Freshwater scarcity is a pressing issue worldwide, and solar steam generators (SSGs) have emerged as a promising device for seawater desalination, harnessing renewable solar energy to facilitate sustainable water evaporation. The facile fabrication approach for SSG with complex topologies to achieve high water evaporation efficiency remains a challenge. Herein, a MIL-101 (Fe)-derived C@Fe3O4 ink was employed to multi-jet fusion (MJF) printing of polymeric porous SSGs with specific topologies. The optimized porous structure endows the printed SSGs with capillary force, greatly promoting water transport. The tree-like topology enables high water evaporation rates under various simulated solar radiation conditions. A finite element model was built to fully understand the light-to-thermal energy conversion and water evaporation processes. Moreover, the MJF-printed SSGs exhibit self-cleaning properties and can automatically remove accumulated salt on their surfaces, enabling sustainable desalination. During prolonged testing, the water evaporation rate of the SSGs remained relatively stable and reached as high as 1.55 kg m−2 h−1. Additionally, the desalinated water met the standards for direct drinking water. This study presents a state-of-the-art technology for producing efficient SSGs for desalination and introduces a novel method for MJF printing of functional nanocomposites.

1.
M. T.
van Vliet
,
M.
Flörke
, and
Y.
Wada
, “
Quality matters for water scarcity
,”
Nat. Geosci.
10
(
11
),
800
802
(
2017
).
2.
V.-D.
Dao
,
N. H.
Vu
, and
S.
Yun
, “
Recent advances and challenges for solar-driven water evaporation system toward applications
,”
Nano Energy
68
,
104324
(
2020
).
3.
I.
Ibrahim
,
D. H.
Seo
,
A. M.
McDonagh
,
H. K.
Shon
, and
L.
Tijing
, “
Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment
,”
Desalination
500
,
114853
(
2021
).
4.
Y.
Zhang
,
Y.
Wang
,
B.
Yu
,
K.
Yin
, and
Z.
Zhang
, “
Hierarchically structured black gold film with ultrahigh porosity for solar steam generation
,”
Adv. Mater.
34
(
21
),
2200108
(
2022
).
5.
Z.
Wang
,
H.
Liu
,
F.
Chen
, and
Q.
Zhang
, “
A three-dimensional printed biomimetic hierarchical graphene architecture for high-efficiency solar steam-generation
,”
J. Mater. Chem. A
8
(
37
),
19387
19395
(
2020
).
6.
M.
Amjad
,
G.
Raza
,
Y.
Xin
,
S.
Pervaiz
,
J.
Xu
,
X.
Du
, and
D.
Wen
, “
Volumetric solar heating and steam generation via gold nanofluids
,”
Appl. Energy
206
,
393
400
(
2017
).
7.
X.
Hu
,
W.
Xu
,
L.
Zhou
,
Y.
Tan
,
Y.
Wang
,
S.
Zhu
, and
J.
Zhu
, “
Tailoring graphene oxide‐based aerogels for efficient solar steam generation under one sun
,”
Adv. Mater.
29
(
5
),
1604031
(
2017
).
8.
W.
Li
,
Z.
Chen
,
H.
Yu
,
J.
Li
, and
S.
Liu
, “
Wood‐derived carbon materials and light‐emitting materials
,”
Adv. Mater.
33
(
28
),
2000596
(
2021
).
9.
T. T.
Pham
,
T. H.
Nguyen
,
T. A. H.
Nguyen
,
D. D.
Pham
,
D. C.
Nguyen
,
D. B.
Do
,
H. V.
Nguyen
,
M. H.
Ha
, and
Z. H.
Nguyen
, “
Durable, scalable and affordable iron (III) based coconut husk photothermal material for highly efficient solar steam generation
,”
Desalination
518
,
115280
(
2021
).
10.
J.
Wang
,
Y.
Li
,
L.
Deng
,
N.
Wei
,
Y.
Weng
,
S.
Dong
,
D.
Qi
,
J.
Qiu
,
X.
Chen
, and
T.
Wu
, “
High‐performance photothermal conversion of narrow‐bandgap Ti2O3 nanoparticles
,”
Adv. Mater.
