Toroidal electromagnetic pulses have been recently reported as nontransverse, space-time nonseparable topological excitations of free space. However, their propagation dynamics and topological configurations have not been comprehensively experimentally characterized. In addition, the existing generators were limited in optical and terahertz domains; however, the feasibility and significance of generating such pulses at microwave frequencies have been overlooked. Here, we report that microwave toroidal pulses can be launched by a transient finite-aperture broadband horn antenna emitter, as an electromagnetic counterpart of “air vortex cannon.” Applying this effective generator, we experimentally map the toroidal pulses' topological skyrmionic textures in free space and demonstrate their resilient propagation dynamics, i.e., how that, during propagation, the pulses evolve toward stronger space-time nonseparability and closer proximity to the canonical Hellwarth–Nouchi toroidal pulses. Our work offers a practical opportunity for using topologically robust toroidal pulses as information carriers in high-capacity telecom, cell phone technology, remote sensing, and global positioning, especially where microwave frequencies are predominant.

1.
J. F.
Nye
and
M. V.
Berry
, “
Dislocations in wave trains
,”
Proc. R. Soc. London
A336
,
165
190
(
1974
).
2.
M.
Berry
, “
Making waves in physics
,”
Nature
403
,
21
21
(
2000
).
3.
C.
He
,
Y.
Shen
, and
A.
Forbes
, “
Towards higher-dimensional structured light
,”
Light Sci. Appl.
11
(
1
),
205
(
2022
).
4.
K. Y.
Bliokh
and
E.
Karimi
et al, “
Roadmap on structured waves
,”
J. Opt.
25
(
10
),
103001
(
2023
).
5.
Y.
Shen
and
Q.
Zhan
et al, “
Roadmap on spatiotemporal light fields
,”
J. Opt.
25
(
9
),
093001
(
2023
).
6.
Z.
Wan
,
H.
Wang
,
Q.
Liu
,
X.
Fu
, and
Y.
Shen
, “
Ultra-degree-of-freedom structured light for ultracapacity information carriers
,”
ACS Photonics
10
(
7
),
2149
2164
(
2023
).
7.
A. E.
Willner
,
K.
Pang
,
H.
Song
,
K.
Zou
, and
H.
Zhou
, “
Orbital angular momentum of light for communications
,”
Appl. Phys. Rev.
8
(
4
),
041312
(
2021
).
8.
G. H.
Yuan
and
N. I.
Zheludev
, “
Detecting nanometric displacements with optical ruler metrology
,”
Science
364
(
6442
),
771
775
(
2019
).
9.
N. I.
Zheludev
and
G.
Yuan
, “
Optical superoscillation technologies beyond the diffraction limit
,”
Nat. Rev. Phys.
4
(
1
),
16
32
(
2022
).
10.
T.
Ozawa
et al, “
Topological photonics
,”
Rev. Mod. Phys.
91
,
015006
(
2019
).
11.
H.
Price
and
Y.
Chong
et al, “
Roadmap on topological photonics
,”
J. Phys.: Photonics
4
(
3
),
032501
(
2022
).
12.
C.
Wan
,
Q.
Cao
,
J.
Chen
,
A.
Chong
, and
Q.
Zhan
, “
Toroidal vortices of light
,”
Nat. Photonics
16
(
7
),
519
522
(
2022
).
13.
A.
Zdagkas
,
C.
McDonnell
,
J.
Deng
et al, “
Observation of toroidal pulses of light
,”
Nat. Photonics
16
,
523
528
(
2022
).
14.
T.
Kaelberer
,
V. A.
Fedotov
,
N.
Papasimakis
,
D. P.
Tsai
, and
N. I.
Zheludev
, “
Toroidal dipolar response in a metamaterial
,”
Science
330
(
6010
),
1510
1512
(
2010
).
15.
A.
Zdagkas
,
N.
Papasimakis
,
V.
Savinov
,
M. R.
Dennis
, and
N. I.
Zheludev
, “
Singularities in the flying electromagnetic doughnuts
,”
Nanophotonics
8
(
8
),
1379
1385
(
2019
).
16.
Y.
Shen
,
A.
Zdagkas
,
N.
Papasimakis
, and
N. I.
Zheludev
, “
Measures of space-time nonseparability of electromagnetic pulses
,”
Phys. Rev. Res.
3
(
1
),
013236
(
2021
).
17.
Y.
Shen
and
C.
Rosales‐Guzmán
, “
Nonseparable states of light: From quantum to classical
,”
Laser Photonics Rev.
16
(
7
),
2100533
(
2022
).
18.
Y.
Shen
,
Y.
Hou
,
N.
Papasimakis
, and
N. I.
Zheludev
, “
Supertoroidal light pulses as electromagnetic skyrmions propagating in free space
,”
Nat. Commun.
12
(
1
),
5891
(
2021
).
19.
