Electrochemical intercalation of cations within two-dimensional transition metal dichalcogenides presents a promising route for tailoring their optoelectronic properties. We have now succeeded in modulating the optical properties of MoS2 thin films through electrochemical intercalation of quaternary ammonium cations. The spectroelectrochemical experiments conducted with varying sizes of the intercalant revealed the size-dependent stability of the intercalated MoS2 nanosheets. The observed absorption change of the exciton bands is reversible and arises from the storage of electrons in MoS2 nanosheets and the subsequent weakening of interlayer van der Waals interactions following cation intercalation. This structural change is evidenced by the emergence of A*1g out-of-plane Raman mode. Additionally, the photoelectron spectroscopy reveals the emergence of a lower binding energy component of Mo 3d and the shift in Fermi level to higher energies, confirming the presence of stored electrons in cation intercalated-MoS2. The underlying mechanism of intercalation-induced property modifications in MoS2 discussed in the present study is useful in developing strategies for energy conversion devices.

1.
Z.
Wang
,
M. T.
Tang
,
A.
Cao
,
K.
Chan
, and
J. K.
Nørskov
, “
Insights into the hydrogen evolution reaction on 2D transition-metal dichalcogenides
,”
J. Phys. Chem. C
126
(
11
),
5151
5158
(
2022
).
2.
Z.
Li
,
Z.
Jiang
,
W.
Zhou
,
M.
Chen
,
M.
Su
,
X.
Luo
,
T.
Yu
, and
C.
Yuan
, “
MoS2 nanoribbons with a prolonged photoresponse lifetime for enhanced visible light photoelectrocatalytic hydrogen evolution
,”
Inorg. Chem.
60
(
3
),
1991
1997
(
2021
).
3.
J.
Cho
,
N. S.
Suwandaratne
,
S.
Razek
,
Y.-H.
Choi
,
L. F. J.
Piper
,
D. F.
Watson
, and
S.
Banerjee
, “
Elucidating the mechanistic origins of photocatalytic hydrogen evolution mediated by MoS2/CdS quantum-dot heterostructures
,”
ACS Appl. Mater. Interfaces
12
(
39
),
43728
43740
(
2020
).
4.
C.
Bie
,
B.
Zhu
,
L.
Wang
,
H.
Yu
,
C.
Jiang
,
T.
Chen
, and
J.
Yu
, “
A bifunctional CdS/MoO2/MoS2 catalyst enhances photocatalytic H2 evolution and pyruvic acid synthesis
,”
Angew. Chem. Int. Ed.
61
(
44
),
e202212045
(
2022
).
5.
T.
Stephenson
,
Z.
Li
,
B.
Olsen
, and
D.
Mitlin
, “
Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites
,”
Energy Environ. Sci.
7
(
1
),
209
231
(
2014
).
6.
C.
Tan
,
X.
Cao
,
X. J.
Wu
,
Q.
He
,
J.
Yang
,
X.
Zhang
,
J.
Chen
,
W.
Zhao
,
S.
Han
,
G. H.
Nam
et al, “
Recent advances in ultrathin two-dimensional nanomaterials
,”
Chem. Rev.
117
(
9
),
6225
6331
(
2017
).
7.
P.
Geng
,
S.
Zheng
,
H.
Tang
,
R.
Zhu
,
L.
Zhang
,
S.
Cao
,
H.
Xue
, and
H.
Pang
, “
Transition metal sulfides based on graphene for electrochemical energy storage
,”
Adv. Energy Mater.
8
(
15
),
1703259
(
2018
).
8.
Z. A.
Ghazi
,
X.
He
,
A. M.
Khattak
,
N. A.
Khan
,
B.
Liang
,
A.
Iqbal
,
J.
Wang
,
H.
Sin
,
L.
Li
, and
Z.
Tang
, “
MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium–sulfur batteries
,”
Adv. Mater.
29
(
21
),
1606817
(
2017
).
9.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin MoS2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
(
13
),
136805
(
2010
).
10.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
, “
Emerging photoluminescence in monolayer MoS2
,”
Nano Lett.
10
(
4
),
1271
1275
(
2010
).
11.
A. Y. S.
Eng
,
A.
Ambrosi
,
Z.
Sofer
,
P.
Šimek
, and
M.
Pumera
, “
Electrochemistry of transition metal dichalcogenides: Strong dependence on the metal-to-chalcogen composition and exfoliation method
,”
ACS Nano
8
(
12
),
12185
12198
(
2014
).
12.
X.