29
(
3
),
1603730
(
2017
).
11.
A. H.
Elsheikh
,
S. W.
Sharshir
,
M. K. A.
Ali
,
J.
Shaibo
,
E. M.
Edreis
,
T.
Abdelhamid
,
C.
Du
, and
Z.
Haiou
, “
Thin film technology for solar steam generation: A new dawn
,”
Sol. Energy
177
,
561
575
(
2019
).
12.
K. W.
Tan
,
C. M.
Yap
,
Z.
Zheng
,
C. Y.
Haw
,
P. S.
Khiew
, and
W. S.
Chiu
, “
State‐of-the-art advances, development, and challenges of metal oxide semiconductor nanomaterials for photothermal solar steam generation
,”
Adv. Sustainable Syst.
6
(
4
),
2100416
(
2022
).
13.
F.
Wang
,
D.
Kozawa
,
Y.
Miyauchi
,
K.
Hiraoka
,
S.
Mouri
,
Y.
Ohno
, and
K.
Matsuda
, “
Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers
,”
Nat. Commun.
6
(
1
),
6305
(
2015
).
14.
H.
Wang
,
X.
Mi
,
Y.
Li
, and
S.
Zhan
, “
3D graphene‐based macrostructures for water treatment
,”
Adv. Mater.
32
(
3
),
1806843
(
2020
).
15.
S.
Guo
,
M.
Gao
,
W.
Zhang
,
F.
Liu
,
X.
Guo
, and
K.
Zhou
, “
Recent advances in laser‐induced synthesis of MOF derivatives
,”
Adv. Mater.
35
,
2303065
(
2023
).
16.
X.
Li
,
S.
Zheng
,
L.
Jin
,
Y.
Li
,
P.
Geng
,
H.
Xue
,
H.
Pang
, and
Q.
Xu
, “
Metal‐organic framework‐derived carbons for battery applications
,”
Adv. Energy Mater.
8
(
23
),
1800716
(
2018
).
17.
Y.
Li
,
Y.
Xu
,
W.
Yang
,
W.
Shen
,
H.
Xue
, and
H.
Pang
, “
MOF‐derived metal oxide composites for advanced electrochemical energy storage
,”
Small
14
(
25
),
1704435
(
2018
).
18.
X.
Xu
,
J.
Liu
,
J.
Liu
,
L.
Ouyang
,
R.
Hu
,
H.
Wang
,
L.
Yang
, and
M.
Zhu
, “
A general metal‐organic framework (MOF)‐derived selenidation strategy for in situ carbon‐encapsulated metal selenides as high‐rate anodes for Na-Ion batteries
,”
Adv. Funct. Mater.
28
(
16
),
1707573
(
2018
).
19.
W.
Yang
,
X.
Li
,
Y.
Li
,
R.
Zhu
, and
H.
Pang
, “
Applications of metal–organic‐framework‐derived carbon materials
,”
Adv. Mater.
31
(
6
),
1804740
(
2019
).
20.
A.
Li
,
Y.
Wan
,
Y.
Gao
,
Z.
Tang
,
J.
Xu
,
M.
Huang
,
Y.
Li
,
X.
Zhang
, and
X.
Chen
, “
MOF-derived hierarchical carbon/ZnO hybrid synergistically boosts photothermal conversion and storage capability of phase change materials
,”
Mater. Today Nano
20
,
100277
(
2022
).
21.
W.
Ren
,
Y.
Yan
,
L.
Zeng
,
Z.
Shi
,
A.
Gong
,
P.
Schaaf
,
D.
Wang
,
J.
Zhao
,
B.
Zou
, and
H.
Yu
, “
A near infrared light triggered hydrogenated black TiO2 for cancer photothermal therapy
,”
Adv. Healthcare Mater.
4
(
10
),
1526
1536
(
2015
).
22.
H.
Wang
,
J.
Shen
,
Y.
Li
,
Z.
Wei
,
G.
Cao
,
Z.
Gai
,
K.
Hong
,
P.
Banerjee
, and
S.
Zhou
, “
Magnetic iron oxide–fluorescent carbon dots integrated nanoparticles for dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy
,”
Biomater. Sci.
