Structural symmetry plays a pivotal role in the emergence of symmetry-protected bound states in the continuum (BICs), often observed at the Γ-point within the first Brillouin zone. However, structural symmetry is not an absolute requirement for the formation of BICs at the Γ-point. In this work, we demonstrate that all-dielectric metasurfaces and photonic crystal slabs, made of dimer nanostructures with different sizes and shapes, can sustain BICs at the Γ-point. We show that the nature of these BICs is well preserved, irrespective of the size mismatch/difference, as long as the center-to-center distance between two nanodisks is equal to half of the lattice constants of a superunit cell. The BICs are transformed into quasi-BICs (QBICs) with finite quality (Q) factors by varying the interspacing of dimer nanodisks. Multipole decomposition indicates that this BIC is primarily governed by a toroidal dipole, with a secondary contribution from a magnetic dipole and magnetic quadrupole. Furthermore, we establish that such a BIC is robust against the shape of nanodisks. Notably, we observe that the Q-factor of QBICs for right nanodisks displaced along the y-axis is three orders of magnitude higher than those along the x-axis, suggesting an effective approach to realizing ultrahigh-Q resonances. Finally, we present an experimental demonstration of such a BIC by fabricating silicon dimer metasurfaces and photonic crystal slabs with dimer nanoholes. The trend of measured Q-factors and resonant wavelengths of QBICs shows good agreement with theoretical predictions. The maximum Q-factor is up to 22 633. These results not only advance our understanding of BICs within compound metasurfaces but also hold great promise in enhancing light–matter interactions.

1.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
M. L.
Brongersma
,
Y. S.
Kivshar
, and
B.
Luk'yanchuk
, “
Optically resonant dielectric nanostructures
,”
Science
354
,
aag2472
(
2016
).
2.
L.
Huang
,
L.
Xu
,
D. A.
Powell
,
W. J.
Padilla
, and
A. E.
Miroshnichenko
, “
Resonant leaky modes in all-dielectric metasystems: Fundamentals and applications
,”
Phys. Rep.
1008
,
1
66
(
2023
).
3.
Y.
Kivshar
and
A.
Miroshnichenko
, “
Meta-optics with Mie resonances
,”
Opt. Photonics News
28
,
24
(
2017
).
4.
L.
Huang
,
Y.
Yu
, and
L.
Cao
, “
General modal properties of optical resonances in subwavelength nonspherical dielectric structures
,”
Nano Lett.
13
,
3559
3565
(
2013
).
5.
J.
Yan
,
X.
Liu
,
C.
Ma
,
Y.
Huang
, and
G.
Yang
, “
All-dielectric materials and related nanophotonic applications
,”
Mater. Sci. Eng., R
141
,
100563
(
2020
).
6.
I.
Staude
and
J.
Schilling
, “
Metamaterial-inspired silicon nanophotonics
,”
Nat. Photonics
11
,
274
284
(
2017
).
7.
L.
Huang
et al, “
Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides
,”
Rep. Prog. Phys.
85
,
46401
(
2022
).
8.
C. W.
Hsu
,
B.
Zhen
,
A. D.
Stone
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Bound states in the continuum
,”
Nat. Rev. Mater.
1
,
16048
(
2016
).
9.
S. I.
Azzam
and
A. V.
Kildishev
, “
Photonic bound states in the continuum: From basics to applications
,”
Adv. Opt. Mater.
9
,
2001469
(
2021
).
10.
K.
Koshelev
,
A.
Bogdanov
, and
Y.
Kivshar
, “
Meta-optics and bound states in the continuum
,”
Sci. Bull.
64
,
836
842
(
2019
).
11.
A. F.
Sadreev
, “
Interference traps waves in an open system: Bound states in the continuum
,”
Rep. Prog. Phys.
84
,
55901
(
2021
).
12.
A.
Kodigala
et al, “
Lasing action from photonic bound states in continuum
,”
Nature
541
,
196
(
2017
).
13.
X.
Zhang
,
Y.
Liu
,
J.
Han
,
Y.
Kivshar
, and
Q.
Song
, “
Chiral emission from resonant metasurfaces
,”
Science
377
,
1215
1218
(
2022
).
