Electrodermal activity (EDA) measures skin conductivity, reflecting sweat gland activity, and is considered a noninvasive measure of the sympathetic nervous system (SNS). Consequently, EDA has emerged as an informative physiomarker in clinical and nonclinical applications in assessing dynamics of SNS functions. With recent proliferation of the abuse of pain medications, there is a pressing need for objective pain assessment given that a self-pain rating is the only metric doctors use for prescribing medications. To overcome this limitation, there has been increased attention on the use of EDA due to close association between pain and the SNS. With advancements in wearable sensors combined with signal processing and machine learning, it has become more feasible to objectively assess pain using EDA. This paper provides a comprehensive review of recent research related to the use of EDA for objective pain assessment and its clinical applications. Furthermore, this paper discusses the use of recent new developments in signal processing and machine learning techniques, and examines current challenges and future directions that can enable better quantitative assessment of pain using EDA.

1.
H. Y.
Aldosky
, “
Impact of obesity and gender differences on electrodermal activities
,”
General Physiol. Biophys.
38
(
6
),
513
(
2019
).
2.
P.
Alfonsi
,
F.
Adam
, and
D.
Bouhassira
, “
Thermoregulation and pain perception: Evidence for a homoeostatic (interoceptive) dimension of pain
,”
Eur. J. Pain
20
(
1
),
138
148
(
2016
).
3.
R.
Amin
and
R. T.
Faghih
, “
Physiological characterization of electrodermal activity enables scalable near real-time autonomic nervous system activation inference
,”
PLoS Comput. Biol.
18
(
7
),
e1010275
(
2022
).
4.
S. A. H.
Aqajari
,
R.
Cao
,
E. K.
Naeini
,
M.-D.
Calderon
,
K.
Zheng
,
N.
Dutt
,
P.
Liljeberg
,
S.
Salanterä
,
A. M.
Nelson
, and
A. M.
Rahmani
, “
Pain assessment tool with electrodermal activity for postoperative patients: Method validation study
,”
JMIR mHealth uHealth
9
(
5
),
e25258
(
2021
).
5.
L.
Arendt‐Nielsen
,
B.
Morlion
,
S.
Perrot
,
A.
Dahan
,
A.
Dickenson
,
H. G.
Kress
,
C.
Wells
,
D.
Bouhassira
, and
A. M.
Drewes
, “
Assessment and manifestation of central sensitisation across different chronic pain conditions
,”
Eur. J. Pain
22
(
2
),
216
241
(
2018
).
6.
S. Ö.
Arik
and
T.
Pfister
, “
Tabnet: Attentive interpretable tabular learning
,” in
Proceedings of the AAAI Conference on Artificial Intelligence
(
AAAI
,
2021
), pp.
6679
6687
.
7.
M.
Asahina
,
A.
Poudel
, and
S.
Hirano
, “
Sweating on the palm and sole: Physiological and clinical relevance
,”
Clin. Auton. Res.
25
(
3
),
153
159
(
2015
).
8.
M.
Awad
and
R.
Khanna
, “
Support vector regression
,” in
Efficient Learning Machines
(
Apress
,
Berkeley, CA
,
2015
), pp.
67
80
.
9.
S.
Baccianella
,
A.
Esuli
, and
F.
Sebastiani
, “
Evaluation measures for ordinal regression
,” in
Ninth International Conference on Intelligent Systems Design and Applications
(
IEEE
,
2009
), pp.
283
287
.
10.
D. R.
Bach
,
J.
Daunizeau
,
N.
Kuelzow
,
K. J.
Friston
, and
R. J.
Dolan
, “
Dynamic causal modeling of spontaneous fluctuations in skin conductance
,”
Psychophysiology
48
(
2
),
252
257
(
2011
).
11.
S.
Bai
,
J. Z.
Kolter
, and
V.
Koltun
, “
An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
,”
2018
.
12.
D. S.
Bari
,
H. Y. Y.
Aldosky
,
C.
Tronstad
,
H.
Kalvøy
, and
Ø. G.
Martinsen
, “
Electrodermal responses to discrete stimuli measured by skin conductance, skin potential, and skin susceptance
,”
Skin Res. Technol.
24
(
1
),
108
116
(
2018
).
13.
D. S.
Bari
, “
Gender differences in tonic and phasic electrodermal activity components
,”
Sci. J. Univ. Zakho
8
(
1
),
29
33
(
2020
).
14.
D. S.
Bari
,
H. Y. Y.
Aldosky
,
C.
Tronstad
,
H.
Kalvøy
, and
Ø. G.
Martinsen
, “
Electrodermal activity responses for quantitative assessment of felt pain
,”
J. Electr. Bioimpedance
9
(
1
),
52
58
(
2018
).
15.
D. S.
Bari
,
H. Y. Y.
Aldosky
,
C.
Tronstad
,
H.
Kalvøy
, and
Ø. G.
Martinsen
, “
Influence of relative humidity on electrodermal levels and responses
,”
Skin Pharmacol. Physiol.
31
(
6
),
298
307
(
2018
).
16.
D. S.
Bari
,
M. N. S.
Rammoo
,
H. Y. Y.
Aldosky
,
M. K.
Jaqsi
, and
Ø. G.
Martinsen
, “
The five basic human senses evoke electrodermal activity
,”
Sensors
23
(
19
),
8181
(
2023
).
17.
A.
Beltramini
,
K.
Milojevic
, and
D.
Pateron
, “
Pain assessment in newborns, infants, and children
,”
Pediatr. Ann.
46
(
10
),
e387
e395
(
2017
).
18.
M.
Benedek
and
C.
Kaernbach
, “
A continuous measure of phasic electrodermal activity
,”
J Neurosci. Methods
190
(
1–5
),
80
91
(
2010
).
19.
V.
Bhatkar
,
R.
Picard
, and
C.
Staahl
, “
Combining electrodermal activity with the peak-pain time to quantify three temporal regions of pain experience
,”
Front. Pain Res.
3
,
764128
(
2022
).
20.
M.
Bootsma
,
C. A.
Swenne
,
M. J. A.
Janssen
,
V. M.
Cats
, and
M. J.
Schalij
, “
Heart rate variability and sympathovagal balance: Pharmacological validation
,”
Neth Heart J.
