The hybrid structure of liquid metal units and organic elastomer has huge potential in achieving stretchable and reversible stiffness regulation, while such tuning is often restrained by high energy consumption for liquid metal solidification. Here, we conceive to solve the above challenge through introducing the fully leveraging interaction between supercooled liquid metal and homocrystal seeds within silicone elastomer. It is disclosed that the supercooled liquid metal-elastomer can maintain an extremely stable soft state until the supercooling is eliminated by modulating the mechanical force and elastomer deformation. This circumvents the utilization of intricate refrigeration equipment and offers a highly efficient and concise strategy for stiffness regulation. Moreover, conceptual experiments were performed to demonstrate the practical values of this technology through designing and testing the new shape memory materials, temperature-sensitive switches, and controlled circuits. The solidification mechanisms of supercooled Ga triggered by homocrystal seeds were interpreted. Overall, the present finding has generalized purposes and holds promise to significantly extend the theoretical and technological categories of classical stiffness tunable materials.

1.
D.
Rus
and
M. T.
Tolley
, “
Design, fabrication and control of soft robots
,”
Nature
521
(
7553
),
467
475
(
2015
).
2.
Y.
Ding
,
M.
Kim
,
S.
Kuindersma
, and
C. J.
Walsh
, “
Human-in-the-loop optimization of hip assistance with a soft exosuit during walking
,”
Sci. Rob.
3
(
15
),
eaar5438
(
2018
).
3.
Y. F.
Zhang
et al, “
Fast‐response, stiffness‐tunable soft actuator by hybrid multimaterial 3D printing
,”
Adv. Funct. Mater.
29
(
15
),
1806698
(
2019
).
4.
M. G.
Mohammed
and
R.
Kramer
, “
All‐printed flexible and stretchable electronics
,”
Adv. Mater.
29
(
19
),
1604965
(
2017
).
5.
Y.
Hao
,
J.
Gao
,
Y.
Lv
, and
J.
Liu
, “
Low melting point alloys enabled stiffness tunable advanced materials
,”
Adv. Funct. Mater.
32
(
25
),
2201942
(
2022
).
6.
B. E.
Schubert
and
D.
Floreano
, “
Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS)
,”
RSC Adv.
3
(
46
),
24671
(
2013
).
7.
I. M.
Van Meerbeek
et al, “
Morphing metal and elastomer bicontinuous foams for reversible stiffness, shape memory, and self-healing soft machines
,”
Adv. Mater.
28
(
14
),
2801
2806
(
2016
).
8.
R.
Zhao
,
Y.
Yao
, and
Y.
Luo
, “
Development of a variable stiffness over tube based on low-melting-point-alloy for endoscopic surgery
,”
J. Med. Device
10
(
2
),
021002
(
2016
).
9.
Y.
Hao
et al, “
A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties
,”
J. Micromech. Microeng.
28
(
2
),
024004
(
2018
).
10.
H.
Wang
,
Z.
Chen
, and
S.
Zuo
, “
Flexible manipulator with low-melting-point alloy actuation and variable stiffness
,”
Soft Rob.
9
(
3
),
577
590
(
2021
).
11.
W.
Sun
,
J.
Yu
, and
Y.
Cai
, “
Influence of magnetic field, magnetic particle percentages, and particle diameters on the stiffness of magnetorheological fluids
,”
J. Intell. Mater. Syst. Struct.
31
(
20
),
2312
2325
(
2020
).
12.
S. A.
Kozlov
,
N. A.
Potolokov
,
A. V.
Gusev
, and
V. A.
Fedorov
, “
Effect of impurities on crystal growth of gallium
,”
Inorg. Mater.
39
(
12
),
1267
1270
(
2003
).
13.
C.
Zhang
et al, “
Study on the nucleating agents for gallium to reduce its supercooling
,”
Int. J. Heat Mass Transfer
148
,
119055
(
2020
).
14.
M.
Manti
,
V.
Cacucciolo
, and
M.
Cianchetti
, “
Stiffening in soft robotics: A review of the state of the art
,”
IEEE Rob. Autom. Mag.
23
(
3
),
93
106
(
2016
).
15.
L.
Blanc
,
A.
Delchambre
, and
P.
Lambert
, “
Flexible medical devices: Review of controllable stiffness solutions
,”
Actuators
6
(
3
),
23
(
2017
).
16.
J.
Shintake
,
V.
Cacucciolo
,
D.
Floreano
, and
H.
Shea
, “
Soft robotic grippers
,”
Adv. Mater.
30
(
29
),
1707035
(
2018
).
17.
L.
Wang
et al, “
Controllable and reversible tuning of material rigidity for robot applications
,”
Mater. Today
21
(
5
),
563
576
(
2018
).
18.
