Non-Hermitian skin effect (NHSE) is an intrinsic non-Hermitian phenomenon where an extensive number of eigenmodes, called skin modes, are localized at the boundary of a system. Recent theories have suggested that the NHSE can be well-tuned by external fields, opening a route to manipulating wave localization. Here, we experimentally demonstrate the diverse interactions between NHSE and synthetic magnetic fields (SMFs) in coupled acoustic ring resonator lattices. We observe that the NHSE and SMFs can, via different physical mechanisms, compete or synergize, resulting in either the suppression or the creation of NHSE. With the aid of the complex frequency excitation technique, we experimentally observe that SMFs can suppress the NHSE by introducing Landau quantization, causing localization to move toward the bulk. In contrast, we show that the presence of SMF generates topological edge modes in the lattice, which then become corner skin modes by the second-order NHSE. Our results evidence the rich physics and diverse consequences that arise from the interplay of magnetic fields and NHSE, paving the way for actively controlling wave localization.

1.
L.
Feng
,
R.
El-Ganainy
, and
L.
Ge
, “
Non-Hermitian photonics based on parity–time symmetry
,”
Nat. Photon.
11
,
752
762
(
2017
).
2.
R.
El-Ganainy
,
K. G.
Makris
,
M.
Khajavikhan
,
Z. H.
Musslimani
,
S.
Rotter
, and
D. N.
Christodoulides
, “
Non-Hermitian physics and PT symmetry
,”
Nat. Phys.
14
,
11
19
(
2018
).
3.
M.-A.
Miri
and
A.
Alù
, “
Exceptional points in optics and photonics
,”
Science
363
,
eaar7709
(
2019
).
4.
E. J.
Bergholtz
,
J. C.
Budich
, and
F. K.
Kunst
, “
Exceptional topology of non-Hermitian systems
,”
Rev. Mod. Phys.
93
,
015005
(
2021
).
5.
K.
Ding
,
C.
Fang
, and
G.
Ma
, “
Non-Hermitian topology and exceptional-point geometries
,”
Nat. Rev. Phys.
4
,
745
760
(
2022
).
6.
R.
Lin
,
T.
Tai
,
L.
Li
, and
C. H.
Lee
, “
Topological non-Hermitian skin effect
,”
Front. Phys.
18
,
53605
(
2023
).
7.
V. M.
Alvarez
,
J. B.
Vargas
, and
L. F.
Torres
, “
Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points
,”
Phys. Rev. B
97
,
121401
(
2018
).
8.
Y.
Xiong
, “
Why does bulk boundary correspondence fail in some non-Hermitian topological models
,”
J. Phys. Commun.
2
,
035043
(
2018
).
9.
Z.
Gong
,
Y.
Ashida
,
K.
Kawabata
,
K.
Takasan
,
S.
Higashikawa
, and
M.
Ueda
, “
Topological phases of non-Hermitian systems
,”
Phys. Rev. X
8
,
031079
(
2018
).
10.
S.
Yao
and
Z.
Wang
, “
Edge states and topological invariants of non-Hermitian systems
,”
Phys. Rev. Lett.
121
,
086803
(
2018
).
11.
F. K.
Kunst
,
E.
Edvardsson
,
J. C.
Budich
, and
E. J.
Bergholtz
, “
Biorthogonal bulk-boundary correspondence in non-Hermitian systems
,”
Phys. Rev. Lett.
121
,
026808
(
2018
).
12.
C. H.
Lee
and
R.
Thomale
, “
Anatomy of skin modes and topology in non-Hermitian systems
,”
Phys. Rev. B
99
,
201103
(
2019
).
13.
N.
Okuma
,
K.
Kawabata
,
K.
Shiozaki
, and
M.
Sato
, “
Topological origin of non-Hermitian skin effects
,”
Phys. Rev. Lett.
124
,
086801
(
2020
).
14.
K.
Zhang
,
Z.