2
(
6
),
915
923
(
2014
).
23.
Q.
Wang
,
D.
Niu
,
J.
Shi
, and
L.
Wang
, “
A three-in-one ZIFs-derived CuCo(O)/GOx@PCNs hybrid cascade nanozyme for immunotherapy/enhanced starvation/photothermal therapy
,”
ACS Appl. Mater. Interfaces
13
(
10
),
11683
11695
(
2021
).
24.
M. S.
Irshad
,
N.
Arshad
, and
X.
Wang
, “
Nanoenabled photothermal materials for clean water production
,”
Global Challenges
5
(
1
),
2000055
(
2021
).
25.
Y.
Zhao
,
Y.
Meng
,
P.
Yu
,
X.
Hu
,
J.
Su
, and
J.
Han
, “
Modified reduced graphene oxide-LDH/WPU nanohybrid coated nylon 6 fabrics for durable photothermal conversion performance
,”
Appl. Surf. Sci.
622
,
156900
(
2023
).
26.
Y.
Hou
,
M.
Gao
,
R.
An
,
W. S.
Tey
,
B.
Li
,
J.
Chen
,
L.
Zhao
, and
K.
Zhou
, “
Surface modification of oriented glass fibers for improving the mechanical properties and flame retardancy of polyamide 12 composites printed by powder bed fusion
,”
Addit. Manuf.
62
,
103195
(
2023
).
27.
S.
Sun
,
M.
Brandt
, and
M.
Easton
, “
Powder bed fusion processes: An overview
,” in
Laser Additive Manufacturing: Materials, Design, Technologies, and Applications
(
Woodhead Publishing
,
2017
), pp.
55
77
.
28.
J.
Chen
,
L.
Zhao
, and
K.
Zhou
, “
Multi‐jet fusion 3D voxel printing of conductive elastomers
,”
Adv. Mater.
34
,
2205909
(
2022
).
29.
Z.
Liu
,
Z.
Zhou
,
N.
Wu
,
R.
Zhang
,
B.
Zhu
,
H.
Jin
,
Y.
Zhang
,
M.
Zhu
, and
Z.
Chen
, “
Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination
,”
ACS Nano
15
(
8
),
13007
13018
(
2021
).
30.
Y.
Xia
,
Q.
Hou
,
H.
Jubaer
,
Y.
Li
,
Y.
Kang
,
S.
Yuan
,
H.
Liu
,
M. W.
Woo
,
L.
Zhang
, and
L.
Gao
, “
Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting
,”
Energy Environ. Sci.
12
(
6
),
1840
1847
(
2019
).
31.
M.
Sheng
,
Y.
Yang
,
X.
Bin
,
S.
Zhao
,
C.
Pan
,
F.
Nawaz
, and
W.
Que
, “
Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems
,”
Nano Energy
89
,
106468
(
2021
).
32.
J.
Wang
,
Y.
Kong
,
Z.
Liu
, and
H.
Wang
, “
Solar-driven interfacial evaporation: Design and application progress of structural evaporators and functional distillers
,”
Nano Energy
108
,
108115
(
2022
).
33.
H.
Liu
,
X.
Zhang
,
Z.
Hong
,
Z.
Pu
,
Q.
Yao
,
J.
Shi
,
G.
Yang
,
B.
Mi
,
B.
Yang
,
X.
Liu
et al, “
A bioinspired capillary-driven pump for solar vapor generation
,”
Nano Energy
42
,
115
121
(
2017
).
34.
M.
Zhu
,
Y.
Li
,
F.
Chen
,
X.
Zhu
,
J.
Dai
,
Y.
Li
,
Z.
Yang
,
X.
Yan
,
J.
Song
,
Y.
Wang
et al, “
Plasmonic wood for high‐efficiency solar steam generation
,”
Adv. Energy Mater.
8
(
4
),
1701028
(
2018
).
35.
A.
Awad
,
F.
Fina
,
A.
Goyanes
,
S.
Gaisford
, and
A. W.
Basit
, “
Advances in powder bed fusion 3D printing in drug delivery and healthcare
,”
Adv. Drug Delivery Rev.
