Microring resonators, due to their ability to enable robust strong light–matter interactions within their structures, have garnered substantial interest for their utility in sensing applications, particularly in the realm of gas detection. However, there is an inherent trade-off between a microring resonator's quality factor and confinement factor in the air, making it difficult to balance them. Here, we demonstrate a novel solution with a suspended nanomembrane silicon (SNS) microring resonator. This resonator has ultrathin sub-wavelength thicknesses (0.02–0.03λ), which breaks the trade-off, offering not only a high intrinsic quality factor of 6 × 105 but also an extraordinarily large confinement factor of ∼80% in the air at mid-infrared wavelengths. As a proof-of-concept demonstration, we applied the SNS microring resonator for CO2 gas sensing, exhibiting a sensitivity over 10 times higher than conventional silicon resonators and a large dynamic sensing range spanning from 0% to 100% with a high resolution of better than 4% and chemical specificity. By virtue of its excellent properties, the SNS microring resonator has the potential to open new possibilities for the development of unprecedented nanophotonic integrated circuits, with a broad range of applications in on-chip sensing scenarios.

1.
W.
Bogaerts
,
P.
De Heyn
,
T.
Van Vaerenbergh
,
K.
De Vos
,
S.
Kumar Selvaraja
,
T.
Claes
,
P.
Dumon
,
P.
Bienstman
,
D.
Van Thourhout
, and
R.
Baets
,
Laser Photonics Rev.
6
,
47
73
(
2012
).
2.
S.
Ning
,
H.
Chang
,
K.
Fan
,
P.
Hsiao
,
C.
Feng
,
D.
Shoemaker
, and
R.
Chen
,
Appl. Phys. Rev.
10
(
2
),
021410
(
2023
).
3.
D.
Kim
,
S.
Han
,
J.
Hwang
,
I. H.
Do
,
D.
Jeong
,
J.
Lim
,
Y.
Lee
,
M.
Choi
,
Y.
Lee
,
D.
Choi
, and
H.
Lee
,
Nat. Commun.
11
,
5933
(
2020
).
4.
J.
Robinson
,
L.
Chen
, and
M.
Lipson
,
Opt. Express
16
(
6
),
4296
4301
(
2008
).
5.
D.
Fu
,
J.
Chung
,
Q.
Liu
,
R.
Raziq
,
J.
Kee
,
M.
Park
,
S.
Valiyaveettil
, and
P.
Lee
,
Sens. Actuators, B
257
,
136
142
(
2018
).
6.
M.
McClellan
,
L.
Domier
, and
R.
Bailey
,
Biosens. Bioelectron.
31
(
1
),
388
392
(
2012
).
7.
C.
Lemieux-Leduc
,
R.
Guertin
,
M.
Bianki
, and
Y.
Peter
,
Opt. Express
29
(
6
),
8685
8697
(
2021
).
8.
G.
Mi
,
C.
Horvath
, and
V.
Van
,
Opt. Express
25
(
14
),
16250
16259
(
2017
).
9.
T.
Baba
,
Nat. Photonics
2
(
8
),
465
473
(
2008
).
10.
D.
Llewellyn
,
Y.
Ding
,
I.
Faruque
,
S.
Paesani
,
D.
Bacco
,
R.
Santagati
,
Y.
Qian
,
Y.
Li
,
Y.
Xiao
,
M.
Huber
,
M.
Malik
,
G.
Sinclair
,
X.
Zhou
,
K.
Rottwitt
,
J.
O'Brien
,
J.
Rarity
,
Q.
Gong
,
L.
Oxenlowe
,
J.
Wang
, and
M.
Thompson
,
Nat. Phys.
16
(
2
),
148
153
(
2020
).
11.
A.
Griffith
,
R.
Lau
,
J.
Cardenas
,
Y.
Okawachi
,
A.
Mohanty
,
R.
Fain
,
Y.
Lee
,
M.
Yu
,
C.
Phare
,
C.
Poitras
,
A.
Gaeta
, and
M.
Lipson
,
Nat. Commun.
6
,
6299
(
2015
).
12.
A.
Novick
,
A.
James
,
L.
Dai
,
Z.
Wu
,
A.
Rizzo
,
S.
Wang
,
Y.
Wang
,
M.
Hattink
,
V.
Gopal
,
K.
Jang
,
R.
Parsons
, and
K.