11
(
6
),
250
259
(
2003
).
21.
W.
Boucsein
,
Electrodermal Activity
(
Springer Science & Business Media
,
2012
).
22.
A. P.
Bradley
, “
The use of the area under the ROC curve in the evaluation of machine learning algorithms
,”
Pattern Recognit.
30
(
7
),
1145
1159
(
1997
).
23.
K. H.
Brodersen
,
C. S.
Ong
,
K. E.
Stephan
, and
J. M.
Buhmann
, “
The balanced accuracy and its posterior distribution
,” in
20th International Conference on Pattern Recognition
(
IEEE
,
2010
), pp.
3121
3124
.
24.
A. R.
Burton
,
A.
Fazalbhoy
, and
V. G.
Macefield
, “
Sympathetic responses to noxious stimulation of muscle and skin
,”
Front Neurol
7
,
109
(
2016
).
25.
L. C.
Callister
, “
Cultural influences on pain perceptions and behaviors
,”
Home Health Care Manage. Practice
15
(
3
),
207
211
(
2003
).
26.
S. A.
Cermak
,
L. I.
Stein Duker
,
M. E.
Williams
,
M. E.
Dawson
,
C. J.
Lane
, and
J. C.
Polido
, “
Sensory adapted dental environments to enhance oral care for children with autism spectrum disorders: A randomized controlled pilot study
,”
J. Autism Dev. Disord.
45
(
9
),
2876
2888
(
2015
).
27.
T.
Chai
and
R. R.
Draxler
, “
Root mean square error (RMSE) or mean absolute error (MAE)
,”
Geosci. Model Dev. Discuss.
7
(
1
),
1525
1534
(
2014
).
28.
T.
Chen
and
C.
Guestrin
, “
XGBoost: A scalable tree boosting system
,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, San Francisco, California, USA (
ACM
,
2016
), pp.
785
794
.
29.
L. S.
Chong
,
B.
Lin
, and
E.
Gordis
, “
Racial differences in sympathetic nervous system indicators: Implications and challenges for research
,”
Biol. Psychol.
177
,
108496
(
2023
).
30.
B. A.
Cohn
, “
The vital role of the skin in human natural history
,”
Int. J. Dermatol.
37
(
11
),
821
824
(
1998
).
31.
L.
Colloca
,
T.
Ludman
,
D.
Bouhassira
,
R.
Baron
,
A. H.
Dickenson
,
D.
Yarnitsky
,
R.
Freeman
,
A.
Truini
,
N.
Attal
, and
N. B.
Finnerup
, “
Neuropathic pain
,”
Nat. Rev. Dis. Primers
3
(
1
),
17002
(
2017
).
32.
I.
De Schoenmacker
,
C.
Leu
,
A.
Curt
, and
M.
Hubli
, “
Pain‐autonomic interaction is a reliable measure of pain habituation in healthy subjects
,”
Eur. J. Pain
26
(
8
),
1679
1690
(
2022
).
33.
I.
De Schoenmacker
,
A.
Mollo
,
P. S.
Scheuren
,
L.
Sirucek
,
F.
Brunner
,
P.
Schweinhardt
,
A.
Curt
,
J.
Rosner
, and
M.
Hubli
, “
Central sensitization in CRPS patients with widespread pain: A cross-sectional study
,”
Pain Med.
24
(
8
),
974
984
(
2023
).
34.
A. E.
Dubin
and
A.
Patapoutian
, “
Nociceptors: The sensors of the pain pathway
,”
J. Clin. Invest.
120
(
11
),
3760
3772
(
2010
).
35.
R.
Edelberg
, “
Electrodermal mechanisms: A critique of the two-effector hypothesis and a proposed replacement
,” in
Progress in Electrodermal Research
, edited by
J.-C.
Roy
,
W.
Boucsein
,
D. C.
Fowles
, and
J. H.
Gruzelier
(
Springer US
,
Boston, MA
,
1993
), pp.
7
29
.
36.
C. L.
Edwards
,
R. B.
Fillingim
, and
F.
Keefe
, “
Race, ethnicity and pain
,”
Pain
94
(
2
),
133
137
(
2001
).
37.
M. A.
El-Badawy
and
D. M.
El Mikkawy
, “
Sympathetic dysfunction in patients with chronic low back pain and failed back surgery syndrome
,”
Clin. J. Pain
32
(
3
),
226
231
(
2016
).
38.
I.
Eli
, “
Dental anxiety: A cause for possible misdiagnosis of tooth vitality
,”
Int. Endod. J.
26
(
4
),
251
253
(
1993
).
39.
R.
Fernandez Rojas
,
N.
Brown
,
G.
Waddington
, and
R.
Goecke
, “
A systematic review of neurophysiological sensing for the assessment of acute pain
,”
NPJ Digital Med.
6
(
1
),
76
(
2023
).
40.
M.-A.
Fitzcharles
,
S. P.
Cohen
,
D. J.
Clauw
,
G.
Littlejohn
,
C.
Usui
, and
W.
Häuser
, “
Nociplastic pain: Towards an understanding of prevalent pain conditions
,”
Lancet
397
(
10289
),
2098
2110
(
2021
).
41.
C.
Florence
,
F.
Luo
, and
K.
Rice
, “
The economic burden of opioid use disorder and fatal opioid overdose in the United States, 2017
,”
Drug Alcohol Depend.
218
,
108350
(
2021
).
42.
Y.
Freund
and
R. E.
Schapire
, “
A decision-theoretic generalization of on-line learning and an application to boosting
,”
J. Comput. Syst. Sci.
55
(
1
),
119
139
(
1997
).
43.
F. I. S.
García
,
P.
Indic
,
J.
Stapp
,
K. K.
Chintha
,
Z.
He
,
J. H.
Brooks
,
S.
Carreiro
, and
K. J.
Derefinko
, “
Using wearable technology to detect prescription opioid self-administration
,”
Pain
163
(
2
),
e357
e367
(
2022
).
44.
E. L.
Garland
, “
Pain processing in the human nervous system: A selective review of nociceptive and biobehavioral pathways
,”
Primary Care
39
(
3
),
561
571
(
2012
).
45.
S.
Gashi
,
E.