14.
C.
Huang
et al, “
Ultrafast control of vortex microlasers
,”
Science
367
,
1018
1021
(
2020
).
15.
L.
Xu
et al, “
Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators
,”
Adv. Sci.
6
,
1802119
(
2019
).
16.
K.
Koshelev
et al, “
Nonlinear metasurfaces governed by bound states in the continuum
,”
ACS Photonics
6
,
1639
1644
(
2019
).
17.
P. P.
Vabishchevich
et al, “
Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces
,”
ACS Photonics
5
,
1685
1690
(
2018
).
18.
Z.
Liu
et al, “
High-Q quasibound states in the continuum for nonlinear metasurfaces
,”
Phys. Rev. Lett.
123
,
253901
(
2019
).
19.
R.
Camacho-Morales
et al, “
Sum-frequency generation in high-Q GaP metasurfaces driven by leaky-wave guided modes
,”
Nano Lett.
22
,
6141
6148
(
2022
).
20.
V.
Ardizzone
et al, “
Polariton Bose–Einstein condensate from a bound state in the continuum
,”
Nature
605
,
447
452
(
2022
).
21.
A. M.
Berghuis
et al, “
Room temperature exciton–polariton condensation in silicon metasurfaces emerging from bound states in the continuum
,”
Nano Lett.
23
,
5603
5609
(
2023
).
22.
I. A. M.
Al-Ani
et al, “
Strong coupling of exciton and high-Q mode in all-perovskite metasurfaces
,”
Adv. Opt. Mater.
10
,
2101120
(
2022
).
23.
I. A. M.
Al-Ani
,
K.
As'Ham
,
L.
Huang
,
A. E.
Miroshnichenko
, and
H. T.
Hattori
, “
Enhanced strong coupling of TMDC monolayers by bound state in the continuum
,”
Laser Photonics Rev.
15
,
2100240
(
2021
).
24.
M.
Qin
et al, “
Strong coupling between excitons and magnetic dipole quasi-bound states in the continuum in WS2-TiO2 hybrid metasurfaces
,”
Opt. Express
29
,
18026
18036
(
2021
).
25.
X.
Wang
et al, “
Controlling light absorption of graphene at critical coupling through magnetic dipole quasi-bound states in the continuum resonance
,”
Phys. Rev. B
102
,
155432
(
2020
).
26.
R.
Jin
et al, “
Toroidal dipole BIC-driven highly robust perfect absorption with a graphene-loaded metasurface
,”
Nano Lett.
23
,
9105
9113
(
2023
).
27.
R.
Masoudian Saadabad
,
L.
Huang
, and
A. E.
Miroshnichenko
, “
Polarization-independent perfect absorber enabled by quasibound states in the continuum
,”
Phys. Rev. B
104
,
235405
(
2021
).
28.
J.
Tian
et al, “
High-Q all-dielectric metasurface: Super and suppressed optical absorption
,”
ACS Photonics
7
,
1436
1443
(
2020
).
29.
J.
Yu
et al, “
Dielectric super-absorbing metasurfaces via PT symmetry breaking
,”
Optica
8
,
1290
1295
(
2021
).
30.
F.
Yesilkoy
et al, “
Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces
,”
Nat. Photonics
13
,
390
396
(
2019
).
31.
J.
Wang
et al, “
All-dielectric crescent metasurface sensor driven by bound states in the continuum
,”
Adv. Funct. Mater.
31
,
2104652
(
2021
).
32.
R.
Wang
et al, “
Ultrasensitive terahertz biodetection enabled by quasi-BIC-based metasensors
,”
Small
19
,
2301165
(
2023
).
33.
B.
Wang
et al, “
Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum
,”
Nat. Photonics
14
,
623
628
(
2020
).
34.
W.
Liu
et al, “
Circularly polarized states spawning from bound states in the continuum
,”
Phys. Rev. Lett.
123
,
116104
(
2019
).
35.
B.
Zhen
,
C. W.
Hsu
,
L.
Lu
,
A. D.
Stone
, and
M.
Soljačić
, “
Topological nature of optical bound states in the continuum
,”
Phys. Rev. Lett.
113
,
257401
(
2014
).