Bergman
,
Appl. Phys. Rev.
10
(
4
),
041306
(
2023
).
13.
M.
Vlk
,
A.
Datta
,
S.
Alberti
,
H. D.
Yallew
,
V.
Mittal
,
G.
Murugan
, and
J.
Jágerská
,
Light Sci. Appl.
10
,
26
(
2021
).
14.
Y.
Zhi
,
X.
Yu
,
Q.
Gong
,
L.
Yang
, and
Y.
Xiao
,
Adv. Mater.
29
(
12
),
1604920
(
2017
).
15.
S.
Miller
,
M.
Yu
,
X.
Ji
,
A.
Griffith
,
J.
Cardenas
,
A.
Gaeta
, and
M.
Lipson
,
Optica
4
(
7
),
707
712
(
2017
).
16.
Y.
Chen
,
H.
Lin
,
J.
Hu
, and
M.
Li
,
ACS Nano
8
(
7
),
6955
6961
(
2014
).
17.
K. Y.
Yang
,
K.
Beha
,
D.
Cole
,
X.
Yi
,
P.
Del'Haye
,
H.
Lee
,
J.
Li
,
D. Y.
Oh
,
S.
Diddams
,
S.
Papp
, and
K.
Vahala
,
Nat. Photonics
10
(
5
),
316
320
(
2016
).
18.
T.
Xiao
,
Z.
Zhao
,
W.
Zhou
,
C.
Chang
,
S. Y.
Set
,
M.
Takenaka
,
H.
Tsang
,
Z.
Cheng
, and
K.
Goda
,
Opt. Lett.
43
(
12
),
2885
2888
(
2018
).
19.
W.
Barnes
,
A.
Dereux
, and
T.
Ebbesen
,
Nature
424
(
6950
),
824
830
(
2003
).
20.
X.
Zhang
,
C.
De-Eknamkul
,
J.
Gu
,
A.
Boehmke
,
V.
Menon
,
J.
Khurgin
, and
E.
Cubukcu
,
Nat. Nanotechnol.
14
(
9
),
844
850
(
2019
).
21.
H.
Ling
,
J.
Khurgin
, and
A.
Davoyan
,
Nano Lett.
22
(
15
),
6254
6261
(
2022
).
22.
L.
Chang
,
W.
Xie
,
H.
Shu
,
Q.
Yang
,
B.
Shen
,
A.
Boes
,
J.
Peters
,
W.
Jin
,
C.
Xiang
,
S.
Liu
,
G.
Moille
,
S.
Yu
,
X.
Wang
,
K.
Srinivasan
,
S.
Papp
,
K.
Vahala
, and
J.
Bowers
,
Nat. Commun.
11
,
1331
(
2020
).
23.
B.
Stern
,
X.
Ji
,
Y.
Okawachi
,
A.
Gaeta
, and
M.
Lipson
,
Nature
562
(
7727
),
401
405
(
2018
).
24.
W.
Zhou
,
Z.
Cheng
,
X.
Wu
,
B.
Zhu
,
X.
Sun
, and
H.
Tsang
,
Opt. Lett.
42
(
7
),
1245
1248
(
2017
).
25.
S. T.
Fard
,
V.
Donzella
,
S.
Schmidt
,
J.
Flueckiger
,
S.
Grist
,
P.
Talebi Fard
,
Y.
Wu
,
R.
Bojko
,
E.
Kwok
,
N.
Jaeger
,
D.
Ratner
, and
L.
Chrostowski
,
Opt. Express
22
(
12
),
14166
14179
(
2014
).
26.
Z.
Ruan
,
N.
Zhou
,
S.
Zheng
,
X.
Cao
,
Y.
Long
,
L.
Chen
, and
J.
Wang
,
Nanoscale
12
(
29
),
15620
15630
(
2020
).
27.
L.
Li
,
H.
Lin
,
S.
Qiao
,
Y.
Zou
,
S.
Danto
,
K.
Richardson
,
J.
Musgraves
,
N.
Lu
, and
J.
Hu
,
Nat. Photonics
8
(
8
),
643
649
(
2014
).
28.
H.
Kim
and
M.
Yu
,
Opt. Express
24
(
9
),
9501
9510
(
2016
).
29.
H.
Lin
,
L.
Li
,
Y.
Zou
,
S.
Danto
,
J.
Musgraves
,
K.