Di Lascio
,
B.
Stancu
,
V. D.
Swain
,
V.
Mishra
,
M.
Gjoreski
, and
S.
Santini
, “
Detection of artifacts in ambulatory electrodermal activity data
,” in
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(
ACM
,
2020
), Vol.
4
, No.
2
, pp.
1
31
.
46.
A.
Gay
,
J.-M.
Aimonetti
,
J.-P.
Roll
, and
E.
Ribot-Ciscar
, “
Kinesthetic illusions attenuate experimental muscle pain, as do muscle and cutaneous stimulation
,”
Brain Res.
1615
,
148
156
(
2015
).
47.
S.
Ghiasi
,
A.
Greco
,
R.
Barbieri
,
E. P.
Scilingo
, and
G.
Valenza
, “
Assessing autonomic function from electrodermal activity and heart rate variability during cold-pressor test and emotional challenge
,”
Sci. Rep.
10
(
1
),
5406
(
2020
).
48.
P.
Gouverneur
,
F.
Li
,
W. M.
Adamczyk
,
T. M.
Szikszay
,
K.
Luedtke
, and
M.
Grzegorzek
, “
Comparison of feature extraction methods for physiological signals for heat-based pain recognition
,”
Sensors
21
(
14
),
4838
(
2021
).
49.
P.
Gouverneur
,
F.
Li
,
K.
Shirahama
,
L.
Luebke
,
W. M.
Adamczyk
,
T. M.
Szikszay
,
K.
Luedtke
, and
M.
Grzegorzek
, “
Explainable artificial intelligence (XAI) in pain research: Understanding the role of electrodermal activity for automated pain recognition
,”
Sensors
23
(
4
),
1959
(
2023
).
50.
T.
Graven-Nielsen
,
L.
Arendt-Nielsen
,
P.
Svensson
, and
T. S.
Jensen
, “
Experimental muscle pain: A quantitative study of local and referred pain in humans following injection of hypertonic saline
,”
J. Musculoskeletal Pain
5
(
1
),
49
69
(
1997
).
51.
A.
Greco
,
G.
Valenza
,
A.
Lanata
,
E. P.
Scilingo
, and
L.
Citi
, “
cvxEDA: A convex optimization approach to electrodermal activity processing
,”
IEEE Trans. Biomed. Eng.
63
(
4
),
797
804
(
2015
).
52.
J.
Gu
,
Z.
Wang
,
J.
Kuen
,
L.
Ma
,
A.
Shahroudy
,
B.
Shuai
,
T.
Liu
,
X.
Wang
,
G.
Wang
,
J.
Cai
, and
T.
Chen
, “
Recent advances in convolutional neural networks
,”
Pattern Recognit.
77
,
354
377
(
2018
).
53.
F. E.
Harrell
,
K. L.
Lee
, and
D. B.
Mark
, “
Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
,”
Stat. Med.
15
(
4
),
361
387
(
1996
).
54.
F.
Hernando-Gallego
,
D.
Luengo
, and
A.
Artés-Rodríguez
, “
Feature extraction of galvanic skin responses by nonnegative sparse deconvolution
,”
IEEE J. Biomed. Health Inf.
22
(
5
),
1385
1394
(
2018
).
55.
C. L.
Hicks
,
C. L.
von Baeyer
,
P. A.
Spafford
,
I.
van Korlaar
, and
B.
Goodenough
, “
The Faces Pain Scale – Revised: Toward a common metric in pediatric pain measurement
,”
Pain
93
(
2
),
173
(
2001
).
56.
T. K.
Ho
, “
Random decision forests
,” in
Proceedings of 3rd International Conference on Document Analysis and Recognition
(
IEEE
,
1995
), pp.
278
282
.
57.
B. D.
Hodge
,
T.
Sanvictores
, and
R. T.
Brodell
, “
Anatomy, skin sweat glands
,” in
StatPearls
(
StatPearls Publishing
,
Treasure Island, FL
,
2022
).
58.
B.
Horing
,
C.
Sprenger
, and
C.
Büchel
, “
The parietal operculum preferentially encodes heat pain and not salience
,”
PLoS Biol.
17
(
8
),
e3000205
(
2019
).
59.
M.-B.
Hossain
,
Y.
Kong
,
H. F.
Posada-Quintero
, and
K. H.
Chon
, “
Comparison of electrodermal activity from multiple body locations based on standard EDA indices' quality and robustness against motion artifact
,”
Sensors
22
(
9
),
3177
(
2022
).
60.
M.-B.
Hossain
,
H. F.
Posada-Quintero
, and
K. H.
Chon
, “
A deep convolutional autoencoder for automatic motion artifact removal in electrodermal activity
,”
IEEE Trans. Biomed. Eng.
69
(
12
),
3601
3611
(
2022
).
61.
M.-B.
Hossain
,
H. F.
Posada-Quintero
,
Y.
Kong
,
R.
McNaboe
, and
K. H.
Chon
, “
Automatic motion artifact detection in electrodermal activity data using machine learning
,”
Biomed. Signal Process. Control
74
,
103483
(
2022
).
62.
A.
Jain
,
A.
Mishra
,
J.
Shakkarpude
, and
P.
Lakhani
, “
Beta endorphins: The natural opioids
,”
Int. J. Chem. Stud.
7
(
3
),
323
332
(
2019
).
63.
G. W.
Jay
and
R. L.
Barkin
, “
Neuropathic pain: Etiology, pathophysiology, mechanisms, and evaluations
,”
Disease-a-Month
60
(
1
),
6
47
(
2014
).
64.
T. S.
Jensen
,
R.
Baron
,
M.
Haanpää
,
E.
Kalso
,
J. D.
Loeser
,
A. S.
Rice
, and
R.-D.
Treede
, “
A new definition of neuropathic pain
,”
Pain
152
(
10
),
2204
2205
(
2011
).
65.
J. H.
Kang
,
J. K.
Kim
,
S. H.
Hong
,
C. H.
Lee
, and
B. Y.
Choi
, “
Heart rate variability for quantification of autonomic dysfunction in fibromyalgia
,”
Ann. Rehabil. Med.
40
(
2
),
301
309
(
2016
).
66.
O.
Karcioglu
,
H.
Topacoglu
,
O.
