Biological neurons are electro-mechanical systems, where the generation and propagation of an action potential are coupled to the generation and transmission of an acoustic wave. Neuristors, such as VO2, characterized by insulator-metal transition (IMT) and negative differential resistance, can be engineered as self-oscillators, which are good approximations of biological neurons in the domain of electrical signals. In this study, we show that these self-oscillators are coupled electro-opto-mechanical systems, with better energy conversion coefficients than the conventional electro-mechanical or electro-optical materials. This is due to the significant contrast in the material's resistance, optical refractive index, and density across the induced temperature range in a Joule heating driven IMT. We carried out laser interferometry to measure the opto-mechanical response while simultaneously driving the devices electrically into self-oscillations of different kinds. We analyzed films of various thicknesses, engineered device geometry, and performed analytical modeling to decouple the effects of refractive index change vis-à-vis mechanical strain in the interferometry signal. We show that the effective piezoelectric coefficient (d13*) for our neuristor devices is 660  ± 20 pm/V, with a 31% internal energy conversion efficiency, making them viable alternatives to Pb-based piezoelectrics for MEMS applications. Furthermore, we show that the effective electro-optic coefficient (r13*) is ∼22 nm/V, which is much larger than that in thin-film and bulk Pockels materials.

1.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its application to conduction and excitation in nerve
,”
J. Physiol.
117
,
500
544
(
1952
).
2.
A.
Gonzalez-Perez
,
L. D.
Mosgaard
,
R.
Budvytyte
,
E.
Villagran-Vargas
,
A. D.
Jackson
, and
T.
Heimburg
, “
Solitary electromechanical pulses in lobster neurons
,”
Biophys. Chem.
216
,
51
59
(
2016
).
3.
B. C.
Hill
,
E. D.
Schubert
,
M. A.
Nokes
, and
R. P.
Michelson
, “
Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential
,”
Science
4288
,
426
428
(
1977
).
4.
K.
Iwasa
and
I.
Tasaki
, “
Mechanical changes in squid giant axons associated with production of action potentials
,”
Top. Catal.
95
,
1328
1331
(
1980
).
5.
I.
Tasaki
and
P. M.
Byrne
, “
Rapid structural chances in nerve fibers evoked by electric current pulses
,”
Biochem. Biophys. Res. Commun.
188
,
559
564
(
1992
).
6.
I.
Tasaki
,
K.
Kusano
, and
P. M.
Byrne
, “
Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse
,”
Biophys. J.
55
,
1033
1040
(
1989
).
7.
P. H.
Barry
, “
Volume flows and pressure changes during an action potential in cells of Chara australis I. Experimental results
,”
J. Membr. Biol.
3
,
313
334
(
1970
).
8.
I.
Tasaki
and
P. M.
Byrne
, “
Tetanic contraction of the crab nerve evoked by repetitive stimulation
,”
Biochem. Biophys. Res. Commun.
106
,
1435
1440
(
1982
).
9.
T.
Heimburg
and
A. D.
Jackson
, “
On soliton propagation in biomembranes and nerves
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
9790
9795
(
2005
).
10.
E.
Villagran Vargas
,
A.
Ludu
,
R.
Hustert
,
P.
Gumrich
,
A. D.
Jackson
, and
T.
Heimburg
, “
Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve
,”
Biophys. Chem.
153
,
159
167
(
2011
).
11.
R.
Appali
,
U.
Van Rienen
, and
T.
Heimburg
, “
A comparison of the Hodgkin–Huxley model and the soliton theory for the action potential in nerves
,”
Adv. Planar Lipid Bilayers Liposomes
16
,
275
299
(
2012
).
12.
P.
Zhou
,
Z.
Yao
,
J.
Ma
, and
Z.
Zhu
, “
A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus
,”
Chaos, Solitons Fractals
145
,
110751
(
2021
).
13.
Y.
Yang
,
X. W.
Liu
,
H.
Wang
,
H.
Yu
,
Y.
Guan
,
S.
Wang
, and
N.
Tao
, “
Imaging action potential in single mammalian neurons by tracking the accompanying sub-nanometer mechanical motion
,”
ACS Nano
12
,
4186
4193
(
2018
).
14.
E.
Morosan
,
D.
Natelson
,
A. H.
Nevidomskyy
, and
Q.
Si
, “
Strongly correlated materials
,”
Adv. Mater.
