The global trends of urbanization and industrialization have given rise to critical environmental and air pollution issues that often receive insufficient attention. Among the myriad pollution sources, volatile organic compounds (VOCs) stand out as a primary cluster, posing a significant threat to human society. Addressing VOCs emissions requires an effective mitigation action plan, placing technological development, especially in detection, at the forefront. Photonic sensing technologies rooted in the infrared (IR) light and matter interaction mechanism offer nondestructive, fast-response, sensitive, and selective chemical measurements, making them a promising solution for VOC detection. Recent strides in nanofabrication processes have facilitated the development of miniaturized photonic devices and thus sparked growing interest in the creation of low-cost, highly selective, sensitive, and fast-response IR optical sensors for VOC detection. This review work thus serves a timely need to provide the community a comprehensive understanding of the state of the art in this field and illuminate the path forward in addressing the pressing issue of VOC pollution.

1.
See https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds for “
Technical Overview of Volatile Organic Compounds
.”
3.
J.
Kesselmeier
and
M.
Staudt
, “
Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology
,”
J. Atmos. Chem.
33
,
23
88
(
1999
).
4.
N.
Dudareva
,
A.
Klempien
,
J. K.
Muhlemann
, and
I.
Kaplan
, “
Biosynthesis, function and metabolic engineering of plant volatile organic compounds
,”
New Phytol.
198
(
1
),
16
32
(
2013
).
5.
V.
Ninkovic
,
D.
Markovic
, and
M.
Rensing
, “
Plant volatiles as cues and signals in plant communication
,”
Plant Cell Environ.
44
(
4
),
1030
1043
(
2021
).
6.
W. A.
Dement
,
B. J.
Tyson
, and
H. A.
Mooney
, “
Mechanism of monoterpene volatilization in Salvia mellifera
,”
Phytochemistry
14
(
12
),
2555
2557
(
1975
).
7.
J. K.
Holopainen
and
J.
Gershenzon
, “
Multiple stress factors and the emission of plant VOCs
,”
Trends Plant Sci.
15
(
3
),
176
184
(
2010
).
8.
A.
Manolls
, “
The diagnostic potential of breath analysis
,”
Clin. Chem.
29
(
1
),
5
(
1983
).
9.
S.
Chen
,
L.
Zieve
, and
V.
Mahadevan
, “
Mercaptans and dimethyl sulfide in the breath of patients with cirrhosis of the liver: Effect of feeding methionine
,”
J. Lab. Clin. Med.
75
(
4
),
628
635
(
1970
), see https://www.translationalres.com/article/0022-2143(70)90161-7/abstract.
10.
B.
Wzorek
,
P.
Mochalski
,
I.
Śliwka
, and
A.
Amann
, “
Application of GC-MS with a SPME and thermal desorption technique for determination of dimethylamine and trimethylamine in gaseous samples for medical diagnostic purposes
,”
J. Breath Res.
4
(
2
),
026002
(
2010
).
11.
M.
Phillips
,
K.
Gleeson
,
J. M. B.
Hughes
,
J.
Greenberg
,
R. N.
Cataneo
,
L.
Baker
, and
W. P.
McVay
, “
Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study
,”
Lancet
353
(
9168
),
1930
1933
(
1999
).
12.
M.
Shirasu
and
K.
Touhara
, “
The scent of disease: Volatile organic compounds of the human body related to disease and disorder
,”
J. Biochem.
150
(
3
),
257
266
(
2011
).
13.
P.
Kuśtrowski
,
A.
Rokicińska
, and
T.
Kondratowicz
, in
Advances in Inorganic Chemistry
(
Academic Press
,
2018
), pp.
385
419
.
14.
N. T.
Kim Oanh
,
A.
Tipayarom
,
T. L.
Bich
,
D.
Tipayarom
,
C. D.
Simpson
,
D.
Hardie
, and
L.-J.
Sally Liu
, “
Characterization of gaseous and semi-volatile organic compounds emitted from field burning of rice straw
,”
Atmos. Environ.
119
,
182
191
(
2015
).
15.
V.
Fetisov
,
A. M.
Gonopolsky
,
H.
Davardoost
,
A. R.
Ghanbari
, and
A. H.
Mohammadi
, “
Regulation and impact of VOC and CO2 emissions on low-carbon energy systems resilient to climate change: A case study on an environmental issue in the oil and gas industry
,”
Energy Sci. Eng.
11
(
4
),
1516
1535
(
2023
).
16.
B.-R.
Kim
, “
VOC emissions from automotive painting and their control: A review
,”
Environ. Eng. Res.
16
(
1
),
1
9
(
2011
).
17.
A. L.
Clobes
,
G. P.
Ananth
,
A. L.
Hood
,
J. A.
Schroeder
, and
K. A.
Lee
, “
Human activities as sources of volatile organic compounds in residential environments
,”
Ann. N. Y. Acad. Sci.
641
(
1
),
79
86
(
1992
).
18.
M.
Mahilang
,
M. K.
Deb
, and
S.
Pervez
, “
Biogenic secondary organic aerosols: A review on formation mechanism, analytical challenges and environmental impacts
,”
Chemosphere
262
,
127771
(
2021
).
19.
L.
Mølhave
,
G.
Clausen
,
B.
Berglund
,
J.
De Ceaurriz
,
A.
Kettrup
,
T.
Lindvall
,
M.
Maroni
,
A. C.
Pickering
,
U.
Risse
,
H.
Rothweiler
,
B.
Seifert
, and
M.
Younes
, “
Total volatile organic compounds (TVOC) in indoor air quality investigations
,”
Indoor Air
7
(
4
),
225
240
(
1997
).
20.
T.
Salthammer
, “
TVOC - Revisited
,”
Environ. Int.
167
,
107440
(
2022
).
21.
See https://www.eea.europa.eu/data-and-maps/figures/variations-1990-2020-2000-2020 for “
Variations (1990–2020, 2000–2020 for PM10/PM2.5) in the Emissions of Pollutants From Transport by Mode in EU-27
.”
22.
See https://www.cdc.gov/niosh/docs/92-100/default.html for “
NIOSH Recommendations for Occupational Safety and Health. Compendium of Policy Documents and Statements
.”
23.
See https://public.wmo.int/en/resources/bulletin/changing-volatile-organic-compound-emissions-urban-environments-many-paths for “
Changing Volatile Organic Compound Emissions in Urban Environments: Many Paths to Cleaner Air
.”
24.
A. H.
Jalal
,
F.
Alam
,
S.
Roychoudhury
,
Y.
Umasankar
,
N.
Pala
, and
S.
Bhansali
, “
Prospects and challenges of volatile organic compound sensors in human healthcare
,”
ACS Sens.
3
(
7
),
1246
1263
(
2018
).
25.
M.
Khatib
and
H.
Haick
, “
Sensors for volatile organic compounds
,”
ACS Nano
16
(
5
),
7080
7115
(
2022
).
26.
See https://www.mordorintelligence.com/industry-reports/volatile-organic-compound-gas-sensor-market for “
Global Volatile Organic Compound Gas Sensor Market (2021–2026), Mordor Intelligence
.”
28.
K.
Tang
,
M.
Qin
,
W.
Fang
,
J.
Duan
,
F.
Meng
,
K.
Ye
,
H.
Zhang
,
P.
Xie
,
Y.
He
,
W.
Xu
,
J.
Liu
, and
W.
Liu
,
Simultaneous Detection of Atmospheric HONO and NO2 Utilizing an IBBCEAS System Based on an Iterative Algorithm
(
Gases/In Situ Measurement/Instruments and Platforms
,
2020
).
29.
S.
Khan
,
S.
Le Calvé
, and
D.
Newport
, “
A review of optical interferometry techniques for VOC detection
,”
Sens. Actuators, A
302
,
111782
(
2020
).
30.
Z.
Chen
,
J.
Zeng
,
M.
He
,
X.
Zhu
, and
Y.
Shi
, “
Portable ppb-level carbon dioxide sensor based on flexible hollow waveguide cell and mid-infrared spectroscopy
,”
Sens. Actuators, B
359
,
131553
(
2022
).
31.
R.
St-Gelais
,
G.
Mackey
,
J.
Saunders
,
J.
Zhou
,
A.
Leblanc-Hotte
,
A.
Poulin
,
J. A.
Barnes
,
H.-P.
Loock
,
R. S.
Brown
, and
Y.-A.
Peter
, “
Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers
,”
Sens. Actuators, B
182
,
45
52
(
2013
).
32.
A. K.
Pathak
and
C.
Viphavakit
, “
A review on all-optical fiber-based VOC sensors: Heading towards the development of promising technology
,”
Sens. Actuators, A
338
,
113455
(
2022
).
33.
R.
Howley
,
B. D.
MacCraith
,
K.
O'Dwyer
,
H.
Masterson
,
P.
Kirwan
, and
P.
McLoughlin
, “
Determination of hydrocarbons using sapphire fibers coated with poly(dimethylsiloxane)
,”
Appl. Spectrosc.
57
(
4
),
400
406
(
2003
).
34.
C.-B.
Yu
,
Y.
Wu
,
C.
Li
,
F.
Wu
,
J.-H.
Zhou
,
Y.
Gong
,
Y.-J.
Rao
, and
Y.-F.
Chen
, “
Highly sensitive and selective fiber-optic Fabry-Perot volatile organic compounds sensor based on a PMMA film
,”
Opt. Mater. Express
7
(
6
),
2111
(
2017
).
35.
J.
Nuñez
,
A.
Boersma
,
J.
Grand
,
S.
Mintova
, and
B.
Sciacca
, “
Thin functional zeolite layer supported on infrared resonant nano‐antennas for the detection of benzene traces
,”
Adv. Funct. Mater.
31
(
24
),
2101623
(
2021
).
36.
R.
Krska
,
K.
Taga
, and
R.
Kellner
, “
New IR fiber-optic chemical sensor for in situ measurements of chlorinated hydrocarbons in water
,”
Appl. Spectrosc.
47
(
9
),
1484
1487
(
1993
).
37.