Dikme
, and
O.
Dikme
, “
A systematic review of the pain scales in adults: Which to use?
,”
Am. J. Emerg. Med.
36
(
4
),
707
714
(
2018
).
67.
D. M.
Kaufman
,
H. L.
Geyer
, and
M. J.
Milstein
, “
Neurologic aspects of chronic pain
,” in
Kaufman's Clinical Neurology for Psychiatrists
, 8th ed. (
Elsevier
,
2017
), Chap. 14, pp.
307
324
.
68.
Y.
Kong
,
H. F.
Posada-Quintero
, and
K. H.
Chon
, “
Sensitive physiological indices of pain based on differential characteristics of electrodermal activity
,”
IEEE Trans. Biomed. Eng.
68
(
10
),
3122
3130
(
2021
).
69.
Y.
Kong
,
H. F.
Posada-Quintero
, and
K. H.
Chon
, “
Real-time high-level acute pain detection using a smartphone and a wrist-worn electrodermal activity sensor
,”
Sensors
21
(
12
),
3956
(
2021
).
70.
Y.
Kong
,
H. F.
Posada-Quintero
, and
K. H.
Chon
, “
Multi-level pain quantification using a smartphone and electrodermal activity
,” in
44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
(
IEEE
,
2022
).
71.
Y.
Kong
,
H. F.
Posada-Quintero
,
H.
Tran
,
A.
Talati
,
T. J.
Acquista
,
I.-P.
Chen
, and
K. H.
Chon
, “
Differentiating between stress-and EPT-induced electrodermal activity during dental examination
,”
Comput. Biol. Med.
155
,
106695
(
2023
).
72.
T. K.
Koo
and
M. Y.
Li
, “
A guideline of selecting and reporting intraclass correlation coefficients for reliability research
,”
J. Chiropractic Med.
15
(
2
),
155
163
(
2016
).
73.
H.
Korving
,
D.
Zhou
,
H.
Xiang
,
P.
Sterkenburg
,
P.
Markopoulos
, and
E.
Barakova
, “
Development of an AI-enabled system for pain monitoring using skin conductance sensoring in socks
,”
Int. J. Neural Syst.
32
(
10
),
2250047
(
2022
).
74.
P.
Kucera
,
Z.
Goldenberg
, and
E.
Kurca
, “
Sympathetic skin response: Review of the method and its clinical use
,”
Bratisl. Lek. Listy
105
(
3
),
108
116
(
2004
).
75.
A.
Kusumaningrum
,
Y.
Rustina
,
T.
Abuzairi
,
N.
Ibrahim
,
N.
Widanti
, and
G. R.
Lestari
, “
Analysis of the infant's acute pain assessment using developed conductance skin electric instrument compared to the behavioural and faces pain scale in painful injected vaccine
,”
Pediatr. Med. Chir.
45
(
s1
) (
2023
).
76.
I.
Kvachadze
,
M. G.
Tsagareli
, and
Z.
Dumbadze
, “
An overview of ethnic and gender differences in pain sensation
,”
Georgian Med. News
1
(
238
),
102
108
(
2015
).
77.
A.
Latremoliere
and
C. J.
Woolf
, “
Central sensitization: A generator of pain hypersensitivity by central neural plasticity
,”
J. Pain
10
(
9
),
895
926
(
2009
).
78.
J.
Lawrence
,
D.
Alcock
,
P.
McGrath
,
J.
Kay
,
S. B.
MacMurray
, and
C.
Dulberg
, “
The development of a tool to assess neonatal pain
,”
Neonatal Network
12
(
6
),
59
66
(
1993
).
79.
C.
Lea
,
R.
Vidal
,
A.
Reiter
, and
G. D.
Hager
, “
Temporal convolutional networks: A unified approach to action segmentation
,” in
Computer Vision—ECCV 2016 Workshops
, edited by
G.
Hua
and
H.
Jégou
(
Springer International Publishing
,
Cham
,
2016
), pp.
47
54
.
80.
S.
Li
,
B.
Sung
,
Y.
Lin
, and
O.
Mitas
, “
Electrodermal activity measure: A methodological review
,”
Ann. Tourism Res.
96
,
103460
(
2022
).
81.
X.
Liu
,
F.
Zhang
,
Z.
Hou
,
L.
Mian
,
Z.
Wang
,
J.
Zhang
, and
J.
Tang
, “
Self-supervised learning: Generative or contrastive
,”
IEEE Trans. Knowl. Data Eng.
35
(
1
),
857
876
(
2021
).
82.
M. L.
Loggia
,
M.
Juneau
, and
C. M.
Bushnell
, “
Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity
,”
Pain
152
(
3
),
592
598
(
2011
).
83.
D.
Lopez-Martinez
and
R.
Picard
, “
Continuous pain intensity estimation from autonomic signals with recurrent neural networks
,” in
40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
(
IEEE
,
2018
), pp.
5624
5627
.
84.
F.
Luo
,
M.
Li
, and
C.
Florence
, “
State-level economic costs of opioid use disorder and fatal opioid overdose—United States, 2017
,”
Morb. Mortal. Wkly. Rep.
70
(
15
),
541
(
2021
).
85.
R.
Lütolf
,
J.
Rosner
,
A.
Curt
, and
M.
Hubli
, “
Indicators of central sensitization in chronic neuropathic pain after spinal cord injury
,”
Eur. J. Pain
26
(
10
),
2162
2175
(
2022
).
86.
A. L.
MacNeill
and
D. J.
Mayich
, “
A physiological assessment of patient pain during surgery with wide-awake local anesthesia
,”
J. Orthop.
19
,
158
161
(
2020
).
87.
K.
Marinkovic
,
D.
Woodruff
,
D. R.
White
,
M. M.
Caudle
, and
T.
Cronan
, “
Neural indices of multimodal sensory and autonomic hyperexcitability in fibromyalgia
,”
Neurobiol. Pain
14
,
100140
(
2023
).
88.
Ø.
Martinsen
,
S.
Grimnes
, and
J.
Karlsen
, “
Electrical methods for skin moisture assessment
,”
Skin Pharmacol. Physiol.
8
(
5
),
237
245
(
1995
).
89.
Ø. G.
Martinsen
,
S.