Yang
, and
C.
Fang
, “
Correspondence between winding numbers and skin modes in non-Hermitian systems
,”
Phys. Rev. Lett.
125
,
126402
(
2020
).
15.
D. S.
Borgnia
,
A. J.
Kruchkov
, and
R.-J.
Slager
, “
Non-Hermitian boundary modes and topology
,”
Phys. Rev. Lett.
124
,
056802
(
2020
).
16.
S.
Weidemann
,
M.
Kremer
,
T.
Helbig
,
T.
Hofmann
,
A.
Stegmaier
,
M.
Greiter
,
R.
Thomale
, and
A.
Szameit
, “
Topological funneling of light
,”
Science
368
,
311
314
(
2020
).
17.
Q.
Lin
,
T.
Li
,
L.
Xiao
,
K.
Wang
,
W.
Yi
, and
P.
Xue
, “
Observation of non-Hermitian topological Anderson insulator in quantum dynamics
,”
Nat. Commun.
13
,
3229
(
2022
).
18.
L.
Zhang
,
Y.
Yang
,
Y.
Ge
,
Y.-J.
Guan
,
Q.
Chen
,
Q.
Yan
,
F.
Chen
,
R.
Xi
,
Y.
Li
,
D.
Jia
et al, “
Acoustic non-Hermitian skin effect from twisted winding topology
,”
Nat. Commun.
12
,
6297
(
2021a
).
19.
H.
Gao
,
H.
Xue
,
Z.
Gu
,
L.
Li
,
W.
Zhu
,
Z.
Su
,
J.
Zhu
,
B.
Zhang
, and
Y.
Chong
, “
Anomalous Floquet non-Hermitian skin effect in a ring resonator lattice
,”
Phys. Rev. B
106
,
134112
(
2022
).
20.
X.
Zhang
,
Y.
Tian
,
J.-H.
Jiang
,
M.-H.
Lu
, and
Y.-F.
Chen
, “
Observation of higher-order non-Hermitian skin effect
,”
Nat. Commun.
12
,
5377
(
2021b
).
21.
Z.
Gu
,
H.
Gao
,
H.
Xue
,
J.
Li
,
Z.
Su
, and
J.
Zhu
, “
Transient non-Hermitian skin effect
,”
Nat. Commun.
13
,
7668
(
2022
).
22.
T.
Wan
,
K.
Zhang
,
J.
Li
,
Z.
Yang
, and
Z.
Yang
, “
Observation of the geometry-dependent skin effect and dynamical degeneracy splitting
,”
Sci. Bull.
68
,
2330
2335
(
2023
).
23.
Q.
Zhou
,
J.
Wu
,
Z.
Pu
,
J.
Lu
,
X.
Huang
,
W.
Deng
,
M.
Ke
, and
Z.
Liu
, “
Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points
,”
Nat. Commun.
14
,
4569
(
2023
).
24.
M.
Brandenbourger
,
X.
Locsin
,
E.
Lerner
, and
C.
Coulais
, “
Non-reciprocal robotic metamaterials
,”
Nat. Commun.
10
,
4608
(
2019
).
25.
A.
Ghatak
,
M.
Brandenbourger
,
J.
Van Wezel
, and
C.
Coulais
, “
Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial
,”
Proc. Natl. Acad. Sci.
117
,
29561
29568
(
2020
).
26.
W.
Wang
,
X.
Wang
, and
G.
Ma
, “
Non-Hermitian morphing of topological modes
,”
Nature
608
,
50
55
(
2022
).
27.
W.
Wang
,
M.
Hu
,
X.
Wang
,
G.
Ma
, and
K.
Ding
, “
Experimental realization of geometry-dependent skin effect in a reciprocal two-dimensional lattice
,”
Phys. Rev. Lett.
131
,
207201
(
2023
).
28.
K.
Wang
,
A.
Dutt
,
K. Y.
Yang
,
C. C.
Wojcik
,
J.
