Cui
, “
Polymer nanofiber-guided uniform lithium deposition for battery electrodes
,”
Nano Lett.
15
(
5
),
2910
2916
(
2015
).
40.
X.-B.
Cheng
,
H.-J.
Peng
,
J.-Q.
Huang
,
R.
Zhang
,
C.-Z.
Zhao
, and
Q.
Zhang
, “
Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries
,”
ACS Nano
9
(
6
),
6373
6382
(
2015
).
41.
W.
Luo
,
L.
Zhou
,
K.
Fu
,
Z.
Yang
,
J.
Wan
,
M.
Manno
,
Y.
Yao
,
H.
Zhu
,
B.
Yang
, and
L.
Hu
, “
A thermally conductive separator for stable Li metal anodes
,”
Nano Lett.
15
(
9
),
6149
6154
(
2015
).
42.
H.
Gao
,
R.
Cao
,
S.
Zhang
,
H.
Yang
, and
X.
Xu
, “
Three-dimensional hierarchical g-C3N4 architectures assembled by ultrathin self-doped nanosheets: extremely facile hexamethylenetetramine activation and superior photocatalytic hydrogen evolution
,”
ACS Appl. Mater. Interfaces
11
(
2
),
2050
2059
(
2019
).
43.
S.
Hasegawa
,
Y.
Kunisada
, and
N.
Sakaguchi
, “
Diffusion of a single platinum atom on light-element-doped graphene
,”
J. Phys. Chem. C
121
(
33
),
17787
17795
(
2017
).
44.
L.-S.
Zhang
,
X.-Q.
Liang
,
W.-G.
Song
, and
Z.-Y.
Wu
, “
Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell
,”
Phys. Chem. Chem. Phys.
12
(
38
),
12055
(
2010
).
45.
J.
Park
,
Y. J.
Jang
,
Y. J.
Kim
,
M.
Song
,
S.
Yoon
,
D. H.
Kim
, and
S.-J.
Kim
, “
Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction
,”
Phys. Chem. Chem. Phys.
16
(
1
),
103
109
(
2014
).
46.
Pulsed Laser Deposition of Thin Films
, edited by
D. B.
Chrisey
and
G. K.
Hubler
(
Wiley
,
1994
).
47.
Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials
, edited by
R.
Eason
(
Wiley
,
2007
).
48.
E.
Velez-Fort
,
C.
Mathieu
,
E.
Pallecchi
,
M.
Pigneur
,
M. G.
Silly
,
R.
Belkhou
,
M.
Marangolo
,
A.
Shukla
,
F.
Sirotti
, and
A.
Ouerghi
, “
Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: Evidence of low nitrogen doping and high charge transfer
,”
ACS Nano
6
(
12
),
10893
10900
(
2012
).
49.
C.
Deng
,
W.
Lin
,
G.
Agnus
,
D.
Dragoe
,
D.
Pierucci
,
A.
Ouerghi
,
S.
Eimer
,
I.
Barisic
,
D.
Ravelosona
,
C.
Chappert
, and
W.
Zhao
, “
Reversible charge-transfer doping in graphene due to reaction with polymer residues
,”
J. Phys. Chem. C
118
(
25
),
13890
13897
(
2014
).
50.
L.
Wang
,
Z.
Sofer
,
P.
Šimek
,
I.
Tomandl
, and
M.
Pumera
, “
Boron-doped graphene: Scalable and tunable p-type carrier concentration doping
,”
J. Phys. Chem. C
117
(
44
),
23251
23257
(
2013
).
51.
D.
Ghosh
,
G.
Periyasamy
, and
S. K.
Pati
, “
Adsorption of HF pollutant on single vacant 2D nanosheets: Ab initio molecular dynamics study
,”
J. Phys. Chem. C
117
(
42
),
21700
21705
(
2013
).
52.
F.
Wang
,
G.
Liu
,
S.
Rothwell
,
M.
Nevius
,
A.
Tejeda
,
A.