36.
J.
Jin
et al, “
Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering
,”
Nature
574
,
501
504
(
2019
).
37.
X.
Yin
,
J.
Jin
,
M.
Soljačić
,
C.
Peng
, and
B.
Zhen
, “
Observation of topologically enabled unidirectional guided resonances
,”
Nature
580
,
467
471
(
2020
).
38.
F.
Wu
et al, “
Giant enhancement of the Goos-Hänchen shift assisted by quasibound states in the continuum
,”
Phys. Rev. Appl.
12
,
14028
(
2019
).
39.
J.
Wang
,
L.
Shi
, and
J.
Zi
, “
Spin Hall effect of light via momentum-space topological vortices around bound states in the continuum
,”
Phys. Rev. Lett.
129
,
236101
(
2022
).
40.
K.
Koshelev
,
S.
Lepeshov
,
M.
Liu
,
A.
Bogdanov
, and
Y.
Kivshar
, “
Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum
,”
Phys. Rev. Lett.
121
,
193903
(
2018
).
41.
S.
Li
,
C.
Zhou
,
T.
Liu
, and
S.
Xiao
, “
Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces
,”
Phys. Rev. A
100
,
63803
(
2019
).
42.
L.
Huang
et al, “
Sound trapping in an open resonator
,”
Nat. Commun.
12
,
4819
(
2021
).
43.
S.
Han
et al, “
All-dielectric active terahertz photonics driven by bound states in the continuum
,”
Adv. Mater.
31
,
1901921
(
2019
).
44.
V. R.
Tuz
et al, “
High-quality trapped modes in all-dielectric metamaterials
,”
Opt. Express
26
,
2905
2916
(
2018
).
45.
A. C.
Overvig
,
S. C.
Malek
, and
N.
Yu
, “
Multifunctional nonlocal metasurfaces
,”
Phys. Rev. Lett.
125
,
17402
(
2020
).
46.
L.
Huang
et al, “
Realizing ultrahigh-Q resonances through harnessing symmetry-protected bound states in the continuum
,”
Adv. Funct. Mater.
34
,
2309982
(
2024
).
47.
A. S.
Kupriianov
et al, “
Metasurface engineering through bound states in the continuum
,”
Phys. Rev. Appl.
12
,
14024
(
2019
).
48.
C. W.
Hsu
et al, “
Observation of trapped light within the radiation continuum
,”
Nature
499
,
188
191
(
2013
).
49.
A. S.
Pilipchuk
and
A. F.
Sadreev
, “
Accidental bound states in the continuum in an open Sinai billiard
,”
Phys. Lett. A
381
,
720
724
(
2017
).
50.
D. R.
Abujetas
,
J.
Olmos-Trigo
, and
J. A.
Sánchez-Gil
, “
Tailoring accidental double bound states in the continuum in all-dielectric metasurfaces
,”
Adv. Opt. Mater.
10
,
2200301
(
2022
).
51.
E. N.
Bulgakov
and
A. F.
Sadreev
, “
Bound states in the continuum in photonic waveguides inspired by defects
,”
Phys. Rev. B
78
,
75105
(
2008
).
52.
R.
Morita
,
T.
Inoue
,
M.
De Zoysa
,
K.
Ishizaki
, and
S.
Noda
, “
Photonic-crystal lasers with two-dimensionally arranged gain and loss sections for high-peak-power short-pulse operation
,”
Nat. Photonics
15
,
311
318
(
2021
).
53.
L.
Huang
et al, “
Topological supercavity resonances in the finite system
,”
Adv. Sci.
9
,
2200257
(
2022
).
54.
H.
Friedrich
and
D.
Wintgen
, “
Interfering resonances and bound states in the continuum
,”
Phys. Rev. A
32
,
3231
3242
(
1985
).
55.
M. V.
Rybin
et al, “
High-Q supercavity modes in subwavelength dielectric resonators
,”
Phys. Rev. Lett.
119
,
243901
(
2017
).
56.
L.
Huang
,
L.
Xu
,
M.
Rahmani
,
D.
Neshev
, and
A. E.
Miroshnichenko
, “
Pushing the limit of high-Q mode of a single dielectric nanocavity
,”
Adv. Photonics
3
,
016004
(
2021
).