174
,
406
424
(
2021
).
36.
S.
Yuan
,
S.
Li
,
J.
Zhu
, and
Y.
Tang
, “
Additive manufacturing of polymeric composites from material processing to structural design
,”
Composites, Part B
219
,
108903
(
2021
).
37.
O.
Diegel
,
A.
Nordin
,
D.
Motte
,
O.
Diegel
,
A.
Nordin
, and
D.
Motte
,
A Practical Guide to Design for Additive Manufacturing
(
Springer
,
2019
), pp.
103
119
.
38.
S. R.
Churipard
,
K. S.
Kanakikodi
,
D. A.
Rambhia
,
C. S. K.
Raju
,
A.
Halgeri
,
N. V.
Choudary
,
G. S.
Ganesh
,
R.
Ravishankar
, and
S. P.
Maradur
, “
Porous polydivinylbenzene (PDVB) as an efficient adsorbent for hydrocarbons: Effect of porogens on adsorption capacity
,”
Chem. Eng. J.
380
,
122481
(
2020
).
39.
N.
Fechler
,
T. P.
Fellinger
, and
M.
Antonietti
, ““
Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids
,”
Adv. Mater.
25
(
1
),
75
79
(
2013
).
40.
A.
Pierre
,
M.
Sadeghi
,
M. M.
Payne
,
A.
Facchetti
,
J. E.
Anthony
, and
A. C.
Arias
, “
All‐printed flexible organic transistors enabled by surface tension‐guided blade coating
,”
Adv. Mater.
26
(
32
),
5722
5727
(
2014
).
41.
L.
He
,
Y.
Dong
,
Y.
Zheng
,
Q.
Jia
,
S.
Shan
, and
Y.
Zhang
, “
A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light
,”
J. Hazard. Mater.
361
,
85
94
(
2019
).
42.
W.
Li
,
X.
Wu
,
S.
Li
,
W.
Tang
, and
Y.
Chen
, “
Magnetic porous Fe3O4/carbon octahedra derived from iron-based metal-organic framework as heterogeneous Fenton-like catalyst
,”
Appl. Surf. Sci.
436
,
252
262
(
2018
).
43.
C.
Li
,
Q.
Hu
,
Y.
Li
,
H.
Zhou
,
Z.
Lv
,
X.
Yang
,
L.
Liu
, and
H.
Guo
, “
Hierarchical hollow Fe2O3@MIL-101(Fe)/C derived from metal-organic frameworks for superior sodium storage
,”
Sci. Rep.
6
(
1
),
25556
(
2016
).
44.
Y. J.
Tang
,
H.
Zheng
,
Y.
Wang
,
W.
Zhang
, and
K.
Zhou
, “
Laser‐induced annealing of metal–organic frameworks on conductive substrates for electrochemical water splitting
,”
Adv. Funct. Mater.
31
(
31
),
2102648
(
2021
).
45.
M.
Qiao
,
X.
Lei
,
Y.
Ma
,
L.
Tian
,
X.
He
,
K.
Su
, and
Q.
Zhang
, “
Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material
,”
Nano Res.
11
,
1500
1519
(
2018
).
46.
J.
Ding
,
L.
Wang
,
Y.
Zhao
,
L.
Xing
,
X.
Yu
,
G.
Chen
,
J.
Zhang
, and
R.
Che
, “
Boosted interfacial polarization from multishell TiO2@ Fe3O4@ PPy heterojunction for enhanced microwave absorption
,”
Small
15
(
36
),
1902885
(
2019
).
47.
C.
Yan
,
G.
Chen
,
X.
Zhou
,
J.
Sun
, and
C.
Lv
, “
Template‐based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries
,”
Adv. Funct. Mater.
26
(
9
),
1428
1436
(
2016
).
48.
C.
Cao
,
H.
Zou
,
N.
Yang
,
H.
Li
,
Y.
Cai
,
X.
Song
,
J.
Shao
,
P.
Chen
,
X.
Mou
,
W.
Wang
, and
X.
Dong
, “
Fe3O4/Ag/Bi2MoO6 photoactivatable nanozyme for self‐replenishing and sustainable cascaded nanocatalytic cancer therapy
,”
Adv. Mater.