24
,
4896
4923
(
2012
).
15.
R.
Koynova
and
B.
Tenchov
, “
Phase transitions and phase behavior of lipids
,” in
Encyclopedia of Biophysics
(
Springer
,
2013
), pp.
1841
1854
.
16.
H.
Madan
,
M.
Jerry
,
A.
Pogrebnyakov
,
T.
Mayer
, and
S.
Datta
, “
Quantitative mapping of phase coexistence in Mott-Peierls insulator during electronic and thermally driven phase transition
,”
ACS Nano
9
,
2009
2017
(
2015
).
17.
F. J.
Morin
, “
Oxides which show a metal-to-insulator transition at the Neel temperature
,”
Phys. Rev. Lett.
3
,
34
(
1959
).
18.
J.
Del Valle
,
N. M.
Vargas
,
R.
Rocco
,
P.
Salev
,
Y.
Kalcheim
,
P. N.
Lapa
,
C.
Adda
,
M. H.
Lee
,
P. Y.
Wang
,
L.
Fratino
,
M. J.
Rozenberg
, and
I. K.
Schuller
, “
Spatiotemporal characterization of the field-induced insulator-to-metal transition
,”
Science
373
,
907
911
(
2021
).
19.
K.
Liu
,
S.
Lee
,
S.
Yang
,
O.
Delaire
, and
J.
Wu
, “
Recent progresses on physics and applications of vanadium dioxide
,”
Mater. Today
21
,
875
896
(
2018
).
20.
V.
Jeyaselvan
,
A.
Pal
,
P. S.
Anil Kumar
, and
S. K.
Selvaraja
, “
Thermally-induced optical modulation in a vanadium dioxide-on-silicon waveguide
,”
OSA Continuum
3
,
132
(
2020
).
21.
M.
Currie
,
M. A.
Mastro
, and
V. D.
Wheeler
, “
Characterizing the tunable refractive index of vanadium dioxide
,”
Opt. Mater. Express
7
,
1697
(
2017
).
22.
S.
Kumar
,
M. D.
Pickett
,
J. P.
Strachan
,
G.
Gibson
,
Y.
Nishi
, and
R. S.
Williams
, “
Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2
,”
Adv. Mater.
25
,
6128
6132
(
2013
).
23.
Z.
Yang
,
C.
Ko
, and
S.
Ramanathan
, “
Oxide electronics utilizing ultrafast metal-insulator transitions
,”
Annu. Rev. Mater. Res.
41
,
337
367
(
2011
).
24.
Y.
Shi
,
A. E.
Duwel
,
D. M.
Callahan
,
Y.
Sun
,
F. A.
Hong
,
H.
Padmanabhan
,
V.
Gopalan
,
R.
Engel-Herbert
,
S.
Ramanathan
, and
L. Q.
Chen
, “
Dynamics of voltage-driven oscillating insulator-metal transitions
,”
Phys. Rev. B
104
,
064308
(
2021
).
25.
A.
Beaumont
,
J.
Leroy
,
J. C.
Orlianges
, and
A.
Crunteanu
, “
Current-induced electrical self-oscillations across out-of-plane threshold switches based on VO2 layers integrated in crossbars geometry
,”
J. Appl. Phys.
115
,
154502
(
2014
).
26.
S. M.
Bohaichuk
,
S.
Kumar
,
G.
Pitner
,
C. J.
McClellan
,
J.
Jeong
,
M. G.
Samant
,
H. S. P.
Wong
,
S. S. P.
Parkin
,
R. S.
Williams
, and
E.
Pop
, “
Fast spiking of a Mott VO2-carbon nanotube composite device
,”
Nano Lett.
19
,
6751
6755
(
2019
).
27.
T.
Driscoll
,
J.
Quinn
,
M.
Di Ventra
,
D. N.
Basov
,
G.
Seo
,
Y. W.
Lee
,
H. T.
Kim
, and
D. R.
Smith
, “
Current oscillations in vanadium dioxide: Evidence for electrically triggered percolation avalanches
,”
Phys. Rev. B
86
,
094203
(
2012
).
28.
W.
Yi
,
K. K.
Tsang
,
S. K.
Lam
,
X.
Bai
,
J. A.
Crowell
, and
E. A.
Flores
, “
Biological plausibility and stochasticity in scalable VO2 active memristor neurons
,”
Nat. Commun.