J.
Su
,
S.
Dai
, and
N.
Gan
, “
Optimized Ge-As-Se-Te chalcogenide glass fiber sensor with polydopamine-coated tapered zone for the highly sensitive detection of p-xylene in waters
,”
Opt. Express
28
(
1
),
184
(
2020
).
38.
T.
Liu
,
J.
Han
, and
H.
Hu
, “
Optical current sensor with dual-wavelength configuration for improving temperature robustness
,”
IEEE Photonics J.
9
(
1
),
6800210
(
2017
).
39.
L.
Fernandez
,
A.
Gutierrez-Galvez
, and
S.
Marco
, “
Robustness to sensor damage of a highly redundant gas sensor array
,”
Procedia Eng.
87
,
851
854
(
2014
).
40.
J.
Fonollosa
,
A.
Vergara
, and
R.
Huerta
, “
Algorithmic mitigation of sensor failure: Is sensor replacement really necessary?
,”
Sens. Actuators, B
183
,
211
221
(
2013
).
41.
J.
Wu
,
G.
Yue
,
W.
Chen
,
Z.
Xing
,
J.
Wang
,
W. R.
Wong
,
Z.
Cheng
,
S. Y.
Set
,
G.
Senthil Murugan
,
X.
Wang
, and
T.
Liu
, “
On-chip optical gas sensors based on group-IV materials
,”
ACS Photonics
7
(
11
),
2923
2940
(
2020
).
42.
H.
Lin
,
Z.
Luo
,
T.
Gu
,
L. C.
Kimerling
,
K.
Wada
,
A.
Agarwal
, and
J.
Hu
, “
Mid-infrared integrated photonics on silicon: A perspective
,”
Nanophotonics
7
(
2
),
393
420
(
2017
).
43.
Y.
Zou
,
S.
Chakravarty
,
C.-J.
Chung
,
X.
Xu
, and
R. T.
Chen
, “
Mid-infrared silicon photonic waveguides and devices [Invited]
,”
Photonics Res.
6
(
4
),
254
(
2018
).
44.
A.
Schliesser
,
N.
Picqué
, and
T. W.
Hänsch
, “
Mid-infrared frequency combs
,”
Nat. Photonics
6
(
7
),
440
449
(
2012
).
45.
A.
Li
,
C.
Yao
,
J.
Xia
,
H.
Wang
,
Q.
Cheng
,
R.
Penty
,
Y.
Fainman
, and
S.
Pan
, “
Advances in cost-effective integrated spectrometers
,”
Light
11
(
1
),
174
(
2022
).
46.
Y.
Ma
,
B.
Dong
, and
C.
Lee
, “
Progress of infrared guided-wave nanophotonic sensors and devices
,”
Nano Convergence
7
(
1
),
12
(
2020
).
47.
A. B.
Dahlin
, “
Size matters: Problems and advantages associated with highly miniaturized sensors
,”
Sensors
12
(
3
),
3018
3036
(
2012
).
48.
V.
Singh
,
P. T.
Lin
,
N.
Patel
,
H.
Lin
,
L.
Li
,
Y.
Zou
,
F.
Deng
,
C.
Ni
,
J.
Hu
,
J.
Giammarco
,
A. P.
Soliani
,
B.
Zdyrko
,
I.
Luzinov
,
S.
Novak
,
J.
Novak
,
P.
Wachtel
,
S.
Danto
,
J. D.
Musgraves
,
K.
Richardson
,
L. C.
Kimerling
, and
A. M.
Agarwal
, “
Mid-infrared materials and devices on a Si platform for optical sensing
,”
Sci. Technol. Adv. Mater.
15
(
1
),
014603
(
2014
).
49.
Y.
Ozaki
, “
Infrared spectroscopy—Mid-infrared, near-infrared, and far-infrared/terahertz spectroscopy
,”
Anal. Sci.
37
(
9
),
1193
1212
(
2021
).
50.
S.
Türker-Kaya
and
C. W.
Huck
, “
A review of mid-infrared and near-infrared imaging: Principles, concepts and applications in plant tissue analysis
,”
Molecules
22
(
1
),
168
(
2017
).
51.
R.
Soref
, “
Mid-infrared photonics in silicon and germanium
,”
Nat. Photonics
4
(
8
),
495
497
(
2010
).
52.
M.
Nedeljkovic
,
A. Z.
Khokhar
,
Y.
Hu
,
X.
Chen
,
J. S.
Penades
,
S.
Stankovic
,
H. M. H.
Chong
,
D. J.
Thomson
,
F. Y.
Gardes
,
G. T.
Reed
, and
G. Z.
Mashanovich
, “
Silicon photonic devices and platforms for the mid-infrared
,”
Opt. Mater. Express
3
(
9
),
1205
(
2013
).
53.
Z.
Han
,
P.
Lin
,
V.
Singh
,
L.
Kimerling
,
J.
Hu
,
K.
Richardson
,
A.
Agarwal
, and
D. T. H.
Tan
, “
On-chip mid-infrared gas detection using chalcogenide glass waveguide
,”
Appl. Phys. Lett.
108
(
14
),
141106
(
2016
).
54.
M.
Montesinos-Ballester
,
C.
Lafforgue
,
J.
Frigerio
,
A.
Ballabio
,
V.
Vakarin
,
Q.
Liu
,
J. M.
Ramirez
,
X. L.
Roux
,
D.
Bouville
,
A.
Barzaghi
,
C.
Alonso-Ramos
,
L.
Vivien
,
G.
Isella
, and
D.
Marris-Morini
, “
On-chip mid-infrared supercontinuum generation from 3 to 13 μm wavelength
,”
ACS Photonics
7
(
12
),
3423
3429
(
2020
).
55.
See https://cdxapps.epa.gov/oms-substance-registry-services/substance-details/761346 for information about related VOC substances from the list (EPA ID: E761346).
56.
See https://webbook.nist.gov/chemistry/cas-ser/ for information about IR spectra of substances.
57.
G.
Li
,
Y.
Wu
,
Z.
Zhang
,
X.
Zhang
,
K.
Ma
,
Y.
Jiao
,
J.
Li
,
Y.
Liu
,
Y.
Song
,
H.
Zhao
,
S.
Zhai
, and
Q.
Li
, “
WMS based dual-range real-time trace sensor for ethane detection in exhaled breath
,”
Opt. Lasers Eng.
159
,
107222
(
2022
).
58.
P.
Kluczynski
,
J.
Gustafsson
,
Å. M.
Lindberg
, and
O.
Axner
, “
Wavelength modulation absorption spectrometry—An extensive scrutiny of the generation of signals
,”
Spectrochim. Acta, Part B
56
(
8
),
1277
1354
(
2001
).
59.
T.
Berg
,
H.
Voges
,
O.
Thiele
,
V.
Beushausen
,
W.
Hentschel
, and
F.
Kallmeyer
,
IEEE Sensors
(
IEEE
,
Irvine, CA
,
2005
), pp.
983
986
.
60.
M. D.
Ruesch
,
G. C.
Mathews
,
R. J.
Tancin
,
S. F.
Son
, and
C. S.
Goldenstein
, “
Wavelength-modulation spectroscopy in the mid-infrared for temperature and HCl measurements in aluminum-lithium composite-propellant flames
,”
Combust. Flame
242
,
112180
(
2022
).
61.
M.
Raza
,
L.
Ma
,
C.
Yao
,
M.
Yang
,
Z.
Wang
,
Q.
Wang
,
R.
Kan
, and
W.
Ren
, “
MHz-rate scanned-wavelength direct absorption spectroscopy using a distributed feedback diode laser at 2.3 μm
,”
Opt. Laser Technol.
130
,
106344
(
2020
).
62.
C. S.
Goldenstein
,
R. M.
Spearrin
,
J.
Jeffries
, and
R. K.
Hanson
, “
Infrared laser-absorption sensing for combustion gases
,”
Prog. Energy Combust. Sci.
60
,
132
176
(
2017
).
63.
H.
Teichert
,
T.
Fernholz
, and
V.
Ebert
, “
Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers
,”
Appl. Opt.
42
(
12
),
2043
(
2003
).
64.
H.
Ma
,
M.
Sun
,
S.
Zhan
,
Q.
Zhang
,
S.
Zha
,
G.
Wang
,
K.
Liu
,
M.
Yi
, and
Z.
Cao
, “
Compact dual-gas sensor for simultaneous measurement of atmospheric methane, and water vapor using a 3.38 μm antimonide-distributed feedback laser diode
,”
Spectrochim. Acta, Part A
226
,
117605
(
2020
).
65.
S.
Feng
,
X.
Qiu
,
G.
Guo
,
E.
Zhang
,
Q.
He
,
X.
He
,
W.
Ma
,
C.
Fittschen
, and
C.
Li
, “
Palm-sized laser spectrometer with high robustness and sensitivity for trace gas detection using a novel double-layer toroidal cell
,”
Anal. Chem.
93
(
10
),
4552
4558
(
2021
).
66.
M.
Pi
,
Y.
Huang
,
H.
Zhao
,
Z.
Peng
,
J.
Lang
,
J.
Ji
,
L.
Teng
,
F.
Song
,
L.
Liang
,
Y.
Zhang
,
C.
Zheng
,
Y.
Wang
, and
F. K.
Tittel
, “
Theoretical and experimental investigation of on-chip mid-infrared chalcogenide waveguide CH4 sensor based on wavelength modulation spectroscopy
,”
Sens. Actuators, B
362
,
131782
(
2022
).
67.
G. B.
Rieker
,
J. B.
Jeffries
, and
R. K.
Hanson
, “
Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments
,”
Appl. Opt.
48
(
29
),
5546
(
2009
).
68.
C. S.
Goldenstein
,
C. L.
Strand
,
I. A.
Schultz
,
K.
Sun
,
J. B.
Jeffries
, and
R. K.
Hanson
, “
Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes
,”
Appl. Opt.
53
(
3
),
356
(
2014
).
69.
A.
Upadhyay
,
D.
Wilson
,
M.