57.
A. A.
Lyapina
,
D. N.
Maksimov
,
A. S.
Pilipchuk
, and
A. F.
Sadreev
, “
Bound states in the continuum in open acoustic resonators
,”
J. Fluid Mech.
780
,
370
387
(
2015
).
58.
L.
Huang
et al, “
General framework of bound states in the continuum in an open acoustic resonator
,”
Phys. Rev. Appl.
18
,
54021
(
2022
).
59.
Y.
He
,
G.
Guo
,
T.
Feng
,
Y.
Xu
, and
A. E.
Miroshnichenko
, “
Toroidal dipole bound states in the continuum
,”
Phys. Rev. B
98
,
161112
(
2018
).
60.
A. C.
Overvig
,
S. C.
Malek
,
M. J.
Carter
,
S.
Shrestha
, and
N.
Yu
, “
Selection rules for quasibound states in the continuum
,”
Phys. Rev. B
102
,
35434
(
2020
).
61.
S.
Murai
et al, “
Engineering bound states in the continuum at telecom wavelengths with non-Bravais lattices
,”
Laser Photonics Rev.
16
,
2100661
(
2022
).
62.
Y.
Gao
,
L.
Xu
, and
X.
Shen
, “
Q-factor mediated quasi-BIC resonances coupling in asymmetric dimer lattices
,”
Opt. Express
30
,
46680
46692
(
2022
).
63.
D. R.
Abujetas
,
N.
van Hoof
,
S.
ter Huurne
,
J.
Gómez Rivas
, and
J. A.
Sánchez-Gil
, “
Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces
,”
Optica
6
,
996
1001
(
2019
).
64.
S.
You
et al, “
Quasi-bound states in the continuum with a stable resonance wavelength in dimer dielectric metasurfaces
,”
Nanophotonics
12
,
2051
2060
(
2023
).
65.
A. C.
Overvig
,
S.
Shrestha
, and
N.
Yu
, “
Dimerized high contrast gratings
,”
Nanophotonics
7
,
1157
1168
(
2018
).
66.
K.
Sun
et al, “
Infinite-Q guided modes radiate in the continuum
,”
Phys. Rev. B
107
,
115415
(
2023
).
67.
F.
Wu
et al, “
Dual quasibound states in the continuum in compound grating waveguide structures for large positive and negative Goos-Hänchen shifts with perfect reflection
,”
Phys. Rev. A
104
,
23518
(
2021
).
68.
K.
Sun
,
U.
Levy
, and
Z.
Han
, “
Exploiting zone-folding induced quasi-bound modes to achieve highly coherent thermal emissions
,”
Nano Lett.
24
,
764
769
(
2024
).
69.
K.
Sun
,
W.
Wang
, and
Z.
Han
, “
High-Q resonances in periodic photonic structures
,”
Phys. Rev. B
109
,
85426
(
2024
).
70.
P.
Vaity
et al, “
Polarization-independent quasibound states in the continuum
,”
Adv. Photonics Res.
3
,
2100144
(
2022
).
71.
G.
Sun
,
Y.
Wang
,
Z.
Cui
,
R.
Xie
, and
X.
Zhao
, “
Enhanced terahertz high-harmonic generation from high-Q quasi-bound states in the continuum empowered by permittivity-broken metasurface
,”
Appl. Phys. Lett.
124
,
111704
(
2024
).
72.
P. C.
Wu
et al, “
Optical anapole metamaterial
,”
ACS Nano
12
,
1920
1927
(
2018
).
73.
P.
Grahn
,
A.
Shevchenko
, and
M.
Kaivola
, “
Electromagnetic multipole theory for optical nanomaterials
,”
New J. Phys.
14
,
93033
(
2012
).
74.
Z.
Zheng
et al, “
Third-harmonic generation and imaging with resonant Si membrane metasurface
,”
Opto-Electron. Adv.
6
,
220110
220174
(
2023
).
75.
L.
Huang
et al, “
Ultrahigh-Q guided mode resonances in an all-dielectric metasurface
,”
Nat. Commun.
14
,
3433
(
2023
).
You do not currently have access to this content.