Chia
,
A. Y. S.
Eng
,
A.
Ambrosi
,
S. M.
Tan
, and
M.
Pumera
, “
Electrochemistry of nanostructured layered transition-metal dichalcogenides
,”
Chem. Rev.
115
(
21
),
11941
11966
(
2015
).
13.
S.
Manzeli
,
D.
Ovchinnikov
,
D.
Pasquier
,
O. V.
Yazyev
, and
A.
Kis
, “
2D transition metal dichalcogenides
,”
Nat. Rev. Mater.
2
(
8
),
17033
(
2017
).
14.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
, “
2D materials and van der Waals heterostructures
,”
Science
353
(
6298
),
aac9439
(
2016
).
15.
J. A.
Wilson
and
A. D.
Yoffe
, “
The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties
,”
Adv. Phys.
18
(
73
),
193
335
(
1969
).
16.
Y.
Jung
,
Y.
Zhou
, and
J. J.
Cha
, “
Intercalation in two-dimensional transition metal chalcogenides
,”
Inorg. Chem. Front.
3
(
4
),
452
463
(
2016
).
17.
J. V.
Acrivos
,
W. Y.
Liang
,
J. A.
Wilson
, and
A. D.
Yoffe
, “
Optical studies of metal-semiconductor transmutations produced by intercalation
,”
J. Phys. C: Solid State Phys.
4
(
1
),
L18
(
1971
).
18.
R. H.
Friend
and
A. D.
Yoffe
, “
Electronic properties of intercalation complexes of the transition metal dichalcogenides
,”
Adv. Phys.
36
(
1
),
1
94
(
1987
).
19.
Y.
Yu
,
G.
Li
,
L.
Huang
,
A.
Barrette
,
Y.-Q.
Cai
,
Y.
Yu
,
K.
Gundogdu
,
Y.-W.
Zhang
, and
L.
Cao
, “
Enhancing multifunctionalities of transition-metal dichalcogenide monolayers via cation intercalation
,”
ACS Nano
11
(
9
),
9390
9396
(
2017
).
20.
Y.
Wang
,
J. Z.
Ou
,
S.
Balendhran
,
A. F.
Chrimes
,
M.
Mortazavi
,
D. D.
Yao
,
M. R.
Field
,
K.
Latham
,
V.
Bansal
,
J. R.
Friend
et al, “
Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes
,”
ACS Nano
7
(
11
),
10083
10093
(
2013
).
21.
F.
Xiong
,
H.
Wang
,
X.
Liu
,
J.
Sun
,
M.
Brongersma
,
E.
Pop
, and
Y.
Cui
, “
Li intercalation in MoS2: In situ observation of its dynamics and tuning optical and electrical properties
,”
Nano Lett.
15
(
10
),
6777
6784
(
2015
).
22.
X.
Xu
,
M.
Yan
,
X.
Tian
,
C.
Yang
,
M.
Shi
,
Q.
Wei
,
L.
Xu
, and
L.
Mai
, “
In situ investigation of Li and Na ion transport with single nanowire electrochemical devices
,”
Nano Lett.
15
(
6
),
3879
3884
(
2015
).
23.
M.
Azhagurajan
,
T.
Kajita
,
T.
Itoh
,
Y.-G.
Kim
, and
K.
Itaya
, “
In situ visualization of lithium ion intercalation into MoS2 single crystals using differential optical microscopy with atomic layer resolution
,”
J. Am. Chem. Soc.
138
(
10
),
3355
3361
(
2016
).
24.
X.
Zhu
,
Z.
Su
,
C.
Wu
,
H.
Cong
,
X.
Ai
,
H.
Yang
, and
J.
Qian
, “
Exfoliation of MoS2 nanosheets enabled by a redox-potential-matched chemical lithiation reaction
,”
Nano Lett.
22
(
7
),
2956
2963
(
2022
).
25.
Z.
Lin
,
Y.
Liu
,
U.
Halim
,
M.
Ding
,
Y.
Liu
,
Y.
Wang
,
C.
Jia
,
P.
Chen
,
X.
Duan
,
C.
Wang
et al, “
Solution-processable 2D semiconductors for high-performance large-area electronics
,”
Nature
562
(
7726
),
254
258
(
2018
).
26.
Q.
He
,
Z.
Lin
,
M.
Ding
,
A.
Yin
,
U.
Halim
,
C.
Wang
,
Y.
Liu
,
H.-C.
Cheng
,
Y.
Huang
, and
X.