Lengden
,
A. L.
Chakraborty
,
G.
Stewart
, and
W.
Johnstone
, “
Calibration-free WMS using a cw-DFB-QCL, a VCSEL, and an edge-emitting DFB laser with in-situ real-time laser parameter characterization
,”
IEEE Photonics J.
9
(
2
),
6801217
(
2017
).
70.
C. S.
Goldenstein
,
C. A.
Almodóvar
,
J. B.
Jeffries
,
R. K.
Hanson
, and
C. M.
Brophy
, “
High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine
,”
Meas. Sci. Technol.
25
(
10
),
105104
(
2014
).
71.
D. T.
Cassidy
and
J.
Reid
, “
Atmospheric pressure monitoring of trace gases using tunable diode lasers
,”
Appl. Opt.
21
(
7
),
1185
1190
(
1982
).
72.
A.
Klein
,
O.
Witzel
, and
V.
Ebert
, “
Rapid, time-division multiplexed, direct absorption- and wavelength modulation-spectroscopy
,”
Sensors
14
(
11
),
21497
21513
(
2014
).
73.
Y.
Du
,
Z.
Peng
, and
Y.
Ding
, “
Wavelength modulation spectroscopy for recovering absolute absorbance
,”
Opt. Express
26
(
7
),
9263
(
2018
).
74.
S. H.
Schlindwein
,
About Spectral Resolution in FT-IR Spectroscopy
(
Bruker Optics Blog
,
2020
).
75.
A.
Karabchevsky
,
A.
Katiyi
,
A. S.
Ang
, and
A.
Hazan
, “
On-chip nanophotonics and future challenges
,”
Nanophotonics
9
(
12
),
3733
3753
(
2020
).
76.
H. B.
Qazi
,
A. B.
bin Mohammad
, and
M.
Akram
, “
Recent progress in optical chemical sensors
,”
Sensors
12
(
12
),
16522
16556
(
2012
).
77.
A. D.
Kersey
and
A.
Dandridge
, in
Proceedings of the 39th Electronic Components Conference
(
IEEE
,
Houston, TX
,
1989
), pp.
472
478
.
78.
B.
Culshaw
, “
Fiber optics in sensing and measurement
,”
IEEE J. Sel. Top. Quantum Electron.
6
(
6
),
1014
1021
(
2000
).
79.
P.
Lu
,
N.
Lalam
,
M.
Badar
,
B.
Liu
,
B. T.
Chorpening
,
M. P.
Buric
, and
P. R.
Ohodnicki
, “
Distributed optical fiber sensing: Review and perspective
,”
Appl. Phys. Rev.
6
(
4
),
041302
(
2019
).
80.
R.
Lu
,
B.
Mizaikoff
,
W.-W.
Li
,
C.
Qian
,
A.
Katzir
,
Y.
Raichlin
,
G.-P.
Sheng
, and
H.-Q.
Yu
, “
Determination of chlorinated hydrocarbons in water using highly sensitive mid-infrared sensor technology
,”
Sci. Rep.
3
(
1
),
2525
(
2013
).
81.
L.
Jiao
,
N.
Zhong
,
X.
Zhao
,
S.
Ma
,
X.
Fu
, and
D.
Dong
, “
Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water
,”
TrAC. Trends Anal. Chem.
127
,
115892
(
2020
).
82.
S.
Maurugeon
,
B.
Bureau
,
C.
Boussard-Plédel
,
A. J.
Faber
,
P.
Lucas
,
X. H.
Zhang
, and
J.
Lucas
, “
Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing
,”
Opt. Mater.
33
(
4
),
660
663
(
2011
).
83.
B.
Bureau
,
S.
Maurugeon
,
F.
Charpentier
,
J.-L.
Adam
,
C.
Boussard-Plédel
, and
X.-H.
Zhang
, “
Chalcogenide glass fibers for infrared sensing and space optics
,”
Fiber Integr. Opt.
28
(
1
),
65
80
(
2009
).
84.
S.
Cui
,
C.
Boussard-Plédel
,
J.
Lucas
, and
B.
Bureau
, “
Te-based glass fiber for far-infrared biochemical sensing up to 16 μm
,”
Opt. Express
22
(
18
),
21253
(
2014
).
85.
B.
Mizaikoff
, “
Peer reviewed: Mid-IR fiber-optic sensors
,”
Anal. Chem.
75
(
11
),
258 A
267 A
(
2003
).
86.
A. K.
Sharma
,
J.
Gupta
, and
I.
Sharma
, “
Fiber optic evanescent wave absorption-based sensors: A detailed review of advancements in the last decade (2007–18)
,”
Optik
183
,
1008
1025
(
2019
).
87.
D. A. C.
Compton
,
S. L.
Hill
,
N. A.
Wright
,
M. A.
Druy
,
J.
Piche
,
W. A.
Stevenson
, and
D. W.
Vidrine
, “
In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber
,”
Appl. Spectrosc.
42
(
6
),
972
979
(
1988
).
88.
R.
Lu
,
W.-W.
Li
,
B.
Mizaikoff
,
A.
Katzir
,
Y.
Raichlin
,
G.-P.
Sheng
, and
H.-Q.
Yu
, “
High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water
,”
Nat. Protoc.
11
(
2
),
377
386
(
2016
).
89.
K.
Flavin
,
H.
Hughes
,
V.
Dobbyn
,
P.
Kirwan
,
K.
Murphy
,
H.
Steiner
,
B.
Mizaikoff
, and
P.
Mcloughlin
, “
A comparison of polymeric materials as pre-concentrating media for use with ATR/FTIR sensing
,”
Int. J. Environ. Anal. Chem.
86
(
6
),
401
415
(
2006
).
90.
R.
Howley
,
B. D.
MacCraith
,
K.
O'Dwyer
,
P.
Kirwan
, and
P.
McLoughlin
, “
A study of the factors affecting the diffusion of chlorinated hydrocarbons into polyisobutylene and polyethylene-co-propylene for evanescent wave sensing
,”
Vib. Spectrosc.
31
(
2
),
271
278
(
2003
).
91.
B.
Murphy
and
P.
Mcloughlin
, “
Determination of chlorinated hydrocarbon species in aqueous solution using Teflon coated ATR waveguide/FTIR spectroscopy
,”
Int. J. Environ. Anal. Chem.
83
(
7–8
),
653
662
(
2003
).
92.
R.
Göbel
,
R. W.
Seitz
,
S. A.
Tomellini
,
R.
Krska
, and
R.
Kellner
, “
Infrared attenuated total reflection spectroscopic investigations of the diffusion behaviour of chlorinated hydrocarbons into polymer membranes
,”
Vib. Spectrosc.
8
(
2
),
141
149
(
1995
).
93.
R.
Göbel
,
R.
Krska
,
R.
Kellner
,
R. W.
Seitz
, and
S. A.
Tomellini
, “
Investigation of different polymers as coating materials for IR/ATR spectroscopic trace analysis of chlorinated hydrocarbons in water
,”
Appl. Spectrosc.
48
(
6
),
678
683
(
1994
).
94.
R.
Göbel
,
R.
Krska
,
S.
Neal
, and
R.
Kellner
, “
Performance studies of an IR fiber optic sensor for chlorinated hydrocarbons in water
,”
Fresenius' J. Anal. Chem.
350
(
7–9
),
514
519
(
1994
).
95.
M.
Jakusch
,
B.
Mizaikoff
,
R.
Kellner
, and
A.
Katzir
, “
Towards a remote IR fiber-optic sensor system for the determination of chlorinated hydrocarbons in water
,”
Sens. Actuators, B
38
(
1–3
),
83
87
(
1997
).
96.
B.
Mizaikoff
, “
Mid-infrared fiber optic sensors: Potential and perspectives
,”
Proc. SPIE
3849
,
7
18
(
1999
).
97.
S. F.
Memon
,
E.
Lewis
,
M. M.
Ali
,
J. T.
Pembroke
, and
B. S.
Chowdhry
, in
IEEE Sensors Applications Symposium (SAS)
(
IEEE
,
Glassboro, NJ
,
2017
).
98.
P.
Houizot
,
M.-L.
Anne
,
C.
Boussard-Plédel
,
O.
Loréal
,
H.
Tariel
,
J.
Lucas
, and
B.
Bureau
, “
Shaping of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing
,”
Sensors
14
(
10
),
17905
17914
(
2014
).
99.
C.
Dettenrieder
,
Y.
Raichlin
,
A.
Katzir
, and
B.
Mizaikoff
, “
Toward the required detection limits for volatile organic constituents in marine environments with infrared evanescent field chemical sensors
,”
Sensors
19
(
17
),
3644
(
2019
).
100.
R.
Lu
,
G.
Sheng
,
W.
Li
,
H.
Yu
,
Y.
Raichlin
,
A.
Katzir
, and
B.
Mizaikoff
, “
IR-ATR chemical sensors based on planar silver halide waveguides coated with an ethylene/propylene copolymer for detection of multiple organic contaminants in water
,”
Angew. Chem., Int. Ed.
52
(
8
),
2265
2268
(
2013
).
101.
E. M.
Kosower
,
G.
Markovich
,
Y.
Raichlin
,
G.
Borz
, and
A.
Katzir
, “
Surface-enhanced infrared absorption and amplified spectra on planar silver halide fiber
,”
J. Phys. Chem. B
108
(
34
),
12633
12636
(
2004
).
102.
K.
Goya
,
Y.
Koyama
,
Y.
Nishijima
,
S.
Tokita
,
R.
Yasuhara
, and
H.
Uehara
, “
A fluoride fiber optics in-line sensor for mid-IR spectroscopy based on a side-polished structure
,”
Sens. Actuators, B
351
,
130904
(
2022
).
103.
Y.
Yang
,
K.
Ge
,
P.
Tao
,
S.
Dai
,
X.
Wang
,
W.
Zhang
,
T.
Xu
,
Y.
Wang
,
T.-J.
Lin
, and
P.
Zhang
, “
Mid-infrared evanescent wave sensor based on side-polished chalcogenide fiber
,”
Ceram. Int.