S. H.
Byun
,
J. Y.
Sim
,
K. C.
Agno
, and
J. W.
Jeong
, “
Materials and manufacturing strategies for mechanically transformative electronics
,”
Mater. Today Adv.
7
,
100089
(
2020
).
19.
A. G.
Athanassiadis
et al, “
Particle shape effects on the stress response of granular packings
,”
Soft Matter
10
(
1
),
48
59
(
2014
).
20.
J. R.
Amend
,
E.
Brown
,
N.
Rodenberg
,
H. M.
Jaeger
, and
H.
Lipson
, “
A positive pressure universal gripper based on the jamming of granular material
,”
IEEE Trans. Rob.
28
(
2
),
341
350
(
2012
).
21.
J. D.
Carlson
and
M. R.
Jolly
, “
MR fluid, foam and elastomer devices
,”
Mechatronics
10
(
4
),
555
569
(
2000
).
22.
C.
Majidi
and
R. J.
Wood
, “
Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field
,”
Appl. Phys. Lett.
97
(
16
),
164104
(
2010
).
23.
J.
de Vicente
,
D. J.
Klingenberg
, and
R.
Hidalgo-Alvarez
, “
Magnetorheological fluids: A review
,”
Soft Matter
7
(
8
),
3701
3710
(
2011
).
24.
D.
Senkal
and
H.
Gurocak
, “
Haptic joystick with hybrid actuator using air muscles and spherical MR-brake
,”
Mechatronics
21
(
6
),
951
960
(
2011
).
25.
A.
Tonazzini
,
A.
Sadeghi
, and
B.
Mazzolai
, “
Electrorheological valves for flexible fluidic actuators
,”
Soft Rob.
3
(
1
),
34
41
(
2016
).
26.
S.
Lee
,
J.
Lee
,
S. H.
Hwang
,
J.
Yun
, and
J.
Jang
, “
Enhanced electroresponsive performance of double-shell SiO2/TiO2 hollow nanoparticles
,”
ACS Nano
9
(
5
),
4939
4949
(
2015
).
27.
W.
Shan
,
S.
Diller
,
A.
Tutcuoglu
, and
C.
Majidi
, “
Rigidity-tuning conductive elastomer
,”
Smart Mater. Struct.
24
(
6
),
065001
(
2015
).
28.
S.
Rich
,
S. H.
Jang
,
Y. L.
Park
, and
C.
Majidi
, “
Liquid metal-conductive thermoplastic elastomer integration for low-voltage stiffness tuning
,”
Adv. Mater. Technol.
2
(
12
),
1700179
(
2017
).
29.
A. M.
Nasab
,
A.
Sabzehzar
,
M.
Tatari
,
C.
Majidi
, and
W.
Shan
, “
A soft gripper with rigidity tunable elastomer strips as ligaments
,”
Soft Rob.
4
(
4
),
411
420
(
2017
).
30.
Y.
Yang
,
Y. H.
Chen
,
Y. T.
Li
, and
M. Z. Q.
Chen
, in
IEEE International Conference on Robotics and Automation (ICRA)
(
IEEE
,
2016
), pp.
3871
3877
.
31.
K.
Takashima
et al, “
Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire
,”
Smart Mater. Struct.
23
(
12
),
125005
(
2014
).
32.
Y.
Yang
,
Y.
Chen
,
Y.
Li
,
M. Z. Q.
Chen
, and
Y.
Wei
, “
Bioinspired robotic fingers based on pneumatic actuator and 3D printing of smart material
,”
Soft Rob.
4
(
2
),
147
162
(
2017
).
33.
C.
Yang
et al, “
4D printing reconfigurable, deployable and mechanically tunable metamaterials
,”
Mater. Horiz.
6
(
6
),
1244
1250
(
2019
).
34.
W.
Wang
,
C. Y.
Yu
,
P. A. A.
Serrano
, and
S. H.
Ahn
, “
Shape memory alloy-based soft finger with changeable bending length using targeted variable stiffness
,”
Soft Rob.
7
(
3
),
283
291
(
2020
).
35.
Y.
Yang
,
Y.
Chen
,
Y.
Li
,
Z.
Wang
, and
Y.
Li
, “
Novel variable-stiffness robotic fingers with built-in position feedback
,”
Soft Rob.
4
(
4
),
338
352
(
2017
).
36.
T. P.
Chenal
,
J. C.
Case
,
J.
Paik
, and
R. K.
Kramer
, in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014)
(
IEEE
,
2014
), pp.
2827
2831
.
37.
S. R.
Jiang
et al, “
A variable-stiffness continuum manipulators by an SMA-based sheath in minimally invasive surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
16
(
2
),
e2081
(
2020
).
38.
C.
Mavroidis
, “
Development of advanced actuators using shape memory alloys and electrorheological fluids
,”
Res. Nondestr. Eval.
14
(
1
),
1
32
(
2002
).