Vučković
, and
S.
Fan
, “
Generating arbitrary topological windings of a non-Hermitian band
,”
Science
371
,
1240
1245
(
2021
).
29.
Y. G.
Liu
,
Y.
Wei
,
O.
Hemmatyar
,
G. G.
Pyrialakos
,
P. S.
Jung
,
D. N.
Christodoulides
, and
M.
Khajavikhan
, “
Complex skin modes in non-Hermitian coupled laser arrays
,”
Light Sci. Appl.
11
,
336
(
2022
).
30.
S.
Liu
,
R.
Shao
,
S.
Ma
,
L.
Zhang
,
O.
You
,
H.
Wu
,
Y. J.
Xiang
,
T. J.
Cui
, and
S.
Zhang
, “
Non-Hermitian skin effect in a non-Hermitian electrical circuit
,”
Research
2021
,
5608038
.
31.
D.
Zou
,
T.
Chen
,
W.
He
,
J.
Bao
,
C. H.
Lee
,
H.
Sun
, and
X.
Zhang
, “
Observation of hybrid higher-order skin-topological effect in non-hermitian topolectrical circuits
,”
Nat. Commun.
12
,
7201
(
2021
).
32.
H.
Zhang
,
T.
Chen
,
L.
Li
,
C. H.
Lee
, and
X.
Zhang
, “
Electrical circuit realization of topological switching for the non-Hermitian skin effect
,”
Phys. Rev. B
107
,
085426
(
2023
).
33.
S.
Longhi
, “
Non-Hermitian gauged topological laser arrays
,”
Ann. Phys.
530
,
1800023
(
2018
).
34.
B.
Zhu
,
Q.
Wang
,
D.
Leykam
,
H.
Xue
,
Q. J.
Wang
, and
Y.
Chong
, “
Anomalous single-mode lasing induced by nonlinearity and the non-Hermitian skin effect
,”
Phys. Rev. Lett.
129
,
013903
(
2022
).
35.
A.
McDonald
and
A. A.
Clerk
, “
Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics
,”
Nat. Commun.
11
,
5382
(
2020
).
36.
J. C.
Budich
and
E. J.
Bergholtz
, “
Non-Hermitian topological sensors
,”
Phys. Rev. Lett.
125
,
180403
(
2020
).
37.
H.
Yuan
,
W.
Zhang
,
Z.
Zhou
,
W.
Wang
,
N.
Pan
,
Y.
Feng
,
H.
Sun
, and
X.
Zhang
, “
Non-Hermitian topolectrical circuit sensor with high sensitivity
,”
Adv. Sci.
10
(
19
),
2301128
(
2023
).
38.
L.
Landau
, “
Diamagnetismus der metalle
,”
Z. Phys.
64
,
629
637
(
1930
).
39.
G.
Liang
and
Y.
Chong
, “
Optical resonator analog of a two-dimensional topological insulator
,”
Phys. Rev. Lett.
110
,
203904
(
2013
).
40.
M.
Lu
,
X.-X.
Zhang
, and
M.
Franz
, “
Magnetic suppression of non-Hermitian skin effects
,”
Phys. Rev. Lett.
127
,
256402
(
2021
).
41.
K.
Shao
,
Z.-T.
Cai
,
H.
Geng
,
W.
Chen
, and
D.
Xing
, “
Cyclotron quantization and mirror-time transition on nonreciprocal lattices
,”
Phys. Rev. B
106
,
L081402
(
2022
).
42.
Q.
Lin
,
W.
Yi
, and
P.
Xue
, “
Manipulating directional flow in a two-dimensional photonic quantum walk under a synthetic magnetic field
,”
Nat. Commun.
14
,
6283
(
2023
).
43.
H. T.
Teo
,
S.
Mandal
,
Y.
Long
,
H.
Xue
, and
B.
Zhang
, “
Pseudomagnetic suppression of non-Hermitian skin effect
,”
Sci. Bull.