Grimnes
,
J. K.
Nilsen
,
C.
Tronstad
,
W.
Jang
,
H.
Kim
,
K.
Shin
,
M.
Naderi
, and
F.
Thielmann
, “
Gravimetric method for in vitro calibration of skin hydration measurements
,”
IEEE Trans. Biomed. Eng.
55
(
2
),
728
732
(
2008
).
90.
L. K.
McCorry
, “
Physiology of the autonomic nervous system
,”
Am. J. Pharm. Educ.
71
(
4
),
78
(
2007
).
91.
D. B.
McGuire
,
K. S.
Kaiser
,
M. E.
Haisfield-Wolfe
, and
F.
Iyamu
, “
Pain assessment in noncommunicative adult palliative care patients
,”
Nurs. Clin.
51
(
3
),
397
431
(
2016
).
92.
S. I.
Merkel
,
T.
Voepel-Lewis
,
J. R.
Shayevitz
, and
S.
Malviya
, “
The FLACC: A behavioral scale for scoring postoperative pain in young children
,”
Pediatr. Nurs.
23
(
3
),
293
297
(
1997
).
93.
L. A.
Mitchell
,
R. A. R.
MacDonald
, and
E. E.
Brodie
, “
Temperature and the cold pressor test
,”
J. Pain
5
(
4
),
233
237
(
2004
).
94.
J. G.
Modir
and
M. S.
Wallace
, “
Human experimental pain models 3: Heat/capsaicin sensitization and intradermal capsaicin models
,”
Methods Mol. Biol.
617
,
169
174
(
2010
).
95.
S.
Moscato
,
S.
Orlandi
,
A.
Giannelli
,
R.
Ostan
, and
L.
Chiari
, “
Automatic pain assessment on cancer patients using physiological signals recorded in real-world contexts
,” in
44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
(
IEEE
,
2022
), pp.
1931
1934
.
96.
A.
Mucherino
,
P. J.
Papajorgji
, and
P. M.
Pardalos
, “
k-nearest neighbor classification
,” in
Data Mining in Agriculture
(
Springer New York
,
New York, NY
,
2009
), pp.
83
106
.
97.
A. J.
Myles
,
R. N.
Feudale
,
Y.
Liu
,
N. A.
Woody
, and
S. D.
Brown
, “
An introduction to decision tree modeling
,”
J. Chemom.
18
(
6
),
275
285
(
2004
).
98.
E. K.
Naeini
,
S.
Shahhosseini
,
A.
Subramanian
,
T.
Yin
,
A. M.
Rahmani
, and
N.
Dutt
, “
An edge-assisted and smart system for real-time pain monitoring
,” in
IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)
(
IEEE
,
2019
), pp.
47
52
.
99.
N. J.
Nagelkerke
, “
A note on a general definition of the coefficient of determination
,”
Biometrika
78
(
3
),
691
692
(
1991
).
100.
D.
Naranjo-Hernández
,
J.
Reina-Tosina
, and
L. M.
Roa
, “
Sensor technologies to manage the physiological traits of chronic pain: A review
,”
Sensors
20
(
2
),
365
(
2020
).
101.
National Institute on Drug Abuse
, “
Drug overdose death rates
,”
2023
.
102.
T. G.
Nick
and
K. M.
Campbell
, “
Logistic regression
,” in
Topics in Biostatistics
, edited by
W. T.
Ambrosius
(
Humana Press
,
Totowa, NJ
,
2007
), pp.
273
301
.
103.
M. M.
Nickel
,
E. S.
May
,
L.
Tiemann
,
M.
Postorino
,
S. T.
Dinh
, and
M.
Ploner
, “
Autonomic responses to tonic pain are more closely related to stimulus intensity than to pain intensity
,”
Pain
158
(
11
),
2129
2136
(
2017
).
104.
M. M.
Nickel
,
E. S.
May
,
L.
Tiemann
,
P.
Schmidt
,
M.
Postorino
,
S. T.
Dinh
,
J.
Gross
, and
M.
Ploner
, “
Brain oscillations differentially encode noxious stimulus intensity and pain intensity
,”
Neuroimage
148
,
141
147
(
2017
).
105.
K. B.
Nilsen
,
T.
Sand
,
R. H.
Westgaard
,
L. J.
Stovner
,
L. R.
White
,
R. B.
Leistad
,
G.
Helde
, and
M.
, “
Autonomic activation and pain in response to low-grade mental stress in fibromyalgia and shoulder/neck pain patients
,”
Eur. J. Pain
11
(
7
),
743
755
(
2007
).
106.
W. S.
Noble
, “
What is a support vector machine?
,”
Nat. Biotechnol.
24
(
12
),
1565
1567
(
2006
).
107.
F.
Noël
,
C.
Piérard-Franchimont
,
G. E.
Piérard
, and
P.
Quatresooz
, “
Sweaty skin, background and assessments
,”
Int. J. Dermatol.
51
(
6
),
647
655
(
2012
).
108.
H. M.
O'Leary
,
P. B.
Marschik
,
O. S.
Khwaja
,
E.
Ho
,
K. V.
Barnes
,
T. W.
Clarkson
,
N. M.
Bruck
, and
W. E.
Kaufmann
, “
Detecting autonomic response to pain in Rett syndrome
,”
Dev. Neurorehabil.
20
(
2
),
108
114
(
2017
).
109.
E.
Othman
,
P.
Werner
,
F.
Saxen
,
A.
Al-Hamadi
,
S.
Gruss
, and
S.
Walter
, “
Automated electrodermal activity and facial expression analysis for continuous pain intensity monitoring on the X-ITE pain database
,”
Life
13
(
9
),
1828
(
2023
).
110.
E.
Othman
,
P.
Werner
,
F.
Saxen
,
M.-A.
Fiedler
, and
A.
Al-Hamadi
, “
An automatic system for continuous pain intensity monitoring based on analyzing data from uni-, bi-, and multi-modality
,”
Sensors
22
(
13
),
4992
(
2022
).
111.
G. A. R.
del Paso
and
P.
de la Coba
, “
Reduced activity, reactivity and functionality of the sympathetic nervous system in fibromyalgia: An electrodermal study
,”
PLOS ONE
15
(
10
),
e0241154
(
2020
).