Taleb-Ibrahimi
,
L. C.
Feldman
,
P. I.
Cohen
, and
E. H.
Conrad
, “
Wide-gap semiconducting graphene from nitrogen-seeded SiC
,”
Nano Lett.
13
(
10
),
4827
4832
(
2013
).
53.
Z.-Q.
Duan
,
Y.-T.
Liu
,
X.-M.
Xie
, and
X.-Y.
Ye
, “
A simple and green route to transparent boron nitride/PVA nanocomposites with significantly improved mechanical and thermal properties
,”
Chin. Chem. Lett.
24
(
1
),
17
19
(
2013
).
54.
Y.-T.
Liu
,
X.-M.
Xie
, and
X.-Y.
Ye
, “
Tuning the solubility of boron nitridenanosheets in organic solvents by using block copolymer as a ‘Janus’ modifier
,”
Chem. Commun.
49
(
4
),
388
390
(
2013
).
55.
L.
Gao
,
T.
Sheng
,
H.
Ren
,
T. X.
Liu
,
M.
Birkett
,
S. W.
Joo
, and
J.
Huang
, “
Boron nitride wrapped N-doped carbon nanosheet as a host for advanced lithium-sulfur battery
,”
Appl. Surf. Sci.
597
,
153687
(
2022
).
56.
J.
Qian
,
W. A.
Henderson
,
W.
Xu
,
P.
Bhattacharya
,
M.
Engelhard
,
O.
Borodin
, and
J.-G.
Zhang
, “
High rate and stable cycling of lithium metal anode
,”
Nat. Commun.
6
(
1
),
6362
(
2015
).
57.
J.
Zheng
,
P.
Yan
,
D.
Mei
,
M. H.
Engelhard
,
S. S.
Cartmell
,
B. J.
Polzin
,
C.
Wang
,
J.
Zhang
, and
W.
Xu
, “
Highly stable operation of lithium metal batteries enabled by the formation of a transient high‐concentration electrolyte layer
,”
Adv. Energy Mater.
6
(
8
),
1502151
(
2016
).
58.
J.
Qian
,
B. D.
Adams
,
J.
Zheng
,
W.
Xu
,
W. A.
Henderson
,
J.
Wang
,
M. E.
Bowden
,
S.
Xu
,
J.
Hu
, and
J.
Zhang
, “
Anode‐free rechargeable lithium metal batteries
,”
Adv. Funct. Mater.
26
(
39
),
7094
7102
(
2016
).
59.
Y.
Wang
,
Z.
Qu
,
S.
Geng
,
M.
Liao
,
L.
Ye
,
Z.
Shadike
,
X.
Zhao
,
S.
Wang
,
Q.
Xu
,
B.
Yuan
,
X.
Zhang
,
X.
Gao
,
X.
Jiang
,
H.
Peng
, and
H.
Sun
, “
Anode‐free lithium metal batteries based on an ultrathin and respirable interphase layer
,”
Angew. Chem. Int. Ed.
62
(
27
),
e202304978
(
2023
).
60.
S.
Smidstrup
,
T.
Markussen
,
P.
Vancraeyveld
,
J.
Wellendorff
,
J.
Schneider
,
T.
Gunst
,
B.
Verstichel
,
D.
Stradi
,
P. A.
Khomyakov
,
U. G.
Vej-Hansen
,
M.-E.
Lee
,
S. T.
Chill
,
F.
Rasmussen
,
G.
Penazzi
,
F.
Corsetti
,
A.
Ojanperä
,
K.
Jensen
,
M. L. N.
Palsgaard
,
U.
Martinez
,
A.
Blom
,
M.
Brandbyge
, and
K.
Stokbro
, “
QuantumATK: An integrated platform of electronic and atomic-scale modelling tools
,”
J. Phys.: Condens. Matter
32
(
1
),
015901
(
2020
).
61.
S.
Smidstrup
,
D.
Stradi
,
J.