39.
J. M.
Jani
,
M.
Leary
,
A.
Subic
, and
M. A.
Gibson
, “
A review of shape memory alloy research, applications and opportunities
,”
Mater. Des.
56
,
1078
1113
(
2014
).
40.
M.
Sreekumar
,
T.
Nagarajan
,
M.
Singaperumal
,
M.
Zoppi
, and
R.
Molfino
, “
Critical review of current trends in shape memory alloy actuators for intelligent robots
,”
Ind. Rob.
34
(
4
),
285
294
(
2007
).
41.
R.
Poon
and
J. B.
Hopkins
, “
Phase-changing metamaterial capable of variable stiffness and shape morphing
,”
Adv. Eng. Mater.
21
(
12
),
1900802
(
2019
).
42.
X.
Wen
et al, “
Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery
,”
Biosens. Bioelectron.
131
,
37
45
(
2019
).
43.
D.
Zappetti
,
S. H.
Jeong
,
J.
Shintake
, and
D.
Floreano
, “
Phase changing materials-based variable-stiffness tensegrity structures
,”
Soft Rob.
7
(
3
),
362
369
(
2019
).
44.
Z. W.
Yu
,
Y. C.
Chen
,
F. F.
Yun
, and
X. L.
Wang
, “
Simultaneous fast deformation and solidification in supercooled liquid gallium at room temperature
,”
Adv. Eng. Mater.
19
(
8
),
1700190
(
2017
).
45.
M. A.
Alzoubi
,
M.
Xu
,
F. P.
Hassani
,
S.
Poncet
, and
A. P.
Sasmito
, “
Artificial ground freezing: A review of thermal and hydraulic aspects
,”
Tunnelling Underground Space Technol.
104
,
103534
(
2020
).
46.
X. H.
Yang
,
S. C.
Tan
, and
J.
Liu
, “
Numerical investigation of the phase change process of low melting point metal
,”
Int. J. Heat Mass Transfer
100
,
899
907
(
2016
).
47.
L. A.
Akashev
and
V. I.
Kononenko
, “
Optical properties of liquid gallium-indium alloy
,”
Tech. Phys.
43
(
7
),
853
854
(
1998
).
48.
X.
Wang
et al, “
Fast solidification of pure gallium at room temperature and its micromechanical properties
,”
Adv. Mater. Interfaces
10
(
4
),
2202100
(
2023
).
49.
J. D.
Berry
,
M. J.
Neeson
,
R. R.
Dagastine
,
D. Y. C.
Chan
, and
R. F.
Tabor
, “
Measurement of surface and interfacial tension using pendant drop tensiometry
,”
J. Colloid Interface Sci.
454
,
226
237
(
2015
).
50.
M.
Gajewski
,
R.
Szczerba
, and
S.
Jemioło
, “
Modelling of elastomeric bearings with application of Yeoh hyperelastic material model
,”
Procedia Eng.
111
,
220
227
(
2015
).
51.
Q.
Xu
,
N.
Oudalov
,
Q.
Guo
,
H. M.
Jaeger
, and
E.
Brown
, “
Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium
,”
Phys. Fluids
24
(
6
),
063101
(
2012
).
52.
Y.
Ding
,
M.
Zeng
, and
L.
Fu
, “
Surface chemistry of gallium-based liquid metals
,”
Matter
3
(
5
),
1477
1506
(
2020
).
53.
C.
Zhang
,
L.
Li
,
Z.
Li
,
H.
Chang
, and
J.
Liu
, “
Investigation on the spreading and solidification of supercooled gallium droplets during impact
,”
Int. J. Heat Mass Transfer
183
,
122142
(
2022
).
54.
A.
Lendlein
and
R.
Langer
, “
Biodegradable, elastic shape-memory polymers for potential biomedical applications
,”
Science
296
(
5573
),
1673
1676
(
2002
).
55.
Q.
Ze
et al, “
Magnetic shape memory polymers with integrated multifunctional shape manipulation
,”
Adv. Mater.
32
(
4
),
1906657
(
2020
).
56.
J.
Hu
et al, “
UV reconfigurable shape memory polyurethane with a high recovery ratio under large deformation
,”
Ind. Eng. Chem. Res.
60
(
5
),
2144
2153
(
2021
).
57.
L.
Wang
,
F.
Zhang
,
Y.
Liu
, and
J.
Leng
, “
Shape memory polymer fibers: Materials, structures, and applications
,”
Adv. Fiber Mater.
4
(
1
),
5
23
(
2022
).
58.
A.
Lendlein
and
O. E. C.
Gould
, “
Reprogrammable recovery and actuation behaviour of shape-memory polymers
,”
Nat. Rev. Mater.
4
(
2
),
116
133
(
2019
).

Supplementary Material

You do not currently have access to this content.