Charge transfer is a fundamental interface process that can be harnessed for light detection, photovoltaics, and photosynthesis. Recently, charge transfer was exploited in nanophotonics to alter plasmon polaritons by involving additional non-polaritonic materials to activate the charge transfer. Yet, direct charge transfer between polaritonic materials has not been demonstrated. We report the direct charge transfer in pure polaritonic van der Waals (vdW) heterostructures of α-MoO3/graphene. We extracted the Fermi energy of 0.6 eV for graphene by infrared nano-imaging of charge transfer hyperbolic polaritons in the vdW heterostructure. This unusually high Fermi energy is attributed to the charge transfer between graphene and α-MoO3. Moreover, we have observed charge transfer hyperbolic polaritons in multiple energy–momentum dispersion branches with a wavelength elongation of up to 150%. With the support from the density functional theory calculation, we find that the charge transfer between graphene and α-MoO3, absent in mechanically assembled vdW heterostructures, is attributed to the relatively pristine heterointerface preserved in the epitaxially grown vdW heterostructure. The direct charge transfer and charge transfer hyperbolic polaritons demonstrated in our work hold great promise for developing nano-optical circuits, computational devices, communication systems, and light and energy manipulation devices.

1.
F. P.
García de Arquer
,
A.
Armin
,
P.
Meredith
, and
E. H.
Sargent
, “
Solution-processed semiconductors for next-generation photodetectors
,”
Nat. Rev. Mater.
2
,
16100
(
2017
).
2.
A. E.
Jailaubekov
et al, “
Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics
,”
Nat. Mater.
12
,
66
73
(
2013
).
3.
V.
Coropceanu
,
X.-K.
Chen
,
T.
Wang
,
Z.
Zheng
, and
J.-L.
Brédas
, “
Charge-transfer electronic states in organic solar cells
,”
Nat. Rev. Mater.
4
,
689
707
(
2019
).
4.
A.
Kudo
and
Y.
Miseki
, “
Heterogeneous photocatalyst materials for water splitting
,”
Chem. Soc. Rev.
38
,
253
278
(
2009
).
5.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
Wiley
,
2002
).
6.
A. V.
Akimov
,
A. J.
Neukirch
, and
O. V.
Prezhdo
, “
Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces
,”
Chem. Rev.
113
,
4496
4565
(
2013
).
7.
Y.
Gong
et al, “
Vertical and in-plane heterostructures from WS2/MoS2 monolayers
,”
Nat. Mater.
13
,
1135
1142
(
2014
).
8.
X.
Hong
et al, “
Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures
,”
Nat. Nanotechnol.
9
,
682
686
(
2014
).
9.
C.-H.
Lee
et al, “
Atomically thin p–n junctions with van der Waals heterointerfaces
,”
Nat. Nanotechnol.
9
,
676
681
(
2014
).
10.
C.
Jin
et al, “
Ultrafast dynamics in van der Waals heterostructures
,”
Nat. Nanotechnol.
13
,
994
1003
(
2018
).
11.
P.
Rivera
et al, “
Interlayer valley excitons in heterobilayers of transition metal dichalcogenides
,”
Nat. Nanotechnol.
13
,
1004
1015
(
2018
).
12.
D. J.
Rizzo
et al, “
Charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces
,”
Nano Lett.
20
,
8438
8445
(
2020
).
13.
F. L.
Ruta
et al, “
Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures
,”
Nat. Commun.
13
,
3719
(
2022
).
14.
J. H.
Kim
et al, “
van der Waals epitaxial growth of single crystal α -MoO3 layers on layered materials growth templates
,”
2D Mater.
6
,
015016
(
2018
).
15.
J. H.
Kim
et al, “
Thickness-insensitive properties of α-MoO3 nanosheets by weak interlayer coupling
,”
Nano Lett.
19
,
8868
8876
(
2019
).
16.
S.
Vaziri
et al, “
Ultrahigh doping of graphene using flame-deposited MoO3
,”
IEEE Electron Device Lett.
41
,
1592
1595
(
2020
).
17.
H.
Kim
et al, “
In-plane anisotropy of graphene by strong interlayer interactions with van der Waals epitaxially grown MoO3
,”
Sci. Adv.
9
,
eadg6696
(
2023
).
18.
J. M.
Atkin
,
S.
Berweger
,
A. C.
Jones
, and
M. B.
Raschke
, “
Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids
,”
Adv. Phys.
61
,
745
842
(
2012
).
19.
T.
Low
et al, “
Polaritons in layered two-dimensional materials
,”
Nat. Mater.
16
,
182
(
2016
).
20.
D. N.
Basov
,
M. M.