Wellendorff
,
P. A.
Khomyakov
,
U. G.
Vej-Hansen
,
M.-E.
Lee
,
T.
Ghosh
,
E.
Jónsson
,
H.
Jónsson
, and
K.
Stokbro
, “
First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach
,”
Phys. Rev. B
96
(
19
),
195309
(
2017
).
62.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
63.
R. A.
Evarestov
and
V. P.
Smirnov
, “
Modification of the Monkhorst–Pack special points meshes in the Brillouin zone for density functional theory and Hartree–Fock calculations
,”
Phys. Rev. B
70
(
23
),
233101
(
2004
).
64.
T.
Liu
and
D.
Li
, “
Convergence of the BFGS-SQP method for degenerate problems
,”
Numer. Funct. Anal. Optim.
28
(
7–8
),
927
944
(
2007
).
65.
R.
Fan
,
B.
Yang
,
Z.
Li
,
D.
Ma
,
W.
Yuan
,
J.
Ma
, and
H.
Ren
, “
First-principles study of the adsorption behaviors of Li atoms and LiF on the CFx(x= 1.0, 0.9, 0.8, 0.5, ∼0.0) surface
,”
RSC Adv.
10
(
53
),
31881
31888
(
2020
).
66.
H.
Ding
and
X.
Zhang
, “
Sodium intercalation in nitrogen-doped graphene-based anode: A first-principles study
,”
Crystals
13
(
7
),
1011
(
2023
).
67.
H.
Tachikawa
, “
Mechanism of Li storage on graphene nanoflakes: Density functional theory study
,”
Surf. Sci.
691
,
121489
(
2020
).
68.
T.
Ahmed
,
N. A.
Modine
, and
J.-X.
Zhu
, “
Graphene/MoS2 van der Waals bilayer as the anode material for next generation Li-ion battery: A first-principles investigation
,” arXiv:1502.07398 (
2015
).
69.
F.
Hao
and
X.
Chen
, “
First-principles study of lithium adsorption and diffusion on graphene: The effects of strain
,”
Mater. Res. Express
2
(
10
),
105016
(
2015
).
70.
JCPDS, Reference code: 00-001-0646 for graphite.
71.
JCPDS, Reference code: 00-009-0012 for boron nitride.
72.
J.
Peng
,
W.
Gao
,
B. K.
Gupta
,
Z.
Liu
,
R.
Romero-Aburto
,
L.
Ge
,
L.
Song
,
L. B.
Alemany
,
X.
Zhan
,
G.
Gao
,
S. A.
Vithayathil
,
B. A.
Kaipparettu
,
A. A.
Marti
,
T.
Hayashi
,
J.-J.
Zhu
, and
P. M.
Ajayan
, “
Graphene quantum dots derived from carbon fibers
,”
Nano Lett.
12
(
2
),
844
849
(
2012
).
73.
S.
Vishwanath
,
X.
Liu
,
S.
Rouvimov
,
P. C.
Mende
,
A.
Azcatl
,
S.
McDonnell
,
R. M.
Wallace
,
R. M.
Feenstra
,
J. K.
Furdyna
,
D.
Jena
, and
H.
Grace Xing
, “
Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene
,”
2D Mater.
2
(
2
),
024007
(
2015
).
74.
S.
Stankovich
,
D. A.
Dikin
,
R. D.
Piner
,
K. A.
Kohlhaas
,
A.
Kleinhammes
,
Y.
Jia
,
Y.
Wu
,
S. T.
Nguyen
, and
R. S.
Ruoff
, “
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
,”
Carbon
45
(
7
),
1558
1565
(
2007
).
75.
F.
Tuinstra
and
J. L.
Koenig
, “
Raman spectrum of graphite
,”
J. Chem. Phys.
53
(
3
),
1126
1130
(
1970
).
76.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
,
S.
Roth
, and
A. K.
Geim
, “
Raman spectrum of graphene and graphene layers
,”
Phys. Rev. Lett.
97
(
18
),
187401
(
2006
).