33
(
52
),
2106996
(
2021
).
49.
C.
Ding
,
Y.
Zeng
,
L.
Cao
,
L.
Zhao
, and
Y.
Zhang
, “
Hierarchically porous Fe3O4/C nanocomposite microspheres via a CO2 bubble-templated hydrothermal approach as high-rate and high-capacity anode materials for lithium-ion batteries
,”
J. Mater. Chem. A
4
(
16
),
5898
5908
(
2016
).
50.
H.
Dong
,
W.
Du
,
J.
Dong
,
R.
Che
,
F.
Kong
,
W.
Cheng
,
M.
Ma
,
N.
Gu
, and
Y.
Zhang
, “
Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions
,”
Nat. Commun.
13
(
1
),
5365
(
2022
).
51.
G.
Hu
,
J.
Kang
,
L. W. T.
Ng
,
X.
Zhu
,
R. C. T.
Howe
,
C. G.
Jones
,
M. C.
Hersam
, and
T.
Hasan
, “
Functional inks and printing of two-dimensional materials
,”
Chem. Soc. Rev.
47
(
9
),
3265
3300
(
2018
).
52.
B.
Derby
, “
Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution
,”
Annu. Rev. Mater. Res.
40
,
395
414
(
2010
).
53.
F.
Khazaie
,
S.
Shokrollahzadeh
,
Y.
Bide
,
S.
Sheshmani
, and
A. S.
Shahvelayati
, “
Forward osmosis using highly water dispersible sodium alginate sulfate coated-Fe3O4 nanoparticles as innovative draw solution for water desalination
,”
Process Saf. Environ. Prot.
146
,
789
799
(
2021
).
54.
L.
Su
,
J.
Zhang
,
Y.
Chen
,
W.
Yang
,
J.
Wang
,
Z.
Ma
,
G.
Shao
, and
G.
Wang
, “
Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries
,”
Nano Energy
85
,
105981
(
2021
).
55.
Y.
Hou
,
M.
Gao
,
J.
Chen
,
W. S.
Tey
,
M.
Chen
,
H.
Zheng
,
B.
Li
,
L.
Zhao
, and
K.
Zhou
, “
Preparation of iron oxide–coated aramid fibres for improving the mechanical performance and flame retardancy of multi-jet fusion–printed polyamide 12 composites
,”
Virtual Phys. Prototyping
18
(
1
),
e2171892
(
2023
).
56.
Y.
Shi
,
O.
Ilic
,
H. A.
Atwater
, and
J. R.
Greer
, “
All-day fresh water harvesting by microstructured hydrogel membranes
,”
Nat. Commun.
12
(
1
),
2797
(
2021
).
57.
F.
Wang
,
S.
Zhao
,
X.
Zhang
, and
Z.
Su
, “
Interfacial solar evaporation based on Janus films: An effective strategy to improve salt tolerance and antifouling performance
,”
Desalination
543
,
116085
(
2022
).
58.
A. M.
Salhotra
,
E. E.
Adams
, and
D. R. F.
Harleman
, “
Effect of salinity and ionic composition on evaporation: Analysis of Dead Sea evaporation pans
,”
Water Resour. Res.
21
(
9
),
1336
1344
, https://doi.org/10.1029/WR021i009p01336 (
1985
).
59.
P.
Mu
,
W.
Bai
,
Y.
Fan
,
Z.
Zhang
,
H.
Sun
,
Z.
Zhu
,
W.
Liang
, and
A.
Li
, “
Conductive hollow kapok fiber-PPy monolithic aerogels with excellent mechanical robustness for efficient solar steam generation
,”
J. Mater. Chem. A
7
(
16
),
9673
9679
(
2019
).
60.
Q.
Chen
,
Z.
Pei
,
Y.
Xu
,
Z.
Li
,
Y.
Yang
,
Y.
Wei
, and
Y.
Ji
, “
A durable monolithic polymer foam for efficient solar steam generation
,”
Chem. Sci.
9
(
3
),
623
628
(
2018
).
61.
S.
Han
,
T. P.
Ruoko
,
J.
Gladisch
,
J.