Duan
, “
In situ probing molecular intercalation in two-dimensional layered semiconductors
,”
Nano Lett.
19
(
10
),
6819
6826
(
2019
).
27.
B.-A.
Chen
,
N. L.
Dominique
,
A.
Kipkorir
,
J. P.
Camden
,
S.
Ptasinska
, and
P. V.
Kamat
, “
From light to dark: Dancing with electrons in colloidal 2D MoS2 nanosheets
,”
J. Phys. Chem. Lett.
15
(
18
),
4920
4927
(
2024
).
28.
D.
Voiry
,
A.
Mohite
, and
M.
Chhowalla
, “
Phase engineering of transition metal dichalcogenides
,”
Chem. Soc. Rev.
44
(
9
),
2702
2712
(
2015
).
29.
X.
Fan
,
P.
Xu
,
Y. C.
Li
,
D.
Zhou
,
Y.
Sun
,
M. A. T.
Nguyen
,
M.
Terrones
, and
T. E.
Mallouk
, “
Controlled exfoliation of MoS2 crystals into trilayer nanosheets
,”
J. Am. Chem. Soc.
138
(
15
),
5143
5149
(
2016
).
30.
M.
Rajapakse
,
B.
Karki
,
U. O.
Abu
,
S.
Pishgar
,
M. R. K.
Musa
,
S. M. S.
Riyadh
,
M.
Yu
,
G.
Sumanasekera
, and
J. B.
Jasinski
, “
Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials
,”
Mater. Appl.
5
(
1
),
30
(
2021
).
31.
G.
Wang
,
Y.
Zhang
,
H. S.
Cho
,
X.
Zhao
,
F.
Kim
, and
J.
Zou
, “
Revisiting the structural evolution of MoS2 during alkali metal (Li, Na, and K) intercalation
,”
ACS Appl. Energy Mater.
4
(
12
),
14180
14190
(
2021
).
32.
A.
Ambrosi
,
Z.
Sofer
, and
M.
Pumera
, “
Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2
,”
Small
11
(
5
),
605
612
(
2015
).
33.
R.
Yang
,
Y.
Fan
,
L.
Mei
,
H. S.
Shin
,
D.
Voiry
,
Q.
Lu
,
J.
Li
, and
Z.
Zeng
, “
Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials
,”
Nat. Synth.
2
(
2
),
101
118
(
2023
).
34.
Q.
Zhang
,
L.
Mei
,
X.
Cao
,
Y.
Tang
, and
Z.
Zeng
, “
Intercalation and exfoliation chemistries of transition metal dichalcogenides
,”
J. Mater. Chem. A
8
(
31
),
15417
15444
(
2020
).
35.
L. S.
Xie
,
S.
Husremović
,
O.
Gonzalez
,
I. M.
Craig
, and
D. K.
Bediako
, “
Structure and magnetism of iron- and chromium-intercalated niobium and tantalum disulfides
,”
J. Am. Chem. Soc.
144
(
22
),
9525
9542
(
2022
).
36.
K.
Zhu
,
Y.
Tao
,
D. E.
Clark
,
W.
Hong
, and
C. W.
Li
, “
Solution-phase synthesis of vanadium intercalated 1T′-WS2 with tunable electronic properties
,”
Nano Lett.
23
(
10
),
4471
4478
(
2023
).
37.
K.
Zhu
,
Y.
Tao
,
S.
Mandal
,
M.
Chen
, and
C. W.
Li
, “
Factors controlling intercalation of metal atoms into WS2: Implications for electronically tunable semiconductors
,”
ACS Appl. Nano Mater.
6
(
18
),
16846
16855
(
2023
).
38.
W.
Zhai
,
J.
Qi
,
C.
Xu
,
B.
Chen
,
Z.
Li
,
Y.
Wang
,
L.
Zhai
,
Y.
Yao
,
S.
Li
,
Q.
Zhang
et al, “
Reversible semimetal–semiconductor transition of unconventional-phase WS2 nanosheets
,”
J. Am. Chem. Soc.
145
(
24
),
13444
13451
(
2023
).
39.
Y.
Li
,
K.-A. N.
Duerloo
,
K.
Wauson
, and
E. J.
Reed
, “
Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating
,”
Nat. Commun.
7
(
1
),
10671
(
2016
).
40.
Y.
Wang
,
J.
Xiao
,
H.
Zhu
,
Y.
Li
,
Y.
Alsaid
,
K. Y.
Fong
,
Y.
Zhou
,
S.
Wang
,
W.
Shi
,
Y.