49
(
1
),
1291
1297
(
2023
).
104.
E.
Korsakova
,
A.
Yuzhakova
,
D.
Salimgareev
,
A.
Lvov
,
L.
Zhukova
, and
A.
Korsakov
, “
Mid-infrared silver halide fibre-optic sensor with lateral notches for evanescent wave spectroscopy
,”
Infrared Phys. Technol.
128
,
104529
(
2023
).
105.
P. B.
Tarsa
,
P.
Rabinowitz
, and
K. K.
Lehmann
, “
Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy
,”
Chem. Phys. Lett.
383
(
3–4
),
297
303
(
2004
).
106.
S.
Pu
and
X.
Gu
, “
Fiber loop ring-down spectroscopy with a long-period grating cavity
,”
Opt. Lett.
34
(
12
),
1774
(
2009
).
107.
M.
Hu
,
M.
Hu
,
W.
Wang
, and
Q.
Wang
, “
Wavelength-scanned all-fiber cavity ring-down gas sensing using an L-band active fiber loop
,”
Appl. Phys. B
128
(
2
),
30
(
2022
).
108.
S.
Cui
,
R.
Chahal
,
C.
Boussard-Plédel
,
V.
Nazabal
,
J.-L.
Doualan
,
J.
Troles
,
J.
Lucas
, and
B.
Bureau
, “
From selenium- to tellurium-based glass optical fibers for infrared spectroscopies
,”
Molecules
18
(
5
),
5373
5388
(
2013
).
109.
Z.
Hui
,
Y.
Zhang
, and
A.-H.
Soliman
, “
Mid-infrared dual-rhombic air hole Ge20Sb15Se65 chalcogenide photonic crystal fiber with high birefringence and high nonlinearity
,”
Ceram. Int.
44
(
9
),
10383
10392
(
2018
).
110.
L.
Brilland
,
J.
Troles
,
P.
Houizot
,
F.
Désévédavy
,
Q.
Coulombier
,
G.
Renversez
,
T.
Chartier
,
T. N.
Nguyen
,
J.-L.
Adam
, and
N.
Traynor
, “
Interfaces impact on the transmission of chalcogenides photonic crystal fibres
,”
J. Ceram. Soc. Jpn.
116
(
1358
),
1024
1027
(
2008
).
111.
J. C.
Knight
, “
Photonic crystal fibres
,”
Nature
424
(
6950
),
847
851
(
2003
).
112.
P.
Russell
, “
Photonic crystal fibers
,”
Science
299
(
5605
),
358
362
(
2003
).
113.
M.
De
,
T. K.
Gangopadhyay
, and
V. K.
Singh
, “
Prospects of photonic crystal fiber as physical sensor: An overview
,”
Sensors
19
(
3
),
464
(
2019
).
114.
S. O.
Konorov
,
A. M.
Zheltikov
, and
M.
Scalora
, “
Photonic-crystal fiber as a multifunctional optical sensor and sample collector
,”
Opt. Express
13
(
9
),
3454
(
2005
).
115.
S.
Hossain
,
S.
Shah
, and
M.
Faisal
, “
Ultra-high birefringent, highly nonlinear Ge20Sb15Se65 chalcogenide glass photonic crystal fiber with zero dispersion wavelength for mid-infrared applications
,”
Optik
225
,
165753
(
2021
).
116.
J. D.
Shephard
,
W. N.
MacPherson
,
R. R. J.
Maier
,
J. D. C.
Jones
,
D. P.
Hand
,
M.
Mohebbi
,
A. K.
George
,
P. J.
Roberts
, and
J. C.
Knight
, “
Single-mode mid-IR guidance in a hollow-core photonic crystal fiber
,”
Opt. Express
13
(
18
),
7139
(
2005
).
117.
Ł. W.
Kornaszewski
,
N.
Gayraud
,
J. M.
Stone
,
W. N.
MacPherson
,
A. K.
George
,
J. C.
Knight
,
D. P.
Hand
, and
D. T.
Reid
, “
Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator
,”
Opt. Express
15
(
18
),
11219
(
2007
).
118.
R.
Dhawan
,
M.
Khan
,
N.
Panwar
,
U.
Tiwari
,
R.
Bhatnagar
, and
S. C.
Jain
, “
A low loss mechanical splice for gas sensing using Hollow-Core Photonic Crystal Fibre
,”
Optik
124
(
18
),
3671
3673
(
2013
).
119.
N.
Gayraud
,
Ł. W.
Kornaszewski
,
J. M.
Stone
,
J. C.
Knight
,
D. T.
Reid
,
D. P.
Hand
, and
W. N.
MacPherson
, “
Mid-infrared gas sensing using a photonic bandgap fiber
,”
Appl. Opt.
47
(
9
),
1269
(
2008
).
120.
P.
Jaworski
,
K.
Krzempek
,
G.
Dudzik
,
P. J.
Sazio
, and
W.
Belardi
, “
Nitrous oxide detection at 5.26 μm with a compound glass antiresonant hollow-core optical fiber
,”
Opt. Lett.
45
(
6
),
1326
(
2020
).
121.
F.
Yang
,
W.
Jin
,
Y.
Cao
,
H. L.
Ho
, and
Y.
Wang
, “
Towards high sensitivity gas detection with hollow-core photonic bandgap fibers
,”
Opt. Express
22
(
20
),
24894
(
2014
).
122.
J. P.
Parry
,
B. C.
Griffiths
,
N.
Gayraud
,
E. D.
McNaghten
,
A. M.
Parkes
,
W. N.
MacPherson
, and
D. P.
Hand
, “
Towards practical gas sensing with micro-structured fibres
,”
Meas. Sci. Technol.
20
(
7
),
075301
(
2009
).
123.
W.
Jin
,
H. L.
Ho
,
Y. C.
Cao
,
J.
Ju
, and
L. F.
Qi
, “
Gas detection with micro- and nano-engineered optical fibers
,”
Opt. Fiber Technol.
19
(
6
),
741
759
(
2013
).
124.
F.
Benabid
,
J. C.
Knight
,
G.
Antonopoulos
, and
P. St. J.
Russell
, “
Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber
,”
Science
298
(
5592
),
399
402
(
2002
).
125.
K.
Krzempek
,
K.
Abramski
, and
M.
Nikodem
, “
Kagome hollow core fiber-based mid-infrared dispersion spectroscopy of methane at sub-ppm levels
,”
Sensors
19
(
15
),
3352
(
2019
).
126.
M.
Nikodem
,
K.
Krzempek
,
G.
Dudzik
, and
K.
Abramski
, “
Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 μm
,”
Opt. Express
26
(
17
),
21843
(
2018
).
127.
A. D.
Pryamikov
,
A. S.
Biriukov
,
A. F.
Kosolapov
,
V. G.
Plotnichenko
,
S. L.
Semjonov
, and
E. M.
Dianov
, “
Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 35 μm
,”
Opt. Express
19
(
2
),
1441
(
2011
).
128.
M.
Klimczak
,
D.
Dobrakowski
,
A. N.
Ghosh
,
G.
Stępniewski
,
D.
Pysz
,
G.
Huss
,
T.
Sylvestre
, and
R.
Buczyński
, “
Nested capillary anti-resonant silica fiber with mid-infrared transmission and low bending sensitivity at 4000 nm
,”
Opt. Lett.
44
(
17
),
4395
(
2019
).
129.
M.
Nikodem
,
G.
Gomółka
,
M.
Klimczak
,
D.
Pysz
, and
R.
Buczyński
, “
Demonstration of mid-infrared gas sensing using an anti-resonant hollow core fiber and a quantum cascade laser
,”
Opt. Express
27
(
25
),
36350
(
2019
).
130.
G.
Gomółka
,
D.
Pysz
,
R.
Buczyński
, and
M.
Nikodem
, “
Wavelength modulation spectroscopy of oxygen inside anti-resonant hollow-core fiber-based gas cell
,”
Opt. Laser Technol.
170
,
110323
(
2024
).
131.
G.
Gomółka
,
G.
Stępniewski
,
D.
Pysz
,
R.
Buczyński
,
M.
Klimczak
, and
M.
Nikodem
, “
Highly sensitive methane detection using a mid-infrared interband cascade laser and an anti-resonant hollow-core fiber
,”
Opt. Express
31
(
3
),
3685
(
2023
).
132.
Y.
Luzinova
,
B.
Zdyrko
,
I.
Luzinov
, and
B.
Mizaikoff
, “
In situ trace analysis of oil in water with mid-infrared fiberoptic chemical sensors
,”
Anal. Chem.
84
(
3
),
1274
1280
(
2012
).
133.
P.
Jaworski
,
P.
Kozioł
,
K.
Krzempek
,
D.
Wu
,
F.
Yu
,
P.
Bojęś
,
G.
Dudzik
,
M.
Liao
,
K.
Abramski
, and
J.
Knight
, “
Antiresonant hollow-core fiber-based dual gas sensor for detection of methane and carbon dioxide in the near- and mid-infrared regions
,”
Sensors
20
(
14
),
3813
(
2020
).
134.
M.
Hu
,
A.
Ventura
,
J.
Grigoleto Hayashi
,
F.
Poletti
, and
W.
Ren
, “
Mid-infrared absorption spectroscopy of ethylene at 10.5 μm using a chalcogenide hollow-core antiresonant fiber
,”
Opt. Laser Technol.
158
,
108932
(
2023
).
135.
D. M.
Kita
,
J.
Michon
,
S. G.
Johnson
, and
J.
Hu
, “
Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?
,”
Optica
5
(
9
),
1046
(
2018
).
136.
J. T.
Robinson
,
K.
Preston
,
O.
Painter
, and
M.
Lipson
, “
First-principle derivation of gain in high-index-contrast waveguides
,”
Opt. Express
16
(
21
),
16659
(
2008
).
137.
L.
Tombez
,
E. J.
Zhang
,
J. S.
Orcutt
,
S.
Kamlapurkar
, and
W. M. J.
Green
, “
Methane absorption spectroscopy on a silicon photonic chip
,”
Optica
4
(
11
),
1322
(
2017
).