112.
A. F. H.
Payne
,
A. M.
Schell
, and
M. E.
Dawson
, “
Lapses in skin conductance responding across anatomical sites: Comparison of fingers, feet, forehead, and wrist
,”
Psychophysiology
53
(
7
),
1084
1092
(
2016
).
113.
J.
Perry
and
A.
Green
, “
A longitudinal observational clinical study of neurophysiological and patient-reported responses to a program of physiotherapy for acute and subacute low back pain
,”
J. Manipulative Physiol. Ther.
41
(
6
),
456
466
(
2018
).
114.
C.
Petschow
,
L.
Scheef
,
S.
Paus
,
N.
Zimmermann
,
H. H.
Schild
,
T.
Klockgether
, and
H.
Boecker
, “
Central pain processing in early-stage Parkinson's disease: A laser pain fMRI study
,”
PLOS ONE
11
(
10
),
e0164607
(
2016
).
115.
J. O.
Pinzon-Arenas
,
Y.
Kong
,
K. H.
Chon
, and
H. F.
Posada-Quintero
, “
Design and evaluation of deep learning models for continuous acute pain detection based on phasic electrodermal activity
,”
IEEE J. Biomed. Health Inf.
27
(
9
):
4250
4260
(
2023
).
116.
M.-C.
Popescu
,
V. E.
Balas
,
L.
Perescu-Popescu
, and
N.
Mastorakis
, “
Multilayer perceptron and neural networks
,”
WSEAS Trans. Circuits Syst.
8
(
7
),
579
588
(
2009
).
117.
H. F.
Posada-Quintero
and
K. H.
Chon
, “
Innovations in electrodermal activity data collection and signal processing: A systematic review
,”
Sensors
20
(
2
),
479
(
2020
).
118.
H. F.
Posada-Quintero
,
J. P.
Florian
,
A. D.
Orjuela-Cañón
,
T.
Aljama-Corrales
,
S.
Charleston-Villalobos
, and
K. H.
Chon
, “
Power spectral density analysis of electrodermal activity for sympathetic function assessment
,”
Ann. Biomed. Eng.
44
(
10
),
3124
3135
(
2016
).
119.
H. F.
Posada-Quintero
,
J. P.
Florian
,
Á. D.
Orjuela-Cañón
, and
K. H.
Chon
, “
Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity
,”
Am. J. Physiol.
311
(
3
),
R582
R591
(
2016
).
120.
H. F.
Posada-Quintero
,
J. P.
Florian
,
A. D.
Orjuela-Cañón
, and
K. H.
Chon
, “
Electrodermal activity is sensitive to cognitive stress under water
,”
Front. Physiol.
8
,
1128
(
2018
).
121.
H. F.
Posada-Quintero
,
J. B.
Bolkhovsky
,
M.
Qin
, and
K. H.
Chon
, “
Human performance deterioration due to prolonged wakefulness can be accurately detected using time-varying spectral analysis of electrodermal activity
,”
Human Factors
60
(
7
),
1035
1047
(
2018
).
122.
H. F.
Posada-Quintero
,
Y.
Kong
, and
K. H.
Chon
, “
Objective pain stimulation intensity and pain sensation assessment using machine learning classification and regression based on electrodermal activity
,”
Am. J. Physiol.
321
(
2
),
R186
R196
(
2021
).
123.
H. F.
Posada-Quintero
,
Y.
Kong
,
K.
Nguyen
,
C.
Tran
,
L.
Beardslee
,
L.
Chen
,
T.
Guo
,
X.
Cong
,
B.
Feng
, and
K. H.
Chon
, “
Using electrodermal activity to validate multilevel pain stimulation in healthy volunteers evoked by thermal grills
,”
Am. J. Physiol.
319
(
3
),
R366
R375
(
2020
).
124.
F.
Pouromran
,
Y.
Lin
, and
S.
Kamarthi
, “
Personalized deep bi-LSTM RNN based model for pain intensity classification using EDA signal
,”
Sensors
22
(
21
),
8087
(
2022
).
125.
F.
Pouromran
,
S.
Radhakrishnan
, and
S.
Kamarthi
, “
Exploration of physiological sensors, features, and machine learning models for pain intensity estimation
,”
PLOS ONE
16
(
7
),
e0254108
(
2021
).
126.
M. S.
Qasim
,
D. S.
Bari
, and
Ø. G.
Martinsen
, “
Influence of ambient temperature on tonic and phasic electrodermal activity components
,”
Physiol. Meas.
43
(
6
),
065001
(
2022
).
127.
E.
Qiao-Tasserit
,
C.
Corradi-Dell'Acqua
, and
P.
Vuilleumier
, “
The good, the bad, and the suffering. Transient emotional episodes modulate the neural circuits of pain and empathy
,”
Neuropsychologia
116
,
99
116
(
2018
).
128.
C.
Quesada
,
A.
Kostenko
,
I.
Ho
,
C.
Leone
,
Z.
Nochi
,
A.
Stouffs
,
M.
Wittayer
,
O.
Caspani
,
N.
Brix Finnerup
,
A.
Mouraux
,
G.
Pickering
,
I.
Tracey
,
A.
Truini
,
R.-D.
Treede
, and
L.
Garcia-Larrea
, “
Human surrogate models of central sensitization: A critical review and practical guide
,”
Eur. J. Pain
25
(
7
),
1389
1428
(
2021
).
129.
S. N.
Raja
,
D. B.
Carr
,
M.
Cohen
,
N. B.
Finnerup
,
H.
Flor
,
S.
Gibson
,
F.
Keefe
,
J. S.
Mogil
,
M.
Ringkamp
,
K. A.
Sluka
,
X.-J.
Song
,
B.
Stevens
,
M.
Sullivan
,
P.
Tutelman
,
T.
Ushida
, and
K.
Vader
, “
The revised IASP definition of pain: Concepts, challenges, and compromises
,”
Pain
161
(
9
),
1976
1982
(
2020
).
130.
J. L.
Rhudy
,
E. J.
Bartley
, and
A. E.
Williams
, “
Habituation, sensitization, and emotional valence modulation of pain responses
,”
Pain
148
(
2
),
320
(
2010
).
131.
C.
Salameh
,
C.