69
(
11
),
1667
1673
(
2024
).
44.
C.-A.
Li
,
B.
Trauzettel
,
T.
Neupert
, and
S.-B.
Zhang
, “
Enhancement of second-order non-Hermitian skin effect by magnetic fields
,”
Phys. Rev. Lett.
131
,
116601
(
2023
).
45.
X.
Wen
,
C.
Qiu
,
Y.
Qi
,
L.
Ye
,
M.
Ke
,
F.
Zhang
, and
Z.
Liu
, “
Acoustic landau quantization and quantum-hall-like edge states
,”
Nat. Phys.
15
,
352
356
(
2019
).
46.
D.
De Bernardis
,
Z.-P.
Cian
,
I.
Carusotto
,
M.
Hafezi
, and
P.
Rabl
, “
Light-matter interactions in synthetic magnetic fields: Landau-photon polaritons
,”
Phys. Rev. Lett.
126
,
103603
(
2021
).
47.
H.
Li
,
A.
Mekawy
,
A.
Krasnok
, and
A.
Alù
, “
Virtual parity-time symmetry
,”
Phys. Rev. Lett.
124
,
193901
(
2020
).
48.
F.
Guan
,
X.
Guo
,
K.
Zeng
,
S.
Zhang
,
Z.
Nie
,
S.
Ma
,
Q.
Dai
,
J.
Pendry
,
X.
Zhang
, and
S.
Zhang
, “
Overcoming losses in superlenses with synthetic waves of complex frequency
,”
Science
381
,
766
771
(
2023
).
49.
S.
Kim
,
Y.-G.
Peng
,
S.
Yves
, and
A.
Alù
, “
Loss compensation and superresolution in metamaterials with excitations at complex frequencies
,”
Phys. Rev. X
13
,
041024
(
2023
).
50.
S.
Mittal
,
V. V.
Orre
,
G.
Zhu
,
M. A.
Gorlach
,
A.
Poddubny
, and
M.
Hafezi
, “
Photonic quadrupole topological phases
,”
Nat. Photonics
13
,
692
696
(
2019
).
51.
M.
Hafezi
,
S.
Mittal
,
J.
Fan
,
A.
Migdall
, and
J.
Taylor
, “
Imaging topological edge states in silicon photonics
,”
Nat. Photonics
7
,
1001
1005
(
2013
).
52.
M.
Hafezi
,
E. A.
Demler
,
M. D.
Lukin
, and
J. M.
Taylor
, “
Robust optical delay lines with topological protection
,”
Nat. Phys.
7
,
907
912
(
2011
).
53.
M.
Yan
,
W.
Deng
,
X.
Huang
,
Y.
Wu
,
Y.
Yang
,
J.
Lu
,
F.
Li
, and
Z.
Liu
, “
Pseudomagnetic fields enabled manipulation of on-chip elastic waves
,”
Phys. Rev. Lett.
127
,
136401
(
2021
).
54.
S.
Mittal
,
G.
Moille
,
K.
Srinivasan
,
Y. K.
Chembo
, and
M.
Hafezi
, “
Topological frequency combs and nested temporal solitons
,”
Nat. Phys.
17
,
1169
1176
(
2021
).
55.
N.
Levy
,
S.
Burke
,
K.
Meaker
,
M.
Panlasigui
,
A.
Zettl
,
F.
Guinea
,
A. C.
Neto
, and
M. F.
Crommie
, “
Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles
,”
Science
329
,
544
547
(
2010
).
56.
Z.
Gao
,
X.
Qiao
,
M.
Pan
,
S.
Wu
,
J.
Yim
,
K.
Chen
,
B.
Midya
,
L.
Ge
, and
L.
Feng
, “
Two-dimensional reconfigurable non-Hermitian gauged laser array
,”
Phys. Rev. Lett.
130
,
263801
(
2023
).
You do not currently have access to this content.