Wang
et al, “
Structural phase transition in monolayer MoTe2 driven by electrostatic doping
,”
Nature
550
(
7677
),
487
491
(
2017
).
41.
Z.
Lai
,
Q.
He
,
T. H.
Tran
,
D. V. M.
Repaka
,
D.-D.
Zhou
,
Y.
Sun
,
S.
Xi
,
Y.
Li
,
A.
Chaturvedi
,
C.
Tan
et al, “
Metastable 1T′-phase group VIB transition metal dichalcogenide crystals
,”
Nat. Mater.
20
(
8
),
1113
1120
(
2021
).
42.
Y.
Wu
,
D.
Li
,
C.-L.
Wu
,
H. Y.
Hwang
, and
Y.
Cui
, “
Electrostatic gating and intercalation in 2D materials
,”
Nat. Rev. Mater.
8
(
1
),
41
53
(
2023
).
43.
D.
Sarkar
,
D.
Das
,
S.
Das
,
A.
Kumar
,
S.
Patil
,
K. K.
Nanda
,
D. D.
Sarma
, and
A.
Shukla
, “
Expanding interlayer spacing in MoS2 for realizing an advanced supercapacitor
,”
ACS Energy Lett.
4
(
7
),
1602
1609
(
2019
).
44.
N. H.
Attanayake
,
A. C.
Thenuwara
,
A.
Patra
,
Y. V.
Aulin
,
T. M.
Tran
,
H.
Chakraborty
,
E.
Borguet
,
M. L.
Klein
,
J. P.
Perdew
, and
D. R.
Strongin
, “
Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction
,”
ACS Energy Lett.
3
(
1
),
7
13
(
2018
).
45.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
(
3
),
147
150
(
2011
).
46.
M.
Chen
,
D.
Cui
,
N.
Wang
,
S.
Weng
,
Z.
Zhao
,
F.
Tian
,
X.
Gao
,
K.
He
,
C.-T.
Chiang
,
S.
Albawardi
et al, “
Inkjet-printed MoS2 nanoplates on flexible substrates for high-performance field effect transistors and gas sensing applications
,”
ACS Appl. Nano Mater.
6
(
5
),
3236
3244
(
2023
).
47.
Z.
Yin
,
H.
Li
,
H.
Li
,
L.
Jiang
,
Y.
Shi
,
Y.
Sun
,
G.
Lu
,
Q.
Zhang
,
X.
Chen
, and
H.
Zhang
, “
Single-layer MoS2 phototransistors
,”
ACS Nano
6
(
1
),
74
80
(
2012
).
48.
O.
Lopez-Sanchez
,
D.
Lembke
,
M.
Kayci
,
A.
Radenovic
, and
A.
Kis
, “
Ultrasensitive photodetectors based on monolayer MoS2
,”
Nat. Nanotechnol.
8
(
7
),
497
501
(
2013
).
49.
G. M.
Carroll
,
H.
Zhang
,
J. R.
Dunklin
,
E. M.
Miller
,
N. R.
Neale
, and
J.
van de Lagemaat
, “
Unique interfacial thermodynamics of few-layer 2D MoS2 for (photo)electrochemical catalysis
,”
Energy Environ. Sci.
12
(
5
),
1648
1656
(
2019
).
50.
B.-A.
Chen
,
S.
Ptasinska
, and
P. V.
Kamat
, “
Metal cocatalyst dictates electron transfer in Ag-decorated MoS2 nanosheets
,”
J. Phys. Chem. C
126
(
29
),
11907
11914
(
2022
).
51.
P.
Brown
and
P. V.
Kamat
, “
Quantum dot solar cells. Electrophoretic deposition of CdSe−C60 composite films and capture of photogenerated electrons with nC60 cluster shell
,”
J. Am. Chem. Soc.
130
(
28
),
8890
8891
(
2008
).
52.
P. K.
Santra
,
P. V.
Nair
,
K.
George Thomas
, and
P. V.
Kamat
, “
CuInS2-sensitized quantum dot solar cell. Electrophoretic deposition, excited-state dynamics, and photovoltaic performance
,”
J. Phys. Chem. Lett.
4
(
5
),
722
729
(
2013
).
53.
H. M.
Hill
,
A. F.
Rigosi
,
C.
Roquelet
,
A.
Chernikov
,
T. C.
Berkelbach
,
D. R.
Reichman
,
M. S.
Hybertsen
,
L. E.
Brus
, and
T. F.
Heinz
, “
Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy
,”
Nano Lett.