77.
E. H.
Martins Ferreira
,
M. V. O.
Moutinho
,
F.
Stavale
,
M. M.
Lucchese
,
R. B.
Capaz
,
C. A.
Achete
, and
A.
Jorio
, “
Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder
,”
Phys. Rev. B
82
(
12
),
125429
(
2010
).
78.
A.
Manea
and
M. R.
Leishman
, “
Competitive interactions between native and invasive exotic plant species are altered under elevated carbon dioxide
,”
Oecologia
165
(
3
),
735
744
(
2011
).
79.
R. J.
Nemanich
,
J. T.
Glass
,
G.
Lucovsky
, and
R. E.
Shroder
, “
Raman scattering characterization of carbon bonding in diamond and diamondlike thin films
,”
J. Vac. Sci. Technol., A
6
(
3
),
1783
1787
(
1988
).
80.
A. C.
Ferrari
and
J.
Robertson
, “
Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond
,”
Phys. Rev. B
63
(
12
),
121405
(
2001
).
81.
Z.
Xing
,
Y.
Qi
,
Z.
Tian
,
J.
Xu
,
Y.
Yuan
,
C.
Bommier
,
J.
Lu
,
W.
Tong
,
D.
Jiang
, and
X.
Ji
, “
Identify the removable substructure in carbon activation
,”
Chem. Mater.
29
(
17
),
7288
7295
(
2017
).
82.
Z.
Zafar
,
Z. H.
Ni
,
X.
Wu
,
Z. X.
Shi
,
H. Y.
Nan
,
J.
Bai
, and
L. T.
Sun
, “
Evolution of Raman spectra in nitrogen doped graphene
,”
Carbon
61
,
57
62
(
2013
).
83.
B.
Tang
,
H.
Guoxin
, and
H.
Gao
, “
Raman spectroscopic characterization of graphene
,”
Appl. Spectrosc. Rev.
45
(
5
),
369
407
(
2010
).
84.
Z. H.
Ni
,
T.
Yu
,
Y. H.
Lu
,
Y. Y.
Wang
,
Y. P.
Feng
, and
Z. X.
Shen
, “
Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening
,”
ACS Nano
2
(
11
),
2301
2305
(
2008
).
85.
X.
Zheng
,
W.
Chen
,
G.
Wang
,
Y.
Yu
,
S.
Qin
,
J.
Fang
,
F.
Wang
, and
X.-A.
Zhang
, “
The Raman redshift of graphene impacted by gold nanoparticles
,”
AIP Adv.
5
(
5
),
057133
(
2015
).
86.
T. L.
Cottrell
,
The Strengths of Chemical Bond
, 2nd ed. (
Butterworths Scientific Publications
,
London
,
1958
).
87.
B.
deB Darwent
,
National Standard Reference Data Series
(
National Bureau of Standards
,
Washington
,
1970
).
88.
S. W.
Benson
, “
III - Bond energies
,”
J. Chem. Educ.
42
(
9
),
502
(
1965
).
89.
M.
Boutchich
,
H.
Arezki
,
D.
Alamarguy
,
K.-I.
Ho
,
H.
Sediri
,
F.
Güneş
,
J.
Alvarez
,
J. P.
Kleider
,
C. S.
Lai
, and
A.
Ouerghi
, “
Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate
,”
Appl. Phys. Lett.
105
(
23
),
233111
(
2014
).
90.
R.
Jerome
and
A. K.
Sundramoorthy
, “
Preparation of hexagonal boron nitride doped graphene film modified sensor for selective electrochemical detection of nicotine in tobacco sample
,”
Anal. Chim. Acta
1132
,
110
120
(
2020
).
91.
Y.
Wang
,
Y.
Shao
,
D. W.
Matson
,
J.
Li
, and
Y.
Lin
, “
Nitrogen-doped graphene and its application in electrochemical biosensing
,”
ACS Nano
4
(
4
),
1790
1798
(
2010
).
92.
Y.