Erlandsson
,
L.
Wågberg
,
X.
Crispin
, and
S.
Fabiano
, “
Cellulose‐conducting polymer aerogels for efficient solar steam generation
,”
Adv. Sustainable Syst.
4
(
7
),
2000004
(
2020
).
62.
J.
He
,
G.
Zhao
,
P.
Mu
,
H.
Wei
,
Y.
Su
,
H.
Sun
,
Z.
Zhu
,
W.
Liang
, and
A.
Li
, “
Scalable fabrication of monolithic porous foam based on cross-linked aromatic polymers for efficient solar steam generation
,”
Sol. Energy Mater. Sol. Cells
201
,
110111
(
2019
).
63.
J.
He
,
Z.
Zhang
,
C.
Xiao
,
F.
Liu
,
H.
Sun
,
Z.
Zhu
,
W.
Liang
, and
A.
Li
, “
High-performance salt-rejecting and cost-effective superhydrophilic porous monolithic polymer foam for solar steam generation
,”
ACS Appl. Mater. Interfaces
12
(
14
),
16308
16318
(
2020
).
64.
S.
Meng
,
T.
Gong
,
X.
Zhao
,
C.-Y.
Tang
,
P.
Yu
,
R.-Y.
Bao
,
K.
Ke
,
Z.-Y.
Liu
,
M.-B.
Yang
, and
W.
Yang
, “
Boosting solar steam generation in dynamically tunable polymer porous architectures
,”
Polymer
226
,
123811
(
2021
).
65.
P.
Mu
,
W.
Bai
,
Z.
Zhang
,
J.
He
,
H.
Sun
,
Z.
Zhu
,
W.
Liang
, and
A.
Li
, “
Robust aerogels based on conjugated microporous polymer nanotubes with exceptional mechanical strength for efficient solar steam generation
,”
J. Mater. Chem. A
6
(
37
),
18183
18190
(
2018
).
66.
F.
Liu
,
W.
Liang
,
C.
Wang
,
J.
He
,
C.
Xiao
,
Z.
Zhu
,
H.
Sun
, and
A.
Li
, “
Superwetting monolithic hypercrosslinked polymers nanotubes with high salt-resistance for efficient solar steam generation
,”
Sol. Energy Mater. Sol. Cells
221
,
110913
(
2021
).
67.
M.
Tan
,
J.
Wang
,
W.
Song
,
J.
Fang
, and
X.
Zhang
, “
Self-floating hybrid hydrogels assembled with conducting polymer hollow spheres and silica aerogel microparticles for solar steam generation
,”
J. Mater. Chem. A
7
(
3
),
1244
1251
(
2019
).
68.
Y.
Jin
,
J.
Chang
,
Y.
Shi
,
L.
Shi
,
S.
Hong
, and
P.
Wang
, “
A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation
,”
J. Mater. Chem. A
6
(
17
),
7942
7949
(
2018
).
69.
C.
Li
,
D.
Jiang
,
B.
Huo
,
M.
Ding
,
C.
Huang
,
D.
Jia
,
H.
Li
,
C.-Y.
Liu
, and
J.
Liu
, “
Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination
,”
Nano Energy
60
,
841
849
(
2019
).
70.
J.
Jia
,
W.
Liang
,
H.
Sun
,
Z.
Zhu
,
C.
Wang
, and
A.
Li
, “
Fabrication of bilayered attapulgite for solar steam generation with high conversion efficiency
,”
Chem. Eng. J.
361
,
999
1006
(
2019
).
71.
Z.
Wang
,
M.
Han
,
F.
He
,
S.
Peng
,
S. B.
Darling
, and
Y.
Li
, “
Versatile coating with multifunctional performance for solar steam generation
,”
Nano Energy
74
,
104886
(
2020
).
72.
J.
Yuan
,
X.
Lei
,
C.
Yi
,
H.
Jiang
,
F.
Liu
, and
G. J.
Cheng
, “
3D-printed hierarchical porous cellulose/alginate/carbon black hydrogel for high-efficiency solar steam generation
,”
Chem. Eng. J.
430
,
132765
(
2022
).
You do not currently have access to this content.