Richardson
,
S.
Kozacik
,
M.
Murakowski
,
D.
Prather
,
P.
Lin
,
V.
Singh
,
A.
Agarwal
,
L.
Kimerling
, and
J.
Hu
,
Opt. Lett.
38
(
9
),
1470
1472
(
2013
).
30.
C.
Wang
,
M.
Zhang
,
M.
Yu
,
R.
Zhu
,
H.
Hu
, and
M.
Loncar
,
Nat. Commun.
10
,
978
(
2019
).
31.
G.
Kim
,
H.
Lee
,
C.
Park
,
S.
Lee
,
B.
Lim
,
H.
Bae
, and
W.
Lee
,
Opt. Express
18
(
21
),
22215
22221
(
2010
).
32.
R.
Shankar
,
I.
Bulu
, and
M.
Lončar
,
Appl. Phys. Lett.
102
(
5
),
051108
(
2013
).
33.
W.
Jiang
,
J.
Zhang
, and
Q.
Lin
,
Opt. Express
22
(
1
),
1187
1192
(
2014
).
34.
S.
Kim
,
K.
Han
,
C.
Wang
,
J.
Jaramillo-Villegas
,
X.
Xue
,
C.
Bao
,
Y.
Xuan
,
D.
Leaird
,
A.
Weiner
, and
M.
Qi
,
Nat. Commun.
8
,
372
(
2017
).
35.
Y.
Xia
,
C.
Qiu
,
X.
Zhang
,
W.
Gao
,
J.
Shu
, and
Q.
Xu
,
Opt. Lett.
38
(
7
),
1122
1124
(
2013
).
36.
R.
Petruškevičius
,
A.
Balčytis
,
D.
Urbonas
,
K.
Vaškevičius
, and
S.
Juodkazis
,
Jpn. J. Appl. Phys., Part 1
59
,
SOOD02
(
2020
).
37.
K.
Vaškevičius
,
M.
Gabalis
,
D.
Urbonas
,
A.
Balčytis
,
R.
Petruškevičius
, and
S.
Juodkazis
,
J. Opt. Soc. Am. B
34
(
4
),
750
755
(
2017
).
38.
M.
He
,
S.
Halimi
,
T.
Folland
,
S.
Sunku
,
S.
Liu
,
J.
Edgar
,
D.
Basov
,
S.
Weiss
, and
J.
Caldwell
,
Adv. Mater.
33
(
11
),
2004305
(
2021
).
39.
J.
Chiles
,
S.
Khan
,
J.
Ma
, and
S.
Fathpour
,
Appl. Phys. Lett.
103
(
15
),
151106
(
2013
).
40.
A.
Vasiliev
,
A.
Malik
,
M.
Muneeb
,
B.
Kuyken
,
R.
Baets
, and
G.
Roelkens
,
ACS Sens.
1
(
11
),
1301
1307
(
2016
).
41.
R.
Guo
,
H.
Gao
,
T.
Liu
, and
Z.
Cheng
,
Opt. Lett.
47
(
5
),
1226
1229
(
2022
).
42.
R.
Guo
,
S.
Zhang
,
H.
Gao
,
G.
Murugan
,
T.
Liu
, and
Z.
Cheng
,
Photonics Res.
11
(
2
),
189
195
(
2023
).
43.
T.
Hu
,
B.
Dong
,
X.
Luo
,
T.
Liow
,
J.
Song
,
C.
Lee
, and
G.
Lo
,
Photonics Res.
5
(
5
),
417
430
(
2017
).
44.
A.
Schliesser
,
N.
Picqué
, and
T.
Hänsch
,
Nat. Photonics
6
(
7
),
440
449
(
2012
).
45.
J. S.
Dam
,
P.
Tidemand-Lichtenberg
, and
C.
Pedersen
,
Nat. Photonics
6
(
11
),
788
793
(
2012
).
46.
C.
Deleau
,
H.
Seat
,
F.
Surre
,
H.
Tap
, and
O.
Bernal
,
J. Lightwave Technol.
39
(
14
),
4820
4827
(
2021
).
47.
D.
Lange
,
C.
Hagleitner
,
A.
Hierlemann
,
O.
Brand
, and
H.
Baltes
,
Anal. Chem.
74
(
13
),
3084
3095
(
2002
).

Supplementary Material

You do not currently have access to this content.