Song
,
C.
Zhang
,
B.
Li
,
G.
Ding
,
D.
Jiang
,
H.
Wang
, and
X.
Xie
, “
Van der Waals epitaxy and characterization of hexagonal boron nitride nanosheets on graphene
,”
Nanoscale Res. Lett.
9
(
1
),
367
(
2014
).
93.
R.
Mandal
,
R.
Babar
,
M.
Tripathi
,
S.
Datta
,
R.
Rawat
,
R. J.
Choudhary
,
M.
Kabir
, and
S.
Ogale
, “
Modulation of ferromagnetism and transport in BxCyNz thin films via nitrogen doping and defects
,”
J. Magn. Magn. Mater.
479
,
67
73
(
2019
).
94.
W.
Zhao
,
J.
Gebhardt
,
K.
Gotterbarm
,
O.
Höfert
,
C.
Gleichweit
,
C.
Papp
,
A.
Görling
, and
H.-P.
Steinrück
, “
Gold intercalation of boron-doped graphene on Ni(111): XPS and DFT study
,”
J. Phys.: Condens. Matter
25
(
44
),
445002
(
2013
).
95.
Z.
Tong
,
B.
Bazri
,
S.-F.
Hu
, and
R.-S.
Liu
, “
Interfacial chemistry in anode-free batteries: Challenges and strategies
,”
J. Mater. Chem. A
9
(
12
),
7396
7406
(
2021
).
96.
K.
Yan
,
Z.
Lu
,
H.-W.
Lee
,
F.
Xiong
,
P.-C.
Hsu
,
Y.
Li
,
J.
Zhao
,
S.
Chu
, and
Y.
Cui
, “
Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
,”
Nat. Energy
1
(
3
),
16010
(
2016
).
97.
N.
Li
,
T.
Jia
,
Y.
Liu
,
S.
Huang
,
F.
Kang
, and
Y.
Cao
, “
Rational engineering of anode current collector for dendrite-free lithium deposition: Strategy, application, and perspective
,”
Front. Chem.
10
,
884308
(
2022
).
98.
A.
Gomez-Martin
,
J.
Martinez-Fernandez
,
M.
Ruttert
,
M.
Winter
,
T.
Placke
, and
J.
Ramirez-Rico
, “
An electrochemical evaluation of nitrogen-doped carbons as anodes for lithium ion batteries
,”
Carbon
164
,
261
271
(
2020
).
99.
Y.
Yuan
,
Z.
Chen
,
H.
Yu
,
X.
Zhang
,
T.
Liu
,
M.
Xia
,
R.
Zheng
,
M.
Shui
, and
J.
Shu
, “
Heteroatom-doped carbon-based materials for lithium and sodium ion batteries
,”
Energy Storage Mater.
32
,
65
90
(
2020
).
100.
X.
Chen
,
X.-R.
Chen
,
T.-Z.
Hou
,
B.-Q.
Li
,
X.-B.
Cheng
,
R.
Zhang
, and
Q.
Zhang
, “
Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes
,”
Sci. Adv.
5
(
2
),
eaau7728
(
2019
).
101.
R.
Zhang
,
X.
Chen
,
X.
Chen
,
X.
Cheng
,
X.
Zhang
,
C.
Yan
, and
Q.
Zhang
, “
Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite‐free lithium metal anodes
,”
Angew. Chem. Int. Ed.
56
(
27
),
7764
7768
(
2017
).
102.
J.
Zhang
,
X.
Zhao
,
Q.
Tong
,
C.
Li
, and
M.
Zhu
, “
Controllable lithium nucleation within longitudinally bent carbon nanoribbons for stable lithium metal anodes
,”
Carbon
184
,
357
363
(
2021
).
103.
F.
Valencia
,
A. H.
Romero
,
F.
Ancilotto
, and
P. L.
Silvestrelli
, “
Lithium adsorption on graphite from density functional theory calculations
,”
J. Phys. Chem. B
110
(
30
),
14832
14841
(
2006
).