Perchet
,
K.
Hagiwara
, and
L.
Garcia-Larrea
, “
Sympathetic skin response as an objective tool to estimate stimulus-associated arousal in a human model of hyperalgesia
,”
Neurophysiol. Clin.
52
(
6
),
436
445
(
2022
).
132.
P. S.
Scheuren
,
S.
Bösch
,
J.
Rosner
,
F.
Allmendinger
,
J. L. K.
Kramer
,
A.
Curt
, and
M.
Hubli
, “
Priming of the autonomic nervous system after an experimental human pain model
,”
J. Neurophysiol.
130
(
2
),
436
446
(
2023
).
133.
P. S.
Scheuren
,
I.
De Schoenmacker
,
J.
Rosner
,
F.
Brunner
,
A.
Curt
, and
M.
Hubli
, “
Pain‐autonomic measures reveal nociceptive sensitization in complex regional pain syndrome
,”
Eur. J. Pain
27
(
1
),
72
85
(
2023
).
134.
P. S.
Scheuren
,
J.
Rosner
,
A.
Curt
, and
M.
Hubli
, “
Pain-autonomic interaction: A surrogate marker of central sensitization
,”
Eur. J. Pain
24
(
10
),
2015
2026
(
2020
).
135.
T.
Schlereth
and
F.
Birklein
, “
The Sympathetic Nervous System and Pain
,”
Neuromol. Med.
10
(
3
),
141
147
(
2008
).
136.
J.
Schmidhuber
, “
Deep learning in neural networks: An overview
,”
Neural Networks
61
,
85
117
(
2015
).
137.
R.
Sebastião
,
A.
Bento
, and
S.
Brás
, “
Analysis of physiological responses during pain induction
,”
Sensors
22
(
23
),
9276
(
2022
).
138.
F.
Shaffer
and
J. P.
Ginsberg
, “
An overview of heart rate variability metrics and norms
,”
Front. Public Health
5
,
258
(
2017
).
139.
A.
Sherstinsky
, “
Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
,”
Phys. D
404
,
132306
(
2020
).
140.
H.
Shi
,
B.
Chikhaoui
, and
S.
Wang
, “
Tree-Based models for pain detection from biomedical signals
,” in
Participative Urban Health and Healthy Aging in the Age of AI
, edited by
H.
Aloulou
,
B.
Abdulrazak
,
A.
De Marassé-Enouf
, and
M.
Mokhtari
(
Springer International Publishing
,
Cham
,
2022
), pp.
183
195
.
141.
S. A.
Shields
,
K. A.
MacDowell
,
S. B.
Fairchild
, and
M. L.
Campbell
, “
Is mediation of sweating cholinergic, adrenergic, or both? A comment on the literature
,”
Psychophysiology
24
(
3
),
312
319
(
1987
).
142.
D. A.
Shin
and
M. C.
Chang
, “
A review on various topics on the thermal grill illusion
,”
J. Clin. Med.
10
(
16
),
3597
(
2021
).
143.
J.
Shukla
,
M.
Barreda-Ángeles
,
J.
Oliver
, and
D.
Puig
, “
Efficient wavelet-based artifact removal for electrodermal activity in real-world applications
,”
Biomed. Signal Process. Control
42
,
45
52
(
2018
).
144.
E.
Skorupska
,
T.
Dybek
,
D.
Wotzka
,
M.
Rychlik
,
M.
Jokiel
,
P.
Pakosz
,
M.
Konieczny
,
P.
Domaszewski
, and
P.
Dobrakowski
, “
MATLAB analysis of SP test results—An unusual parasympathetic nervous system activity in low back leg pain: A case report
,”
Appl. Sci.
12
(
4
),
1970
(
2022
).
145.
S. A.
Smith
,
R.
Norbury
,
A. J.
Hunt
, and
A. R.
Mauger
, “
Intra- and interindividual reliability of muscle pain induced by an intramuscular injection of hypertonic saline injection into the quadriceps
,”
Eur. J. Pain
27
(
10
),
1216
1225
(
2023
).
146.
W.
Boucsein
,
D. C.
Fowles
,
S.
Grimnes
,
G.
Ben-Shakhar
,
W. T.
Roth
,
M. E.
Dawson
,
D. L.
Filion
, and
Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures
, “
Publication recommendations for electrodermal measurements
,”
Psychophysiology
49
(
8
),
1017
1034
(
2012
).
147.
C. E.
Steeds
, “
The anatomy and physiology of pain
,”
Surgery
27
(
12
),
507
511
(
2009
).
148.
H.
Storm
,
A.
Fremming
,
S.
Ødegaard
,
Ø. G.
Martinsen
, and
L.
Mørkrid
, “
The development of a software program for analyzing spontaneous and externally elicited skin conductance changes in infants and adults
,”
Clin. Neurophysiol.
111
(
10
),
1889
1898
(
2000
).
149.
I. A.
Strigo
,
F.
Carli
, and
M. C.
Bushnell
, “
Effect of ambient temperature on human pain and temperature perception
,”
J. Am. Soc. Anesthesiol.
92
(
3
),
699
707
(
2000
).
150.
S. D.
Subramaniam
and
B.
Dass
, “
Automated nociceptive pain assessment using physiological signals and a hybrid deep learning network
,”
IEEE Sens. J.
21
(
3
),
3335
3343
(
2021
).
151.
S.
Sugimine
,
S.
Saito
, and
T.
Takazawa
, “
Normalized skin conductance level could differentiate physical pain stimuli from other sympathetic stimuli
,”
Sci. Rep.
10
(
1
),
10950
(
2020
).
152.
B. T.
Susam
,
M.
Akcakaya
,
H.
Nezamfar
,
D.
Diaz
,
X.
Xu
,
V. R.
de Sa
,
K. D.
Craig
,
J. S.
Huang
, and
M. S.
Goodwin
, “
Automated pain assessment using electrodermal activity data and machine learning
,” in
40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
(
IEEE
,
2018
), pp.
372
375
.
153.
B. T.
Susam
,
N. T.
Riek
,
M.
Akcakaya
,
X.
Xu
,
V. R.
de Sa
,
H.
Nezamfar
,
D.