138.
Q.
Liu
,
J. M.
Ramirez
,
V.
Vakarin
,
X.
Le Roux
,
A.
Ballabio
,
J.
Frigerio
,
D.
Chrastina
,
G.
Isella
,
D.
Bouville
,
L.
Vivien
,
C. A.
Ramos
, and
D.
Marris-Morini
, “
Mid-infrared sensing between 5.2 and 6.6 μm wavelengths using Ge-rich SiGe waveguides [Invited]
,”
Opt. Mater. Express
8
(
5
),
1305
(
2018
).
139.
X.
Wang
,
J.
Antoszewski
,
G.
Putrino
,
W.
Lei
,
L.
Faraone
, and
B.
Mizaikoff
, “
Mercury–Cadmium–telluride waveguides—A novel strategy for on-chip mid-infrared sensors
,”
Anal. Chem.
85
(
22
),
10648
10652
(
2013
).
140.
T.
Jin
,
J.
Zhou
,
H.-Y. G.
Lin
, and
P. T.
Lin
, “
Mid-infrared chalcogenide waveguides for real-time and nondestructive volatile organic compound detection
,”
Anal. Chem.
91
(
1
),
817
822
(
2019
).
141.
J.
Zhou
,
D.
Al Husseini
,
J.
Li
,
Z.
Lin
,
S.
Sukhishvili
,
G. L.
Coté
,
R.
Gutierrez-Osuna
, and
P. T.
Lin
, “
Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors
,”
Sci. Rep.
12
(
1
),
5572
(
2022
).
142.
T.
Jin
,
H.-Y. G.
Lin
,
T.
Tiwald
, and
P. T.
Lin
, “
Flexible mid-infrared photonic circuits for real-time and label-free hydroxyl compound detection
,”
Sci. Rep.
9
(
1
),
4153
(
2019
).
143.
R.
Bi
,
M.
Pi
,
C.
Zheng
,
H.
Zhao
,
L.
Liang
,
F.
Song
,
D.
Wang
,
Y.
Zhang
,
Y.
Wang
, and
F. K.
Tittel
, “
A niobium pentoxide waveguide sensor for on-chip mid-infrared absorption spectroscopic methane measurement
,”
Sens. Actuators, B
382
,
133567
(
2023
).
144.
J.
Bürger
,
V.
Schalles
,
J.
Kim
,
B.
Jang
,
M.
Zeisberger
,
J.
Gargiulo
,
L. d S.
Menezes
,
M. A.
Schmidt
, and
S. A.
Maier
, “
3D-nanoprinted antiresonant hollow-core microgap waveguide: An on-chip platform for integrated photonic devices and sensors
,”
ACS Photonics
9
(
9
),
3012
3024
(
2022
).
145.
A.
Wilk
,
J. C.
Carter
,
M.
Chrisp
,
A. M.
Manuel
,
P.
Mirkarimi
,
J. B.
Alameda
, and
B.
Mizaikoff
, “
Substrate-integrated hollow waveguides: A new level of integration in mid-infrared gas sensing
,”
Anal. Chem.
85
(
23
),
11205
11210
(
2013
).
146.
S.
Zheng
,
H.
Cai
,
L.
Xu
,
N.
Li
,
Z.
Gu
,
Y.
Zhang
,
W.
Chen
,
Y.
Zhou
,
Q.
Zhang
, and
L. Y. T.
Lee
, “
Silicon substrate-integrated hollow waveguide for miniaturized optical gas sensing
,”
Photonics Res.
10
(
1
),
261
(
2022
).
147.
A.
Fathy
,
Y.
Sabry
,
F.
Marty
,
D.
Khalil
, and
T.
Bourouina
, “
Silicon based integrated hollow waveguide for gas sensing applications
,”
Proc. SPIE
11355
,
113550T
(
2020
).
148.
J.
Ji
,
Y.
Huang
,
M.
Pi
,
H.
Zhao
,
Z.
Peng
,
C.
Li
,
Q.
Wang
,
Y.
Zhang
,
Y.
Wang
, and
C.
Zheng
, “
Performance improvement of on-chip mid-infrared waveguide methane sensor using wavelet denoising and Savitzky-Golay filtering
,”
Infrared Phys. Technol.
127
,
104469
(
2022
).
149.
Y.
Zou
,
H.
Subbaraman
,
S.
Chakravarty
,
X.
Xu
,
A.
Hosseini
,
W.-C.
Lai
,
P.
Wray
, and
R. T.
Chen
, “
Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths
,”
Opt. Lett.
39
(
10
),
3070
(
2014
).
150.
W.-C.
Lai
,
Y.
Zou
,
S.
Chakravarty
,
L.
Zhu
, and
R. T.
Chen
, “
Comparative sensitivity analysis of integrated optical waveguides for near-infrared volatile organic compounds with 1ppb detection
,”
Proc. SPIE
8990
,
89900Z
(
2014
).
151.
P. T.
Lin
,
S. W.
Kwok
,
H.-Y. G.
Lin
,
V.
Singh
,
L. C.
Kimerling
,
G. M.
Whitesides
, and
A.
Agarwal
, “
Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing
,”
Nano Lett.
14
(
1
),
231
238
(
2014
).
152.
A.
Zhang
,
L.
Xia
,
T.
Li
,
C.
Chang
,
P.
Zhou
,
X.
Xu
, and
Y.
Zou
, “
Ultra-compact polarization-independent 3 dB power splitter in silicon
,”
Opt. Lett.
46
(
19
),
5000
5003
(
2021
).
153.
W.
He
,
Y.
Sun
,
P.
Zhou
,
L.
Xia
,
T.
Li
,
Q.
Yi
,
L.
Shen
,
Z.
Cheng
, and
Y.
Zou
, “
Subwavelength structure engineered passband filter for the 2-μm wave band
,”
Opt. Lett.
48
(
3
),
827
(
2023
).
154.
G.
Xu
,
J.
Wang
,
Q.
Ji
,
M.
Yang
,
T.
Huang
,
J.
Pan
,
Y.
Xie
, and
P. P.
Shum
, “
Design and analysis of slow-light Bloch slot waveguides for on-chip gas sensing
,”
J. Opt. Soc. Am. B
37
(
2
),
257
(
2020
).
155.
A.
Gervais
,
P.
Jean
,
W.
Shi
, and
S.
LaRochelle
, “
Design of slow-light subwavelength grating waveguides for enhanced on-chip methane sensing by absorption spectroscopy
,”
IEEE J. Sel. Top. Quantum Electron.
25
(
3
),
5200308
(
2019
).
156.
Y.
Hu
,
W.
He
,
Y.
Sun
,
Q.
Yi
,
S.
Xing
,
Z.
Yan
,
L.
Xia
,
T.
Li
,
P.
Zhou
,
J.
Zhang
,
L.
Shen
, and
Y.
Zou
, “
High-efficient subwavelength structure engineered grating couplers for 2-μm waveband high-speed data transmission
,”
Opt. Express
31
(
23
),
39079
39087
(
2023
).
157.
J.
Zhou
,
Z.
Zhang
,
B.
Dong
,
Z.
Ren
,
W.
Liu
, and
C.
Lee
, “
Midinfrared spectroscopic analysis of aqueous mixtures using artificial-intelligence-enhanced metamaterial waveguide sensing platform
,”
ACS Nano
17
(
1
),
711
724
(
2023
).
158.
Z.
Ruan
,
L.
Shen
,
S.
Zheng
, and
J.
Wang
, “
Subwavelength grating slot (SWGS) waveguide on silicon platform
,”
Opt. Express
25
(
15
),
18250
(
2017
).
159.
M.
Pi
,
C.
Zheng
,
R.
Bi
,
H.
Zhao
,
L.
Liang
,
Y.
Zhang
,
Y.
Wang
, and
F. K.
Tittel
, “
Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot-waveguide spectroscopic gas sensor with enhanced light-gas interaction effect
,”
Sens. Actuators, B
297
,
126732
(
2019
).
160.
F.
Ottonello-Briano
,
C.
Errando-Herranz
,
H.
Rödjegård
,
H.
Martin
,
H.
Sohlström
, and
K. B.
Gylfason
, “
Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide
,”
Opt. Lett.
45
(
1
),
109
(
2020
).
161.
M.
Vlk
,
A.
Datta
,
S.
Alberti
,
H. D.
Yallew
,
V.
Mittal
,
G. S.
Murugan
, and
J.
Jágerská
, “
Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy
,”
Light
10
(
1
),
26
(
2021
).
162.
W.
Liu
,
Y.
Ma
,
Y.
Chang
,
B.
Dong
,
J.
Wei
,
Z.
Ren
, and
C.
Lee
, “
Suspended silicon waveguide platform with subwavelength grating metamaterial cladding for long-wave infrared sensing applications
,”
Nanophotonics
10
(
7
),
1861
1870
(
2021
).
163.
W.
Liu
,
Y.
Ma
,
X.
Liu
,
J.
Zhou
,
C.
Xu
,
B.
Dong
, and
C.
Lee
, “
Larger-than-unity external optical field confinement enabled by metamaterial-assisted comb waveguide for ultrasensitive long-wave infrared gas spectroscopy
,”
Nano Lett.
22
(
15
),
6112
6120
(
2022
).
164.
K. M.
Yoo
,
J.
Midkiff
,
A.
Rostamian
,
C.
Chung
,
H.
Dalir
, and
R. T.
Chen
, “
InGaAs membrane waveguide: A promising platform for monolithic integrated mid-infrared optical gas sensor
,”
ACS Sens.
5
(
3
),
861
869
(
2020
).
165.
T.
Li
,
P.
Zhou
, and
Y.
Zou
, “
Suspended subwavelength grating waveguides on SOI for ultra-broadband operation
,”
Proc. SPIE
11285
,
112850P
(
2020
).
166.
F.
Nadeem
,
J.
Mandon
,
S. M.
Cristescu
,
A.