Fogler
, and
F. J.
García de Abajo
, “
Polaritons in van der Waals materials
,”
Science
354
,
aag1992
(
2016
).
21.
M.
Chen
et al, “
Van der Waals isotope heterostructures for engineering phonon polariton dispersions
,”
Nat. Commun.
14
,
4782
(
2023
).
22.
G.
Hu
,
J.
Shen
,
C.-W.
Qiu
,
A.
Alù
, and
S.
Dai
, “
Phonon polaritons and hyperbolic response in van der Waals materials
,”
Adv. Opt. Mater.
8
,
1901393
(
2020
).
23.
S.
Dai
et al, “
Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride
,”
Science
343
,
1125
1129
(
2014
).
24.
H.
Wang
et al, “
Planar hyperbolic polaritons in 2D van der Waals materials
,”
Nat. Commun.
15
,
69
(
2024
).
25.
W.
Ma
et al, “
In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal
,”
Nature
562
,
557
562
(
2018
).
26.
Z.
Zheng
et al, “
A mid-infrared biaxial hyperbolic van der Waals crystal
,”
Sci. Adv.
5
,
eaav8690
(
2019
).
27.
M.
Chen
et al, “
Configurable phonon polaritons in twisted α-MoO3
,”
Nat. Mater.
19
,
1307
1311
(
2020
).
28.
Y.
Zeng
et al, “
Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals
,”
Nano Lett.
22
,
4260
4268
(
2022
).
29.
H.
Hu
et al, “
Doping-driven topological polaritons in graphene/α-MoO3 heterostructures
,”
Nat. Nanotechnol.
17
,
940
946
(
2022
).
30.
S.
Dai
et al, “
Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material
,”
Nano Lett.
17
,
5285
5290
(
2017
).
31.
S.
Dai
et al, “
Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial
,”
Nat. Nanotechnol.
10
,
682
(
2015
).
32.
J.-S.
Wu
,
D. N.
Basov
, and
M. M.
Fogler
, “
Topological insulators are tunable waveguides for hyperbolic polaritons
,”
Phys. Rev. B
92
,
205430
(
2015
).
33.
F. C. B.
Maia
et al, “
Anisotropic flow control and gate modulation of hybrid phonon-polaritons
,”
Nano Lett.
19
,
708
715
(
2019
).
34.
Y.
Wang
et al, “
Growth of large-scale, large-size, few-layered alpha-MoO3 on SiO2 and its photoresponse mechanism
,”
ACS Appl. Mater. Interfaces
9
,
5543
5549
(
2017
).
35.
Y.
Guo
and
J.
Robertson
, “
Origin of the high work function and high conductivity of MoO3
,”
Appl. Phys. Lett.
105
,
222110
(
2014
).
36.
H. Y.
Yuan
et al, “
Engineering ultra-low work function of graphene
,”
Nano Lett.
15
,
6475
6480
(
2015
).
37.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
38.
Irfan
et al, “
Energy level evolution of air and oxygen exposed molybdenum trioxide films
,”
Appl. Phys. Lett.
96
,
243307
(
2010
).
39.
S. O.
Akande
,
A.
Chroneos
,
M.
Vasilopoulou
,
S.
Kennou
, and
U.
Schwingenschlögl
, “
Vacancy formation in MoO3: Hybrid density functional theory and photoemission experiments
,”
J. Mater. Chem. C
4
,
9526
9531
(
2016
).
40.
M. M. Y. A.
Alsaif
et al, “
High-performance field effect transistors using electronic inks of 2D molybdenum oxide nanoflakes
,”
Adv. Funct. Mater.
26
,
91
100
(
2016
).
41.
M. M. Y. A.
Alsaif
et al, “
Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: Application for H2 gas sensing
,”
Sens. Actuators, B
192
,
196
204
(
2014
).
42.
Y.-H.
Lei
and
Z.-X.
Chen
, “
DFT+U study of properties of MoO3 and hydrogen adsorption on MoO3(010)
,”
J. Phys. Chem. C
116
,
25757
25764
(
2012
).
43.
I.
Irfan
,
A. J.
Turinske
,
Z.
Bao
, and
Y.
Gao
, “
Work function recovery of air exposed molybdenum oxide thin films
,”
Appl. Phys. Lett.
101
,
093305
(
2012
).
44.
D.
Xiang
,
C.
Han
,
J.
Zhang
, and
W.
Chen
, “
Gap states assisted MoO3 nanobelt photodetector with wide spectrum response
,”
Sci. Rep.
4
,
4891
(
2014
).
45.
B. S. Y.
Kim
et al, “
Ambipolar charge-transfer graphene plasmonic cavities
,”
Nat. Mater.
22
,
838
843
(
2023
).
46.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
47.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
48.
G.
Kresse
and
J.
Hafner
, “
Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements
,”
J. Phys.: Condens. Matter
6
,
8245
(
1994
).
49.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
, “
A grid-based Bader analysis algorithm without lattice bias
,”
J. Phys.: Condens. Matter
21
,
084204
(
2009
).

Supplementary Material

You do not currently have access to this content.