104.
H.
Fujimoto
,
T.
Yamaki
,
K.
Shimoda
,
S.
Fujinami
,
T.
Nakatani
,
G.
Kano
,
M.
Kawasaki
,
Z.
Ogumi
, and
T.
Abe
, “
Phase diagram of li-graphite intercalation compound formed by the charge/discharge reaction in Li-ion battery
,”
J. Electrochem. Soc.
169
(
7
),
070507
(
2022
).
105.
J. C.
Ma
and
D. A.
Dougherty
, “
The cation−π interaction
,”
Chem. Rev.
97
(
5
),
1303
1324
(
1997
).
106.
V.
Murugesan
and
J.
Hu
, “
Exploring the interaction between lithium ion and defective graphene surface using DFT studies
,”
ECS Trans.
53
,
23
(
2013
).
107.
E. B.
Yutomo
,
F. A.
Noor
, and
T.
Winata
, “
Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyridinic N-doped graphene—a density-functional study
,”
RSC Adv.
11
(
30
),
18371
18380
(
2021
).
108.
X.
Wang
,
S.
Wang
,
H.
Wang
,
W.
Tu
,
Y.
Zhao
,
S.
Li
,
Q.
Liu
,
J.
Wu
,
Y.
Fu
,
C.
Han
,
F.
Kang
, and
B.
Li
, “
Hybrid electrolyte with dual‐anion‐aggregated solvation sheath for stabilizing high‐voltage lithium‐metal batteries
,”
Adv. Mater.
33
(
52
),
2007945
(
2021
).
109.
Z.
Ouyang
,
Y.
Wang
,
S.
Wang
,
S.
Geng
,
X.
Zhao
,
X.
Zhang
,
Q.
Xu
,
B.
Yuan
,
S.
Tang
,
J.
Li
,
F.
Wang
,
G.
Yao
, and
H.
Sun
, “
Programmable DNA interphase layers for high‐performance anode‐free lithium metal batteries
,”
Adv. Mater.
36
(
26
),
2401114
(
2024
).
110.
Y.
Liu
,
X.
Xu
,
M.
Sadd
,
O. O.
Kapitanova
,
V. A.
Krivchenko
,
J.
Ban
,
J.
Wang
,
X.
Jiao
,
Z.
Song
,
J.
Song
,
S.
Xiong
, and
A.
Matic
, “
Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal
,”
Adv. Sci.
8
(
5
),
2003301
(
2021
).
111.
J. K.
Nørskov
,
T.
Bligaard
,
A.
Logadottir
,
J. R.
Kitchin
,
J. G.
Chen
,
S.
Pandelov
, and
U.
Stimming
, “
Trends in the exchange current for hydrogen evolution
,”
J. Electrochem. Soc.
152
(
3
),
J23
(
2005
).
112.
W.
Choi
,
H.-C.
Shin
,
J. M.
Kim
,
J.-Y.
Choi
, and
W.-S.
Yoon
, “
Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries
,”
J. Electrochem. Sci. Technol.
11
(
1
),
1
13
(
2020
).
113.
M. A.
Zabara
,
G.
Katırcı
,
F. E.
Civan
,
A.
Yürüm
,
S. A.
Gürsel
, and
B.
Ülgüt
, “
Insights into charge transfer dynamics of Li batteries through temperature-dependent electrochemical impedance spectroscopy (EIS) utilizing symmetric cell configuration
,”
Electrochim. Acta
485
,
144080
(
2024
).
114.
M.
Mao
,
X.
Ji
,
Q.
Wang
,
Z.
Lin
,
M.
Li
,
T.
Liu
,
C.
Wang
,
Y.-S.
Hu
,
H.
Li
,
X.
Huang
,
L.
Chen
, and
L.
Suo
, “
Anion-enrichment interface enables high-voltage anode-free lithium metal batteries
,”
Nat. Commun.
14
(
1
),
1082
(
2023
).
You do not currently have access to this content.