Khodabakhsh
, and
F. J. M.
Harren
, “
Experimental-based comparison between off-axis integrated cavity output spectroscopy and multipass-assisted wavelength modulation spectroscopy at 77 μm
,”
OSA Continuum
2
(
9
),
2667
(
2019
).
167.
B.
Löhden
,
S.
Kuznetsova
,
K.
Sengstock
,
V. M.
Baev
,
A.
Goldman
,
S.
Cheskis
, and
B.
Pálsdóttir
, “
Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments
,”
Appl. Phys. B
102
(
2
),
331
344
(
2011
).
168.
K.
Wang
,
L.
Shao
,
J.
Chen
,
G.
Wang
,
K.
Liu
,
T.
Tan
,
J.
Mei
,
W.
Chen
, and
X.
Gao
, “
A dual-laser sensor based on off-axis integrated cavity output spectroscopy and time-division multiplexing method
,”
Sensors
20
(
21
),
6192
(
2020
).
169.
J.
Wang
,
X.
Tian
,
Y.
Dong
,
G.
Zhu
,
J.
Chen
,
T.
Tan
,
K.
Liu
,
W.
Chen
, and
X.
Gao
, “
Enhancing off-axis integrated cavity output spectroscopy (OA-ICOS) with radio frequency white noise for gas sensing
,”
Opt. Express
27
(
21
),
30517
(
2019
).
170.
Y. A.
Bakhirkin
,
A. A.
Kosterev
,
C.
Roller
,
R. F.
Curl
, and
F. K.
Tittel
, “
Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection
,”
Appl. Opt.
43
(
11
),
2257
(
2004
).
171.
Q.
He
,
C.
Zheng
,
K.
Zheng
, and
F. K.
Tittel
, “
Off-axis integrated cavity output spectroscopy for real-time methane measurements with an integrated wavelength-tunable light source
,”
Infrared Phys. Technol.
115
,
103705
(
2021
).
172.
J. B.
Leen
and
A.
O'Keefe
, “
Optical re-injection in cavity-enhanced absorption spectroscopy
,”
Rev. Sci. Instrum.
85
(
9
),
093101
(
2014
).
173.
S.
Maithani
,
A.
Maity
, and
M.
Pradhan
, “
A perspective on the evolving role of stable isotope analysis and the emergence of cavity enhanced spectroscopy as a potent tool
,”
J. Anal. At. Spectrom.
36
(
9
),
1813
1825
(
2021
).
174.
K. E.
Arledge
,
B.
Uchoa
,
Y.
Zou
, and
B.
Weng
, “
Topological sensing with photonic arrays of resonant circular waveguides
,”
Phys. Rev. Res.
3
(
3
),
033106
(
2021
).
175.
W.
Bogaerts
,
P.
De Heyn
,
T.
Van Vaerenbergh
,
K.
De Vos
,
S.
Kumar Selvaraja
,
T.
Claes
,
P.
Dumon
,
P.
Bienstman
,
D.
Van Thourhout
, and
R.
Baets
, “
Silicon microring resonators
,”
Laser Photonics Rev.
6
(
1
),
47
73
(
2012
).
176.
Y.
Chen
,
H.
Lin
,
J.
Hu
, and
M.
Li
, “
Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing
,”
ACS Nano
8
(
7
),
6955
6961
(
2014
).
177.
H.
Lin
,
Y.
Xiang
,
L.
Li
,
K.
McLaughlin
,
Y.
Liu
,
Y.
Chillakuru
,
E.
Koontz
,
J. D.
Musgraves
,
K.
Richardson
,
C.
Ni
, and
J.
Hu
, in
IEEE Photonics Society Summer Topical Meeting Series
(
IEEE
,
Montreal, QC, Canada
,
2014
), pp.
61
62
.
178.
J.
Zhou
,
D. A.
Husseini
,
J.
Li
,
Z.
Lin
,
S.
Sukhishvili
,
G. L.
Coté
,
R.
Gutierrez-Osuna
, and
P. T.
Lin
, “
Mid-infrared serial microring resonator array for real-time detection of vapor-phase volatile organic compounds
,”
Anal. Chem.
94
(
31
),
11008
11015
(
2022
).
179.
B.
Troia
,
A. Z.
Khokhar
,
M.
Nedeljkovic
,
J. S.
Penades
,
V. M. N.
Passaro
, and
G. Z.
Mashanovich
, “
Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared
,”
Opt. Express
22
(
20
),
23990
(
2014
).
180.
Y.
Chang
,
B.
Dong
,
Y.
Ma
,
J.
Wei
,
Z.
Ren
, and
C.
Lee
, “
Vernier effect-based tunable mid-infrared sensor using silicon-on-insulator cascaded rings
,”
Opt. Express
28
(
5
),
6251
(
2020
).
181.
J. T.
Robinson
,
L.
Chen
, and
M.
Lipson
, “
On-chip gas detection in silicon optical microcavities
,”
Opt. Express
16
(
6
),
4296
4301
(
2008
).
182.
Z.
Wang
,
X.
Xu
,
D.
Fan
,
Y.
Wang
, and
R. T.
Chen
, “
High quality factor subwavelength grating waveguide micro-ring resonator based on trapezoidal silicon pillars
,”
Opt. Lett.
41
(
14
),
3375
3378
(
2016
).
183.
A.
Vasiliev
,
A.
Malik
,
M.
Muneeb
,
B.
Kuyken
,
R.
Baets
, and
G.
Roelkens
, “
On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators
,”
ACS Sens.
1
(
11
),
1301
1307
(
2016
).
184.
W.-C.
Lai
,
S.
Chakravarty
,
Y.
Zou
, and
R. T.
Chen
, “
Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy
,”
Opt. Lett.
38
(
19
),
3799
(
2013
).
185.
Y.
Zou
,
S.
Chakravarty
,
P.
Wray
, and
R. T.
Chen
, “
Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire
,”
Opt. Express
23
(
5
),
6965
(
2015
).
186.
Y.
Zou
,
S.
Chakravarty
,
L.
Zhu
, and
R. T.
Chen
, “
The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays
,”
Appl. Phys. Lett.
104
(
14
),
141103
(
2014
).
187.
C.
Kraeh
,
J. L.
Martinez-Hurtado
,
A.
Popescu
,
H.
Hedler
, and
J. J.
Finley
, “
Slow light enhanced gas sensing in photonic crystals
,”
Opt. Mater.
76
,
106
110
(
2018
).
188.
W.-C.
Lai
,
S.
Chakravarty
,
X.
Wang
,
C.
Lin
, and
R. T.
Chen
, “
On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide
,”
Opt. Lett.
36
(
6
),
984
(
2011
).
189.
Y.
Zou
,
S.
Chakravarty
,
P.
Wray
, and
R. T.
Chen
, “
Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection
,”
Sens. Actuators, B
221
,
1094
1103
(
2015
).
190.
A.
Rostamian
,
E.
Madadi-Kandjani
,
H.
Dalir
,
V. J.
Sorger
, and
R. T.
Chen
, “
Towards lab-on-chip ultrasensitive ethanol detection using photonic crystal waveguide operating in the mid-infrared
,”
Nanophotonics
10
(
6
),
1675
1682
(
2021
).
191.
R.
Shankar
,
R.
Leijssen
,
I.
Bulu
, and
M.
Lončar
, “
Mid-infrared photonic crystal cavities in silicon
,”
Opt. Express
19
(
6
),
5579
(
2011
).
192.
Y.
Zou
,
S.
Chakravarty
, and
R. T.
Chen
, “
Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities
,”
Appl. Phys. Lett.
107
(
8
),
081109
(
2015
).
193.
L.
Kassa-Baghdouche
, “
High-sensitivity spectroscopic gas sensor using optimized H1 photonic crystal microcavities
,”
J. Opt. Soc. Am. B
37
(
11
),
A277
(
2020
).
194.
W.-C.
Lai
,
S.
Chakravarty
,
X.
Wang
,
C.
Lin
, and
R. T.
Chen
, “
Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water
,”
Appl. Phys. Lett.
98
(
2
),
023304
(
2011
).
195.
A.
Hartstein
,
J. R.
Kirtley
, and
J. C.
Tsang
, “
Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers
,”
Phys. Rev. Lett.
45
(
3
),
201
204
(
1980
).
196.
S. A.
Johnson
,
N.-H.
Pham
,
V. J.
Novick
, and
V. A.
Maroni
, “
Application of surface-enhanced infrared absorption spectroscopy as a sensor for volatile organic compounds
,”
Appl. Spectrosc.
51
(
9
),
1423
1426
(
1997
).
197.
J.-F.
Masson
, “
Portable and field-deployed surface plasmon resonance and plasmonic sensors
,”
Analyst
145
(
11
),
3776
3800
(
2020
).
198.
J.
Zhang
,
L.
Zhang
, and
W.
Xu
, “
Surface plasmon polaritons: Physics and applications
,”
J. Phys. D
45
(
11
),
113001
(
2012
).
199.
H.-L.
Wang
,
E.-M.
You
,
R.
Panneerselvam
,
S.-Y.
Ding
, and
Z.-Q.
Tian
, “
Advances of surface-enhanced Raman and IR spectroscopies: From nano/microstructures to macro-optical design
,”
Light
10
(
1
),
161
(
2021
).
200.
A.
Asghari
,
C.
Wang
,
K. M.
Yoo
et al, “
Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: Opportunities and challenges
,”
Appl. Phys. Rev.
8
(
3
),
031313
(
2021
).
201.
A.
Monkawa
,
T.
Nakagawa
,
H.
Sugimori
,
E.
Kazawa
,
K.
Sibamoto
,
T.
Takei
, and
M.
Haruta
, “
With high sensitivity and with wide-dynamic-range localized surface-plasmon resonance sensor for volatile organic compounds
,”
Sens. Actuators, B
196
,
1
9
(
2014
).
202.
A. B.
Ayoub
and
M. A.
Swillam
, “
Silicon plasmonics on-chip mid-IR gas sensor
,”
IEEE Photonics Technol. Lett.
30
(
10
),
931
934
(
2018
).
203.
Y.