Y.
Shen
,
Q.
Zhang
,
P.
Shi
,
L.
Du
,
A. V.
Zayats
, and
X.
Yuan
, “
Optical skyrmions and other topological quasiparticles of light
,”
Nat. Photonics
18
,
15
25
(
2024
).
20.
R. M.
Saadabad
,
M.
Cai
,
F.
Deng
,
L.
Xu
, and
A. E.
Miroshnichenko
, “
Structured light excitation of toroidal dipoles in dielectric nanodisks
,”
Phys. Rev. B
104
,
165402
(
2021
).
21.
N.
Papasimakis
,
V. A.
Fedotov
,
V.
Savinov
,
T. A.
Raybould
, and
N. I.
Zheludev
, “
Electromagnetic toroidal excitations in matter and free space
,”
Nat. Mater.
15
(
3
),
263
271
(
2016
).
22.
T.
Raybould
,
V. A.
Fedotov
,
N.
Papasimakis
,
I.
Youngs
, and
N. I.
Zheludev
, “
Exciting dynamic anapoles with electromagnetic doughnut pulses
,”
Appl. Phys. Lett.
111
(
8
),
081104
(
2017
).
23.
V. A.
Fedotov
,
A. V.
Rogacheva
,
V.
Savinov
,
D. P.
Tsai
, and
N. I.
Zheludev
, “
Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials
,”
Sci. Rep.
3
(
1
),
2967
(
2013
).
24.
K.
Jana
,
Y.
Mi
,
S. H.
Møller
et al, “
Quantum control of flying doughnut terahertz pulses
,”
Sci. Adv.
10
(
2
),
eadl1803
(
2024
).
25.
R. W.
Hellwarth
and
P.
Nouchi
, “
Focused one-cycle electromagnetic pulses
,”
Phys. Rev. E
54
,
889
895
(
1996
).
26.
T.
Raybould
,
V.
Fedotov
,
N.
Papasimakis
,
I.
Youngs
, and
N.
Zheludev
, “
Focused electromagnetic doughnut pulses and their interaction with interfaces and nanostructures
,”
Opt. Express
24
(
4
),
3150
3161
(
2016
).
27.
P.
Rungta
,
V.
Bužek
,
C. M.
Caves
,
M.
Hillery
, and
G. J.
Milburn
, “
Universal state inversion and concurrence in arbitrary dimensions
,”
Phys. Rev. A
64
,
042315
(
2001
).
28.
D. F. V.
James
,
P. G.
Kwiat
,
W. J.
Munro
, and
A. G.
White
, “
On the measurement of qubits
,” in
Asymptotic Theory of Quantum Statistical Inference: Selected Papers
(
World Scientific
,
Singapore
,
2005
), pp.
509
538
.
29.
S.
Tsesses
,
E.
Ostrovsky
,
K.
Cohen
,
B.
Gjonaj
,
N. H.
Lindner
, and
G.
Bartal
, “
Optical skyrmion lattice in evanescent electromagnetic fields
,”
Science
361
(
6406
),
993
996
(
2018
).
30.
T. J.
Davis
,
D.
Janoschka
,
P.
Dreher
,
B.
Frank
,
F. J.
Meyer zu Heringdorf
, and
H.
Giessen
, “
Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution
,”
Science
368
(
6489
),
eaba6415
(
2020
).
31.
R. D.
Muelas-Hurtado
,
K.
Volke-Sepúlveda
,
J. L.
Ealo
et al, “
Observation of polarization singularities and topological textures in sound waves
,”
Phys. Rev. Lett.
129
,
204301
(
2022
).
32.
A.
Fert
,
N.
Reyren
, and
V.
Cros
, “
Magnetic skyrmions: Advances in physics and potential applications
,”
Nat. Rev. Mater.
2
,
17031
(
2017
).
33.
A. N.
Bogdanov
and
C.
Panagopoulos
, “
Physical foundations and basic properties of magnetic skyrmions
,”
Nat. Rev. Phys.
2
,
492
498
(
2020
).
34.
B. A.
Bernevig
,
C.
Felser
, and
H.
Beidenkopf
, “
Progress and prospects in magnetic topological materials
,”
Nature
603
(
7899
),
41
51
(
2022
).
35.
L.
Han
and
C.
Addiego
et al, “
High-density switchable skyrmion-like polar nanodomains integrated on silicon
,”
Nature
603
(
7899
),
63
67
(
2022
).
36.
Y.
Shen
,
N.
Papasimakis
, and
N. I.
Zheludev
, “
Nondiffracting supertoroidal pulses: Optical ‘Kármán vortex streets
,’”
Nat. Commun.
15
,
4863
(
2024
).
37.
J.
Lekner
, “
Helical light pulses
,”
J. Opt. A: Pure Appl. Opt.
6
(
10
),
L29
(
2004
).
You do not currently have access to this content.