15
(
5
),
2992
2997
(
2015
).
54.
A.
Carvalho
,
R. M.
Ribeiro
, and
A. H.
Castro Neto
, “
Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides
,”
Phys. Rev. B
88
(
11
),
115205
(
2013
).
55.
Z.
Liu
,
K.
Xu
,
H.
Yu
, and
Z.
Sun
, “
Synergistic effect of Ag/MoS2/TiO2 heterostructure arrays on enhancement of photoelectrochemical and photocatalytic performance
,”
Int. J. Energy Res.
45
(
5
),
6850
6862
(
2021
).
56.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
, “
Anomalous lattice vibrations of single- and few-layer MoS2
,”
ACS Nano
4
(
5
),
2695
2700
(
2010
).
57.
H.
Li
,
Q.
Zhang
,
C. C. R.
Yap
,
B. K.
Tay
,
T. H. T.
Edwin
,
A.
Olivier
, and
D.
Baillargeat
, “
From bulk to monolayer MoS2: Evolution of Raman scattering
,”
Adv. Funct. Mater.
22
(
7
),
1385
1390
(
2012
).
58.
G.
Eda
,
H.
Yamaguchi
,
D.
Voiry
,
T.
Fujita
,
M.
Chen
, and
M.
Chhowalla
, “
Photoluminescence from chemically exfoliated MoS2
,”
Nano Lett.
11
(
12
),
5111
5116
(
2011
).
59.
W.
Bao
,
J.
Wan
,
X.
Han
,
X.
Cai
,
H.
Zhu
,
D.
Kim
,
D.
Ma
,
Y.
Xu
,
J. N.
Munday
,
H. D.
Drew
et al, “
Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation
,”
Nat. Commun.
5
(
1
),
4224
(
2014
).
60.
J.
Yao
,
K. J.
Koski
,
W.
Luo
,
J. J.
Cha
,
L.
Hu
,
D.
Kong
,
V. K.
Narasimhan
,
K.
Huo
, and
Y.
Cui
, “
Optical transmission enhancement through chemically tuned two-dimensional bismuth chalcogenide nanoplates
,”
Nat. Commun.
5
(
1
),
5670
(
2014
).
61.
C.
Wang
,
Q.
He
,
U.
Halim
,
Y.
Liu
,
E.
Zhu
,
Z.
Lin
,
H.
Xiao
,
X.
Duan
,
Z.
Feng
,
R.
Cheng
et al, “
Monolayer atomic crystal molecular superlattices
,”
Nature
555
(
7695
),
231
236
(
2018
).
62.
L.
Wang
,
X.
Zhang
,
Y.
Xu
,
C.
Li
,
W.
Liu
,
S.
Yi
,
K.
Wang
,
X.
Sun
,
Z.-S.
Wu
, and
Y.
Ma
, “
Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors
,”
Adv. Funct. Mater.
31
(
36
),
2104286
(
2021
).
63.
I. C.
Gerber
,
E.
Courtade
,
S.
Shree
,
C.
Robert
,
T.
Taniguchi
,
K.
Watanabe
,
A.
Balocchi
,
P.
Renucci
,
D.
Lagarde
,
X.
Marie
et al, “
Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature
,”
Phys. Rev. B
99
(
3
),
035443
(
2019
).
64.
W.
Li
,
Z.
Yang
,
M.
Sun
, and
J.
Dong
, “
Interlayer interactions in transition metal dichalcogenides heterostructures
,”
Rev. Phys.
9
,
100077
(
2022
).
65.
Y.
Sun
,
S.
Yin
,
R.
Peng
,
J.
Liang
,
X.
Cong
,
Y.
Li
,
C.
Li
,
B.
Wang
,
M.-L.
Lin
,
P.-H.
Tan
et al, “
Abnormal out-of-plane vibrational Raman mode in electrochemically intercalated multilayer MoS2
,”
Nano Lett.
23
(
11
),
5342
5349
(
2023
).
66.
F.
Bussolotti
,
J.
Yang
,
H.
Kawai
,
C. P. Y.
Wong
, and
K. E. J.
Goh
, “
Impact of S-vacancies on the charge injection barrier at the electrical contact with the MoS2 monolayer
,”
ACS Nano
15
(
2
),
2686
2697
(
2021
).
67.
A. N.
Enyashin
and
G.
Seifert
, “
Density-functional study of LixMoS2 intercalates (0⩽x⩽1)
,”
Comput. Theor. Chem.
999
,
13
20
(
2012
).
You do not currently have access to this content.