Luo
,
M.
Chamanzar
,
A.
Apuzzo
,
R.
Salas-Montiel
,
K. N.
Nguyen
,
S.
Blaize
, and
A.
Adibi
, “
On-chip hybrid photonic–plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform
,”
Nano Lett.
15
(
2
),
849
856
(
2015
).
204.
C.
Chen
,
D. A.
Mohr
,
H.-K.
Choi
,
D.
Yoo
,
M.
Li
, and
S.-H.
Oh
, “
Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy
,”
Nano Lett.
18
(
12
),
7601
7608
(
2018
).
205.
B.
Schwarz
,
P.
Reininger
,
D.
Ristanić
,
H.
Detz
,
A. M.
Andrews
,
W.
Schrenk
, and
G.
Strasser
, “
Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures
,”
Nat. Commun
5
(
1
),
4085
(
2014
).
206.
M.
Pi
,
C.
Zheng
,
J.
Ji
,
H.
Zhao
,
Z.
Peng
,
J.
Lang
,
L.
Liang
,
Y.
Zhang
,
Y.
Wang
, and
F. K.
Tittel
, “
Surface-enhanced infrared absorption spectroscopic chalcogenide waveguide sensor using a silver island film
,”
ACS Appl. Mater. Interfaces
13
(
27
),
32555
32563
(
2021
).
207.
H.
Zhou
,
D.
Li
,
X.
Hui
, and
X.
Mu
, “
Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: Pushing the frontier of ultrasensitive on-chip sensing
,”
Int. J. Optomechatronics
15
(
1
),
97
119
(
2021
).
208.
L.
Dong
,
X.
Yang
,
C.
Zhang
,
B.
Cerjan
,
L.
Zhou
,
M. L.
Tseng
,
Y.
Zhang
,
A.
Alabastri
,
P.
Nordlander
, and
N. J.
Halas
, “
Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy
,”
Nano Lett.
17
(
9
),
5768
5774
(
2017
).
209.
L. V.
Brown
,
X.
Yang
,
K.
Zhao
,
B. Y.
Zheng
,
P.
Nordlander
, and
N. J.
Halas
, “
Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA)
,”
Nano Lett.
15
(
2
),
1272
1280
(
2015
).
210.
Z.
Ren
,
Z.
Zhang
,
J.
Wei
,
B.
Dong
, and
C.
Lee
, “
Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy
,”
Nat. Commun.
13
(
1
),
3859
(
2022
).
211.
N.
Liu
,
M.
Mesch
,
T.
Weiss
,
M.
Hentschel
, and
H.
Giessen
, “
Infrared perfect absorber and its application as plasmonic sensor
,”
Nano Lett.
10
(
7
),
2342
2348
(
2010
).
212.
S.
Law
,
V.
Podolskiy
, and
D.
Wasserman
, “
Towards nano-scale photonics with micro-scale photons: The opportunities and challenges of mid-infrared plasmonics
,”
Nanophotonics
2
(
2
),
103
130
(
2013
).
213.
R.
Stanley
, “
Plasmonics in the mid-infrared
,”
Nat. Photonics
6
(
7
),
409
411
(
2012
).
214.
P.
Fehlen
,
G.
Thomas
,
F.
Gonzalez-Posada
,
J.
Guise
,
F.
Rusconi
,
L.
Cerutti
,
T.
Taliercio
, and
D.
Spitzer
, “
Gas sensing of organophosphorous compounds with III–V semiconductor plasmonics
,”
Sens. Actuators, B
376
,
132987
(
2023
).
215.
R.
Jannesari
,
G.
Pühringer
,
T.
Grille
, and
B.
Jakoby
, in
IEEE Sensors
,
2019
.
216.
Y.
Zhong
,
S. D.
Malagari
,
T.
Hamilton
, and
D.
Wasserman
, “
Review of mid-infrared plasmonic materials
,”
J. Nanophotonics
9
(
1
),
093791
(
2015
).
217.
L.
Zundel
and
A.
Manjavacas
, “
Spatially resolved optical sensing using graphene nanodisk arrays
,”
ACS Photonics
4
(
7
),
1831
1838
(
2017
).
218.
X.
Yang
,
Z.
Sun
,
T.
Low
,
H.
Hu
,
X.
Guo
,
F. J.
García de Abajo
,
P.
Avouris
, and
Q.
Dai
, “
Nanomaterial-based plasmon-enhanced infrared spectroscopy
,”
Adv. Mater.
30
(
20
),
1704896
(
2018
).
219.
D. B.
Farmer
,
P.
Avouris
,
Y.
Li
,
T. F.
Heinz
, and
S.-J.
Han
, “
Ultrasensitive plasmonic detection of molecules with graphene
,”
ACS Photonics
3
(
4
),
553
557
(
2016
).
220.
N.
Bareza
, Jr.
,
K. K.
Gopalan
,
R.
Alani
,
B.
Paulillo
, and
V.
Pruneri
, “
Mid-infrared gas sensing using graphene plasmons tuned by reversible chemical doping
,”
ACS Photonics
7
(
4
),
879
884
(
2020
).
221.
H.
Hu
,
X.
Yang
,
X.
Guo
,
K.
Khaliji
,
S. R.
Biswas
,
F. J.
García De Abajo
,
T.
Low
,
Z.
Sun
, and
Q.
Dai
, “
Gas identification with graphene plasmons
,”
Nat. Commun.
10
(
1
),
1131
(
2019
).
222.
L. E.
Kreno
,
J. T.
Hupp
, and
R. P.
Van Duyne
, “
Metal−organic framework thin film for enhanced localized surface plasmon resonance gas sensing
,”
Anal. Chem.
82
(
19
),
8042
8046
(
2010
).
223.
J.
Tao
,
X.
Wang
,
T.
Sun
,
H.
Cai
,
Y.
Wang
,
T.
Lin
,
D.
Fu
,
L. L. Y.
Ting
,
Y.
Gu
, and
D.
Zhao
, “
Hybrid photonic cavity with metal-organic framework coatings for the ultra-sensitive detection of volatile organic compounds with high immunity to humidity
,”
Sci. Rep.
7
(
1
),
41640
(
2017
).
224.
H.
Zhou
,
X.
Hui
,
D.
Li
,
D.
Hu
,
X.
Chen
,
X.
He
,
L.
Gao
,
H.
Huang
,
C.
Lee
, and
X.
Mu
, “
Metal–organic framework‐surface‐enhanced infrared absorption platform enables simultaneous on‐chip sensing of greenhouse gases
,”
Adv. Sci.
7
(
20
),
2001173
(
2020
).
225.
R.
Wang
,
P.
Täschler
,
Z.
Wang
,
E.
Gini
,
M.
Beck
, and
J.
Faist
, “
Monolithic integration of mid-infrared quantum cascade lasers and frequency combs with passive waveguides
,”
ACS Photonics
9
(
2
),
426
431
(
2022
).
226.
T.-Y.
Chang
,
Y.
Chen
,
D.-I.
Luo
,
J.-X.
Li
,
P.-L.
Chen
,
S.
Lee
,
Z.
Fang
,
W.-Q.
Li
,
Y.-Y.
Zhang
,
M.
Li
,
A.
Majumdar
, and
C.-H.
Liu
, “
Black phosphorus mid-infrared light-emitting diodes integrated with silicon photonic waveguides
,”
Nano Lett.
20
(
9
),
6824
6830
(
2020
).
227.
A.
Lochbaum
,
Y.
Fedoryshyn
,
A.
Dorodnyy
,
U.
Koch
,
C.
Hafner
, and
J.
Leuthold
, “
On-chip narrowband thermal emitter for mid-IR optical gas sensing
,”
ACS Photonics
4
(
6
),
1371
1380
(
2017
).
228.
A. L.
Gaeta
,
M.
Lipson
, and
T. J.
Kippenberg
, “
Photonic-chip-based frequency combs
,”
Nat. Photonics
13
(
3
),
158
169
(
2019
).
229.
H.
Tran
,
C. G.
Littlejohns
,
D. J.
Thomson
,
T.
Pham
,
A.
Ghetmiri
,
A.
Mosleh
,
J.
Margetis
,
J.
Tolle
,
G. Z.
Mashanovich
,
W.
Du
,
B.
Li
,
M.
Mortazavi
, and
S.-Q.
Yu
, “
Study of GeSn mid-infrared photodetectors for high frequency applications
,”
Front. Mater.
6
,
278
(
2019
).
230.
S.
Mauthe
,
Y.
Baumgartner
,
M.
Sousa
,
Q.
Ding
,
M. D.
Rossell
,
A.
Schenk
,
L.
Czornomaz
, and
K. E.
Moselund
, “
High-speed III-V nanowire photodetector monolithically integrated on Si
,”
Nat. Commun.
11
(
1
),
4565
(
2020
).
231.
Z.
Han
,
V.
Singh
,
D.
Kita
,
C.
Monmeyran
,
P.
Becla
,
P.
Su
,
J.
Li
,
X.
Huang
,
L. C.
Kimerling
,
J.
Hu
,
K.
Richardson
,
D. T. H.
Tan
, and
A.
Agarwal
, “
On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors
,”
Appl. Phys. Lett.
109
(
7
),
071111
(
2016
).
232.
H.
Lin
,
Y.
Song
,
Y.
Huang
,
D.
Kita
,
S.
Deckoff-Jones
,
K.
Wang
,
L.
Li
,
J.
Li
,
H.
Zheng
,
Z.
Luo
,
H.
Wang
,
S.
Novak
,
A.
Yadav
,
C.-C.
Huang
,
R.-J.
Shiue
,
D.
Englund
,
T.
Gu
,
D.
Hewak
,
K.
Richardson
,
J.
Kong
, and
J.
Hu
, “
Chalcogenide glass-on-graphene photonics
,”
Nat. Photonics
11
(
12
),
798
805
(
2017
).
233.
X.
Tan
,
H.
Zhang
,
J.
Li
,
H.
Wan
,
Q.
Guo
,
H.
Zhu
,
H.
Liu
, and
F.