9
,
4661
(
2018
).
29.
L.
Wang
,
P. J.
Liang
,
P. M.
Zhang
, and
Y. H.
Qiu
, “
Ionic mechanisms underlying tonic and phasic firing behaviors in retinal ganglion cells
,”
Channels
8
,
298
307
(
2014
).
30.
R.
Madrid
,
M.
Sanhueza
,
O.
Alvarez
, and
J.
Bacigalupo
, “
Tonic and phasic receptor neurons in the vertebrate olfactory epithelium
,”
Biophys. J.
84
,
4167
4181
(
2003
).
31.
M. A.
Long
,
D. Z.
Jin
, and
M. S.
Fee
, “
Support for a synaptic chain model of neuronal sequence generation
,”
Nature
468
,
394
399
(
2010
).
32.
T. G.
Weyand
,
M.
Boudreaux
, and
W.
Guido
, “
Burst and tonic response modes in thalamic neurons during sleep and wakefulness
,”
J. Neurophysiol.
85
,
1107
1118
(
2001
).
33.
T. D.
Brown
,
S. M.
Bohaichuk
,
M.
Islam
,
S.
Kumar
,
E.
Pop
, and
R. S.
Williams
, “
Electro-thermal characterization of dynamical VO2 memristors via local activity modeling
,”
Adv. Mater.
35
,
2205451
(
2023
).
34.
A.
Gloskovskii
,
S. A.
Nepijko
,
G.
Schönhense
,
H. A.
Therese
,
A.
Reiber
,
H. C.
Kandpal
,
G. H.
Fecher
,
C.
Felser
,
W.
Tremel
, and
M.
Klimenkov
, “
Spectroscopic and microscopic study of vanadium oxide nanotubes
,”
J. Appl. Phys.
101
,
084301
(
2007
).
35.
J. S.
Brockman
,
L.
Gao
,
B.
Hughes
,
C. T.
Rettner
,
M. G.
Samant
,
K. P.
Roche
, and
S. S. P.
Parkin
, “
Subnanosecond incubation times for electric-field-induced metallization of a correlated electron oxide
,”
Nat. Nanotechnol.
9
,
453
458
(
2014
).
36.
U.
Khandelwal
,
Q.
Guo
,
B.
Noheda
,
P.
Nukala
, and
S.
Chandorkar
, “
Dynamics of voltage-driven self-sustained oscillations in NdNiO3 neuristors
,”
ACS Appl. Electron. Mater.
5
,
3859
3864
(
2023
).
37.
S.
Kumar
,
J. P.
Strachan
, and
R. S.
Williams
, “
Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing
,”
Nature
548
,
318
321
(
2017
).
38.
S.
Abel
,
F.
Eltes
,
J. E.
Ortmann
,
A.
Messner
,
P.
Castera
,
T.
Wagner
,
D.
Urbonas
,
A.
Rosa
,
A. M.
Gutierrez
,
D.
Tulli
,
P.
Ma
,
B.
Baeuerle
,
A.
Josten
,
W.
Heni
,
D.
Caimi
,
L.
Czornomaz
,
A. A.
Demkov
,
J.
Leuthold
,
P.
Sanchis
, and
J.
Fompeyrine
, “
Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon
,”
Nat. Mater.
18
,
42
47
(
2019
).
39.
S.
Sivaramakrishnan
,
P.
Mardilovich
,
A.
Mason
,
A.
Roelofs
,
T.
Schmitz-Kempen
, and
S.
Tiedke
, “
Electrode size dependence of piezoelectric response of lead zirconate titanate thin films measured by double beam laser interferometry
,”
Appl. Phys. Lett.
103
,
132904
(
2013
).
40.
K. H.
Sano
,
R.
Karasawa
, and
T.
Yanagitani
, “
ScAlN thick-film ultrasonic transducer in 40–80 MHz
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
,
2097
2102
(
2018
).
41.
D.
Mondal
,
S. R.
Mahapatra
,
T.
Ahmed
,
S. K.
Podapangi
,
A.
Ghosh
, and
N. P. B.
Aetukuri
, “
Atomically-smooth single-crystalline VO2(101) thin films with sharp metal-insulator transition
,”
J. Appl. Phys.
126
,
215302
(
2019
).

Supplementary Material

You do not currently have access to this content.