Diaz
,
K. D.
Craig
,
M. S.
Goodwin
, and
J. S.
Huang
, “
Automated pain assessment in children using electrodermal activity and video data fusion via machine learning
,”
IEEE Trans. Biomed. Eng.
69
(
1
),
422
431
(
2022
).
154.
E.
Syrjälä
,
M.
Jiang
,
T.
Pahikkala
,
S.
Salanterä
, and
P.
Liljeberg
, “
Skin conductance response to gradual-increasing experimental pain
,” in
41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
(
IEEE
,
2019
), pp.
3482
3485
.
155.
G.
Szabo
, “
The regional anatomy of the human integument with special reference to the distribution of hair follicles, sweat glands and melanocytes
,”
Philos. Trans. R. Soc. B
252
(
779
),
447
485
(
1967
).
156.
A. A.
Taha
and
A.
Hanbury
, “
Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool
,”
BMC Med. Imaging
15
(
1
),
29
(
2015
).
157.
P.
Thiam
,
P.
Bellmann
,
H. A.
Kestler
, and
F.
Schwenker
, “
Exploring deep physiological models for nociceptive pain recognition
,”
Sensors
19
(
20
),
4503
(
2019
).
158.
P.
Thiam
,
H.
Hihn
,
D. A.
Braun
,
H. A.
Kestler
, and
F.
Schwenker
, “
Multi-modal pain intensity assessment based on physiological signals: A deep learning perspective
,”
Front. Physiol.
12
,
720464
(
2021
).
159.
H.
Tran
,
Y.
Kong
,
A.
Talati
,
H.
Posada-Quintero
,
K.
Chon
, and
I.-P.
Chen
, “
The use of electrodermal activity in pulpal diagnosis and dental pain assessment
,”
Int. Endod. J.
56
(
3
),
356
368
(
2023
).
160.
R.
Treister
,
M.
Kliger
,
G.
Zuckerman
,
I. G.
Aryeh
, and
E.
Eisenberg
, “
Differentiating between heat pain intensities: The combined effect of multiple autonomic parameters
,”
Pain
153
(
9
),
1807
1814
(
2012
).
161.
G.
Turpin
and
T.
Grandfield
, “
Electrodermal activity
,” in
Encyclopedia of Stress
, 2nd ed., edited by
G.
Fink
(
Academic Press
,
New York
,
2007
), pp.
899
902
.
162.
A.
Vaswani
,
N.
Shazeer
,
N.
Parmar
,
J.
Uszkoreit
,
L.
Jones
,
A. N.
Gomez
,
Ł.
Kaiser
, and
I.
Polosukhin
, “
Attention is all you need
,” in
Advances in neural information processing systems
(
Curran Associates, Inc.
,
2017
), Vol.
30
.
163.
P.
Veinante
,
I.
Yalcin
, and
M.
Barrot
, “
The amygdala between sensation and affect: A role in pain
,”
J. Mol. Psychiatry
1
(
1
),
9
(
2013
).
164.
B. G.
Wallin
, “
Sympathetic nerve activity underlying electrodermal and cardiovascular reactions in man
,”
Psychophysiology
18
(
4
),
470
476
(
1981
).
165.
J. A.
Waxenbaum
,
V.
Reddy
, and
M.
Varacallo
, “
Anatomy, autonomic nervous system
,” in
StatPearls
(
StatPearls Publishing
,
Treasure Island, FL
,
2023
).
166.
P.
Werner
,
D.
Lopez-Martinez
,
S.
Walter
,
A.
Al-Hamadi
,
S.
Gruss
, and
R. W.
Picard
, “
Automatic recognition methods supporting pain assessment: A survey
,”
IEEE Trans. Affective Comput.
13
(
1
),
530
552
(
2022
).
167.
A.
Williamson
and
B.
Hoggart
, “
Pain: A review of three commonly used pain rating scales
,”
J. Clin. Nurs.
14
(
7
),
798
804
(
2005
).
168.
N.
Wilson
, “
Drug and opioid-involved overdose deaths—United States, 2017–2018
,”
Morb. Mortal. Wkly. Rep.
69
,
290
(
2020
).
169.
K. M.
Woodrow
,
G. D.
Friedman
,
A. B.
Siegelaub
, and
M. F.
Collen
, “
Pain tolerance: Differences according to age, sex and race
,”
Psychosom. Med.
34
(
6
),
548
556
(
1972
).
170.
X.
Xu
,
B. T.
Susam
,
H.
Nezamfar
,
D.
Diaz
,
K. D.
Craig
,
M. S.
Goodwin
,
M.
Akcakaya
,
J. S.
Huang
, and
V. R.
de Sa
, “
Towards automated pain detection in children using facial and electrodermal activity
,” in
International Workshop on Artificial Intelligence in Health
(
Springer
,
2018
), pp.
181
189
.
171.
M. F.
Yam
,
Y. C.
Loh
,
C. S.
Tan
,
S.
Khadijah Adam
,
N.
Abdul Manan
, and
R.
Basir
, “
General pathways of pain sensation and the major neurotransmitters involved in pain regulation
,”
Int. J. Mol. Sci.
19
(
8
),
2164
(
2018
).
172.
T. D.
Yeater
,
D. J.
Clark
,
L.
Hoyos
,
P. A.
Valdes-Hernandez
,
J. A.
Peraza
,
K. D.
Allen
, and
Y.
Cruz-Almeida
, “
Chronic pain is associated with reduced sympathetic nervous system reactivity during simple and complex walking tasks: Potential cerebral mechanisms
,”
Chronic Stress
5
,
24705470211030273
(
2021
).
173.
A.
Zafar
,
M.
Aamir
,
N.
Mohd Nawi
,
A.
Arshad
,
S.
Riaz
,
A.
Alruban
,
A. K.
Dutta
, and
S.
Almotairi
, “
A comparison of pooling methods for convolutional neural networks
,”
Appl. Sci.
12
(
17
),
8643
(
2022
).
174.
Y.
Zhang
,
M.
Haghdan
, and
K. S.
Xu
, “
Unsupervised motion artifact detection in wrist-measured electrodermal activity data
,” in
Proceedings of the 2017 ACM International Symposium on Wearable Computers
(
ACM
,
2017
), pp.
54
57
.
You do not currently have access to this content.