Yi
, “
Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors
,”
Nat. Commun.
11
(
1
),
5245
(
2020
).
234.
Y.
Han
,
H.
Park
,
J.
Bowers
, and
K. M.
Lau
, “
Recent advances in light sources on silicon
,”
Adv. Opt. Photonics
14
(
3
),
404
454
(
2022
).
235.
A.
Malik
,
A.
Spott
,
E. J.
Stanton
,
J. D.
Peters
,
J. D.
Kirch
,
L. J.
Mawst
,
D.
Botez
,
J. R.
Meyer
, and
J. E.
Bowers
, “
Integration of mid-infrared light sources on silicon-based waveguide platforms in 3.5–4.7 μm wavelength range
,”
IEEE J. Sel. Top. Quantum Electron.
25
(
6
),
1
9
(
2019
).
236.
E.
Tournié
,
L.
Monge Bartolome
,
M.
Rio Calvo
,
Z.
Loghmari
,
D. A.
Díaz-Thomas
,
R.
Teissier
,
A. N.
Baranov
,
L.
Cerutti
, and
J.-B.
Rodriguez
, “
Mid-infrared III–V semiconductor lasers epitaxially grown on Si substrates
,”
Light
11
(
1
),
165
(
2022
).
237.
J.
Haas
and
B.
Mizaikoff
, “
Advances in mid-infrared spectroscopy for chemical analysis
,”
Annu. Rev. Anal. Chem.
9
(
1
),
45
68
(
2016
).
238.
B. A.
Matveev
,
G. A.
Gavrilov
,
V. V.
Evstropov
,
N. V.
Zotova
,
S. A.
Karandashov
,
G.
Sotnikova
,
N. M.
Stus'
,
G. N.
Talalakin
, and
J.
Malinen
, “
Mid-infrared (3–5 μm) LEDs as sources for gas and liquid sensors
,”
Sens. Actuators, B
39
(
1
),
339
343
(
1997
).
239.
D.
Grassani
,
E.
Tagkoudi
,
H.
Guo
,
C.
Herkommer
,
F.
Yang
,
T. J.
Kippenberg
, and
C.-S.
Brès
, “
Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum
,”
Nat. Commun.
10
(
1
),
1553
(
2019
).
240.
A.
Dutt
,
C.
Joshi
,
X.
Ji
,
J.
Cardenas
,
Y.
Okawachi
,
K.
Luke
,
A. L.
Gaeta
, and
M.
Lipson
, “
On-chip dual-comb source for spectroscopy
,”
Sci. Adv.
4
(
3
),
e1701858
(
2018
).
241.
L. A.
Sterczewski
,
M.
Fradet
,
C.
Frez
,
S.
Forouhar
, and
M.
Bagheri
, “
Battery-operated mid-infrared diode laser frequency combs
,”
Laser Photonics Rev.
17
(
1
),
2200224
(
2023
).
242.
C.
Xiang
,
J.
Liu
,
J.
Guo
,
L.
Chang
,
R. N.
Wang
,
W.
Weng
,
J.
Peters
,
W.
Xie
,
Z.
Zhang
,
J.
Riemensberger
,
J.
Selvidge
,
T. J.
Kippenberg
, and
J. E.
Bowers
, “
Laser soliton microcombs heterogeneously integrated on silicon
,”
Science
373
(
6550
),
99
103
(
2021
).
243.
N.
Na
,
Y.-C.
Lu
,
Y.-H.
Liu
,
P.-W.
Chen
,
Y.-C.
Lai
,
Y.-R.
Lin
,
C.-C.
Lin
,
T.
Shia
,
C.-H.
Cheng
,
P.-Y.
Huang
,
L.
Wang
, and
S.-L.
Chen
, in
IEEE Silicon Photonics Conference (SiPhotonics)
(
IEEE
,
Washington, DC
,
2023
).
244.
H.
Tran
,
T.
Pham
,
J.
Margetis
,
Y.
Zhou
,
W.
Dou
,
P. C.
Grant
,
J. M.
Grant
,
S.
Al-Kabi
,
G.
Sun
,
R. A.
Soref
,
J.
Tolle
,
Y.-H.
Zhang
,
W.
Du
,
B.
Li
,
M.
Mortazavi
, and
S.-Q.
Yu
, “
Si-based GeSn photodetectors toward mid-infrared imaging applications
,”
ACS Photonics
6
(
11
),
2807
2815
(
2019
).
245.
J.
Huang
,
Z.
Dai
,
Z.
Shen
,
Z.
Wang
,
Z.
Zhou
,
Z.
Wang
,
B.
Peng
,
W.
Liu
, and
B.
Chen
, “
High-speed mid-wave infrared InAs/InAsSb superlattice uni-traveling carrier photodetectors with different absorber doping
,”
IEEE Trans. Electron Devices
69
(
12
),
6890
6896
(
2022
).
246.
M.
Muneeb
,
A.
Vasiliev
,
A.
Ruocco
,
A.
Malik
,
H.
Chen
,
M.
Nedeljkovic
,
J. S.
Penades
,
L.
Cerutti
,
J. B.
Rodriguez
,
G. Z.
Mashanovich
,
M. K.
Smit
,
E.
Tourni
, and
G.
Roelkens
, “
III-V-on-silicon integrated micro-spectrometer for the 3 μm wavelength range
,”
Opt. Express
24
(
9
),
9465
(
2016
).
247.
W. D.
Lawson
,
S.
Nielsen
,
E. H.
Putley
, and
A. S.
Young
, “
Preparation and properties of HgTe and mixed crystals of HgTe-CdTe
,”
J. Phys. Chem. Solids
9
(
3
),
325
329
(
1959
).
248.
B.
Chen
,
Y.
Chen
, and
Z.
Deng
, “
Recent advances in high speed photodetectors for eSWIR/MWIR/LWIR applications
,”
Photonics
8
(
1
),
14
(
2021
).
249.
B.
Weng
,
J.
Qiu
,
Z.
Yuan
,
P. R.
Larson
,
G. W.
Strout
, and
Z.
Shi
, “
Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings
,”
Appl. Phys. Lett.
104
(
2
),
021109
(
2014
).
250.
B.
Weng
,
J.
Qiu
,
L.
Zhao
,
C.
Chang
, and
Z.
Shi
, “
CdS/PbSe heterojunction for high temperature mid-infrared photovoltaic detector applications
,”
Appl. Phys. Lett.
104
(
12
),
121111
(
2014
).
251.
B.
Weng
,
J.
Qiu
,
L.
Zhao
,
Z.
Yuan
,
C.
Chang
, and
Z.
Shi
, “
Recent development on the uncooled mid-infrared PbSe detectors with high detectivity
,”
Proc. SPIE
8993
,
899311
(
2013
).
252.
J.
Wu
,
N.
Wang
,
X.
Yan
, and
H.
Wang
, “
Emerging low-dimensional materials for mid-infrared detection
,”
Nano Res.
14
(
6
),
1863
1877
(
2021
).
253.
Y.
Ma
,
Y.
Chang
,
B.
Dong
,
J.
Wei
,
W.
Liu
, and
C.
Lee
, “
Heterogeneously integrated graphene/silicon/halide waveguide photodetectors toward chip-scale zero-bias long-wave infrared spectroscopic sensing
,”
ACS Nano
15
(
6
),
10084
10094
(
2021
).
254.
S.
Yuan
,
D.
Naveh
,
K.
Watanabe
,
T.
Taniguchi
, and
F.
Xia
, “
A wavelength-scale black phosphorus spectrometer
,”
Nat. Photonics
15
(
8
),
601
607
(
2021
).
255.
Z.
Yang
,
T.
Albrow-Owen
,
W.
Cai
, and
T.
Hasan
, “
Miniaturization of optical spectrometers
,”
Science
371
(
6528
),
eabe0722
(
2021
).
256.
J.
Brouckaert
,
W.
Bogaerts
,
P.
Dumon
,
D.
Van Thourhout
, and
R.
Baets
, “
Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform
,”
J. Lightwave Technol.
25
(
5
),
1269
1275
(
2007
).
257.
P.
Pottier
,
M. J.
Strain
, and
M.
Packirisamy
, “
Integrated microspectrometer with elliptical Bragg mirror enhanced diffraction grating on silicon on insulator
,”
ACS Photonics
1
(
5
),
430
436
(
2014
).
258.
L.
Zhang
,
M.
Zhang
,
T.
Chen
,
D.
Liu
,
S.
Hong
, and
D.
Dai
, “
Ultrahigh-resolution on-chip spectrometer with silicon photonic resonators
,”
Opto-Electron. Adv.
5
(
7
),
210100
(
2022
).
259.
H.
Xu
,
Y.
Qin
,
G.
Hu
, and
H. K.
Tsang
, “
Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule
,”
Light
12
(
1
),
64
(
2023
).
260.
W.
Hadibrata
,
H.
Noh
,
H.
Wei
,
S.
Krishnaswamy
, and
K.
Aydin
, “
Compact, high‐resolution inverse‐designed on‐chip spectrometer based on tailored disorder modes
,”
Laser Photonics Rev.
15
(
9
),
2000556
(
2021
).
261.
B.
Redding
,
S. F.
Liew
,
R.
Sarma
, and
H.
Cao
, “
Compact spectrometer based on a disordered photonic chip
,”
Nat. Photonics
7
(
9
),
746
751
(
2013
).
262.
T.
Liu
and
A.
Fiore
, “
Designing open channels in random scattering media for on-chip spectrometers
,”
Optica
7
(
8
),
934
(
2020
).
263.
A.
Li
and
Y.
Fainman
, “
On-chip spectrometers using stratified waveguide filters
,”
Nat. Commun.
12
(
1
),
2704
(
2021
).
264.
T.
Lin
,
A.
Dutt
,
C.
Joshi
,
C. T.
Phare
,
Y.
Okawachi
,
A. L.
Gaeta
, and
M.
Lipson
, “
Broadband ultrahigh-resolution chip-scale scanning soliton dual-comb spectroscopy
,” (
2020
).
You do not currently have access to this content.